JPS61217003A - Manufacture of diffraction grating - Google Patents

Manufacture of diffraction grating

Info

Publication number
JPS61217003A
JPS61217003A JP5926985A JP5926985A JPS61217003A JP S61217003 A JPS61217003 A JP S61217003A JP 5926985 A JP5926985 A JP 5926985A JP 5926985 A JP5926985 A JP 5926985A JP S61217003 A JPS61217003 A JP S61217003A
Authority
JP
Japan
Prior art keywords
film
diffraction grating
substrate
interference
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5926985A
Other languages
Japanese (ja)
Inventor
Keisuke Koga
啓介 古賀
Tomoaki Uno
智昭 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5926985A priority Critical patent/JPS61217003A/en
Publication of JPS61217003A publication Critical patent/JPS61217003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a uniform diffraction grating which has superior reproducibility and controllability by laminating an insulating film and a photosensitive medium layer on a substrate successively and transferring an interference pattern by a two-luminous-flux interference exposing method. CONSTITUTION:An SiO2 film 20 is vapor-deposited as the insulating film on the GaAs substrate 11 and its film thickness is set almost to the maximum value of the level distribution of a standing wave; and a photoresist film 12 is laminated thereupon and exposed to laser light beams 14 and 14' to form a resist diffraction grating mask pattern 13 on the film 20. Then, the film 20 and substrate 11 are etched to obtain a diffraction grating 15 which is sectioned in a saw-tooth shape and the pattern 13 and film 20 are removed. The film 20 uses a material which is nearly equal in refractive index to the film 12 of a photosensitive medium in an exposed wavelength range and the film thickness of the film 12 is determined satisfying the optimum condition determined by the period of an interference pattern during interference exposure. Thus, the diffraction grating having a fine period is manufactured easily and uniformly with good reproducibility.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板面」−に回折格子を形成する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming a diffraction grating on a substrate surface.

従来の技術 近年、化合物半導体を用いた機能デバイスの開発が活発
に行われている。この中でも特に発光素子、受光素子及
びそれらの駆動・増幅回路を先導波路技術を用いてモノ
リシックに集積化した光集積回路は、光ループネットワ
ーク通信システムにおけるノードを構成し得うるキーデ
バイスとして注目を集めている。光集積回路に応用され
る回折格子は光導路上に周期的な凹凸を形成したもので
構成され、その周期は通常子〜数千A程度と微細になり
、高$1度の加工技術が要求される。
BACKGROUND OF THE INVENTION In recent years, functional devices using compound semiconductors have been actively developed. Among these, optical integrated circuits, which monolithically integrate light-emitting elements, light-receiving elements, and their driving/amplifying circuits using guided waveguide technology, are attracting attention as key devices that can form nodes in optical loop network communication systems. ing. Diffraction gratings applied to optical integrated circuits are composed of periodic irregularities formed on an optical guide, and the period is usually as small as a few thousand amps, requiring processing technology that costs $1. Ru.

第5図に従来から用いられている回折格子の作成プロセ
スを示す。第5図において、1は回折格子を作成しよう
とする基板、2は感光性媒質であるホトレジスト膜、4
,4′はレーザ光である。
FIG. 5 shows a process for creating a conventionally used diffraction grating. In FIG. 5, 1 is a substrate on which a diffraction grating is to be created, 2 is a photoresist film that is a photosensitive medium, and 4 is a photoresist film that is a photosensitive medium.
, 4' are laser beams.

まず基板1上にホトレジスト膜2をスピンナーで回転塗
布する。次にレーザ光4及び4′を用いた干渉露光法に
よって第5図(a>のように、ホトレジスト膜2を露光
する。その後ホトレジスト膜2を現像すると、干渉縞の
周期に等しい周期でホトレジストが除去され、第5図(
b)のように、レジストマスクパターン3が形成される
。適当なブリベーフを行なった後に、適当なエツチング
液を用いてこの基板を化学エツチングすると、第5図(
C)のように、回折格子5が基板1上に転写される。そ
の後基板1上のホトレジストパターン3を除去し、第5
図(d )のように回折格子の作成を完了する。
First, a photoresist film 2 is spin-coated onto a substrate 1 using a spinner. Next, the photoresist film 2 is exposed by an interference exposure method using laser beams 4 and 4' as shown in FIG. removed and shown in Figure 5 (
As shown in b), a resist mask pattern 3 is formed. After performing a suitable briefing, this substrate is chemically etched using a suitable etching solution, as shown in Fig. 5 (
As shown in C), the diffraction grating 5 is transferred onto the substrate 1. After that, the photoresist pattern 3 on the substrate 1 is removed, and the fifth
Complete the creation of the diffraction grating as shown in figure (d).

発明が解決しようとする問題点 しかしながら、上述の方法では以下の様な欠点を有して
いる。
Problems to be Solved by the Invention However, the above method has the following drawbacks.

第1に、干渉露光のための光学系は、コヒーレンス性の
よいレーザ光源や高11度の光学系により構成され、本
質的にこのような光学系は、周囲の振動や空気のゆらぎ
等の影響を受けやすく、均一で再現性のよい露光が困難
である。
First, the optical system for interference exposure is composed of a laser light source with good coherence and an optical system with a high angle of 11 degrees. It is difficult to achieve uniform exposure with good reproducibility.

第2に、干渉露光過程において、基板とレジスト膜の界
面における光の反射が大きな影響を及ぼす。基板1とし
て例えばGaAS基板、ホトレジスト膜2として例えば
A Z 1350を用いて露光を行なった場合、基板1
とホトレジスト132との界面での反射率は屈折率のち
がいにより20〜30%程度と大きな値になる。このた
め、入射波と反射波との干渉により定在波が生じ、実際
の露光プロセスはこの定在内により行われることになる
。基板1とホトレジスト1i12中での定在波の強度分
布は、基板からの距離に依存して周期的に変化し、基板
1とホトレジスト1112との界面で最小値をとる。
Second, in the interference exposure process, reflection of light at the interface between the substrate and the resist film has a large influence. When exposure is performed using, for example, a GaAS substrate as the substrate 1 and, for example, AZ 1350 as the photoresist film 2, the substrate 1
The reflectance at the interface between the photoresist 132 and the photoresist 132 has a large value of about 20 to 30% depending on the difference in refractive index. Therefore, a standing wave is generated due to interference between the incident wave and the reflected wave, and the actual exposure process is performed within this standing wave. The intensity distribution of the standing wave in the substrate 1 and the photoresist 1i12 changes periodically depending on the distance from the substrate, and takes a minimum value at the interface between the substrate 1 and the photoresist 1112.

現像後の回折格子を形成するためのレジトマスクパター
ン3をこのあとの化学エツチングマスクとして最適なも
のとするためには、レジストマスクパターン3の溝の部
分が十分に抜けていなければならず、そのための露光条
件がかなり長くなるという問題があった。
In order to make the resist mask pattern 3 for forming the diffraction grating after development optimal as a subsequent chemical etching mask, the groove portions of the resist mask pattern 3 must be sufficiently removed. There was a problem in that the exposure conditions were quite long.

上述のような理由により、従来の方法では作成したレジ
ストマスクパターンにバラツキが生じ、エツチングに際
してのマスク効果に均一性が得られにくかった。
For the reasons mentioned above, in the conventional method, variations occur in the resist mask patterns created, making it difficult to obtain uniformity in the mask effect during etching.

回折格子の深さ、すなわちエツチング深さは回折格子の
回折効率等の特性に影響を与えるため再現性よく均一に
エツチングされることが望まれるが、従来の方法では困
難であった。
Since the depth of the diffraction grating, that is, the etching depth, affects the characteristics such as the diffraction efficiency of the diffraction grating, it is desired that it be etched uniformly with good reproducibility, but this has been difficult with conventional methods.

本発明は、このような問題点を解決するもので、均一で
再現性、制御性にすぐれた回折格子の製造方法を提供す
ることを目的とするものである。
The present invention solves these problems, and aims to provide a method for manufacturing a diffraction grating that is uniform and has excellent reproducibility and controllability.

問題点を解決するための手段 上記の問題点を解決するために、本発明は、回折格子を
作製しようとする基板上に絶縁膜からなる第1の層と感
光性媒質からなる第2の層を順次積層し、二光束干渉露
光方法を用いて基板面上に干渉パターンの転写をとるも
のである。このとぎ、たとえば絶縁膜からなる第1の層
には感光性媒質からなる第2の層と露光波長域でほぼ屈
折率の等しい材質を用い、かつ第2の層の膜厚は干渉露
光時の干渉パターンの周期によってきまる最適な条件に
適するようにしてお(ことができる。ホログラフィック
露光により所望の周期を右する干渉パターンを前記第1
層の感光性媒質上に行なった後、ケミカルエツチングあ
るいはドライエツチングの手法を用いて第2の層にパタ
ーン転写を行なって回折格子を基板上に作製するための
回折格子マスクを得ることができる。しかる後に、エツ
チング速度が面方位依存性をもつエツチング液で基板を
ケミカルエツチングし、基板面上に刻まれた回折格子を
得ることができる。
Means for Solving the Problems In order to solve the above problems, the present invention provides a first layer made of an insulating film and a second layer made of a photosensitive medium on a substrate on which a diffraction grating is to be fabricated. are sequentially laminated, and the interference pattern is transferred onto the substrate surface using a two-beam interference exposure method. At this point, for example, the first layer made of an insulating film is made of a material having a refractive index almost equal to that of the second layer made of a photosensitive medium in the exposure wavelength range, and the film thickness of the second layer is set to be the same as that at the time of interference exposure. The interference pattern having the desired period can be formed by holographic exposure to suit the optimum conditions determined by the period of the interference pattern.
After the layer is applied to the photosensitive medium, the pattern can be transferred to the second layer using chemical etching or dry etching techniques to obtain a grating mask for fabricating the grating on the substrate. Thereafter, the substrate is chemically etched using an etching solution whose etching rate is surface orientation dependent, thereby obtaining a diffraction grating carved on the substrate surface.

作用 このような本発明の方法では、光束11i回路に用いら
れる微細な周期をもつ回折格子の作製に際し、均一に再
現性よく、かつ簡易に作成し得るものである。
Function: According to the method of the present invention, a diffraction grating with a fine period used in the light beam 11i circuit can be manufactured easily and uniformly with good reproducibility.

実施例 以下本発明の一実施例を第1図〜第4図を用いて詳細に
説明する。第1図に基板結晶にGa Asを用いた場合
の実施例を示す。第1図において、1は回折格子を作成
しようとするGa As J!板、20は絶縁膜として
のSi 021!f1112はホトレジスト膜、14.
14’ はレーザ光である。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1 to 4. FIG. 1 shows an example in which GaAs is used for the substrate crystal. In FIG. 1, 1 is a Ga As J! for which a diffraction grating is to be created. The plate 20 is Si 021 as an insulating film! f1112 is a photoresist film, 14.
14' is a laser beam.

まず、基板11上にスパッタ法あるいは熱CVD法を用
いて第1図(a)のようにSiO2躾20を蒸着する。
First, a SiO2 layer 20 is deposited on the substrate 11 using a sputtering method or a thermal CVD method, as shown in FIG. 1(a).

絶縁膜としてはSi 02 g120に限定される必要
はなく、基板・ホ[・し′シスト膜との密着性、膜厚の
制御性、屈折率がレジスト膜に近い等の条件が満足され
れば他の材料、例えば5iNX躾等であってもよい。S
iO2膜20の膜厚は、三光束干渉露光時の基板上に発
生する定在波の強度が最大となる位置にホトレジスト膜
との界面が存在するように設定する。例えば、第3図に
示す露光系の条件では、基板11からの垂直方向にX軸
をとると、定在波の強度が最大となる位置X waxは
次式で表わせる。
The insulating film does not need to be limited to Si 02 g120, as long as conditions such as adhesion to the substrate and the phosphor cyst film, controllability of film thickness, and refractive index close to that of the resist film are satisfied. Other materials may also be used, such as 5iNX material. S
The thickness of the iO2 film 20 is set so that the interface with the photoresist film exists at a position where the intensity of the standing wave generated on the substrate during three-beam interference exposure is maximum. For example, under the conditions of the exposure system shown in FIG. 3, when the X axis is taken in the direction perpendicular to the substrate 11, the position X wax where the intensity of the standing wave is maximum can be expressed by the following equation.

Xraax s 700(2m+ +1 >1−0.1
.2・・・〈1) (但し単位は^) このX5axノ位置は基板11より 70OA、 21
00A −・・どなる。
Xraax s 700 (2m+ +1 >1-0.1
.. 2...<1) (However, the unit is ^) This X5ax position is 70OA from the board 11, 21
00A -... roar.

この関係は露光波長、干渉パターンの周期に応じて表わ
される。したがって、S I O2膜20の膜厚は、露
光光学系の条件に応じて最適値付近つまり定在波の強度
分布の最大値付近に制御性よ(設定すればよい。
This relationship is expressed according to the exposure wavelength and the period of the interference pattern. Therefore, the thickness of the SIO2 film 20 may be set to be controllably close to the optimum value, that is, close to the maximum value of the intensity distribution of the standing wave, depending on the conditions of the exposure optical system.

次に、第1図(b )のように、SiO2膜20上20
上レジスト膜12を適当な膜厚になるように回転塗布し
、適当なプリベークを行なった後にレーザ光14および
14′ を用いた干渉露光法によってホトレジスト膜1
2を露光する。現像処理を行なうと、第1図(C)のよ
うにSiO2膜20上20上スト回折格子マスクパター
ン13を形成することができる。適当なボストベークを
行なった後、第1図(d )のように、このマスク13
を通して、5iOzRQ20をケミカルエッチあるいは
ドライエッチの手法を開いてエツチングを行う。ケミカ
ルエッチとしてはHF−NH3Fの混合液、ドライエッ
チとしてはCFJ系のスパッタ法が考えられるが、エツ
チング時のマスクアンダーカットの点ではドライエッチ
法の方が有利である。
Next, as shown in FIG. 1(b), 20
The upper resist film 12 is spin-coated to an appropriate thickness, and after an appropriate prebaking process, the photoresist film 1 is formed by interference exposure using laser beams 14 and 14'.
Expose 2. When the development process is performed, a diffraction grating mask pattern 13 can be formed on the SiO2 film 20 as shown in FIG. 1(C). After a suitable boss bake, this mask 13 is removed as shown in Fig. 1(d).
Through this process, 5iOzRQ20 is etched by chemical etching or dry etching. A mixed solution of HF-NH3F may be used as the chemical etch, and a CFJ sputtering method may be used as the dry etch, but the dry etch method is more advantageous in terms of mask undercut during etching.

次に、パターン転写を行なった5iO21120をマス
クとして適当なエツチング液を用いて第1図(e)のよ
うに基板11をエツチングする。このとき、回折格子パ
ターンは基板11の<011>方向に平行になるように
選び、かつエツチング液として両方位依存性のものを用
いれば、鋸歯状の断面形状をもつ回折格子15が得られ
る。次に、レジスト回折格子マスクパターン13および
S i 02 FJ20と順次除去すれば、第1図(「
)のように、基板11上に形成された回折格子15を得
ることができる。
Next, using the pattern-transferred 5iO2 1120 as a mask, the substrate 11 is etched using an appropriate etching solution as shown in FIG. 1(e). At this time, if the diffraction grating pattern is selected to be parallel to the <011> direction of the substrate 11, and if an etching solution that is bidirectionally dependent is used, a diffraction grating 15 having a sawtooth cross-sectional shape can be obtained. Next, by sequentially removing the resist grating mask pattern 13 and S i 02 FJ20, the pattern shown in FIG.
), a diffraction grating 15 formed on a substrate 11 can be obtained.

上述の手法によれば、次のような効果が生じる。According to the above-described method, the following effects occur.

すなわち、レジストの界面が露光されやすい位置に存在
しているため、本質的に不安点な三光束干渉露光法の欠
点をある程度カバーでき、均一で再現性に富むレジスト
回折格子マスクパターンが得られやすい。
In other words, since the resist interface exists in a position where it is easily exposed, the drawbacks of three-beam interference exposure method, which are inherently unstable, can be covered to some extent, and a resist grating mask pattern that is uniform and highly reproducible can be easily obtained. .

また、基板のエツチングに用いるマスクとして、5iO
21Qを用いているために、基板との密着性および耐酸
性にすぐれており、基板の深いエツチングを非常に安定
に行うことができる。
In addition, 5iO was used as a mask for etching the substrate.
Since 21Q is used, it has excellent adhesion to the substrate and acid resistance, and deep etching of the substrate can be performed very stably.

なお、本実施例ではGa As M板を用いて説明を行
なったが、他の単結晶基板、例えばInP、Si等にも
応用ができ−ることは言うまでもない。
Although the present embodiment has been explained using a GaAs M plate, it goes without saying that the present invention can also be applied to other single crystal substrates, such as InP, Si, etc.

ところで三光束干渉露光系において、基板とホトレジス
ト膜との屈折率のちがいにより基板へ入射した光は入射
角度に依存し、て強い反射を受ける。
In a three-beam interference exposure system, light incident on the substrate is strongly reflected depending on the angle of incidence due to the difference in refractive index between the substrate and the photoresist film.

第2図(a)に入射角度θによって基板からの反射率R
が変化する様子を示す。この場合、第2図(b)のよう
に、基板11としてはGa AS I板、ホトレジスト
膜12としてはA Z −1350,レーザ光14とし
ては露光波長は3250Aのレーザ光(S偏光)を用い
る。微細な周期の回折格子を作製しようとする場合には
、例えば周期2600Aの時入射角度は39゛ となり
、反射率は40%近くにも達してしまう。
Figure 2 (a) shows the reflectance R from the substrate depending on the incident angle θ.
shows how it changes. In this case, as shown in FIG. 2(b), a Ga AS I plate is used as the substrate 11, A Z-1350 is used as the photoresist film 12, and a laser beam (S polarized light) with an exposure wavelength of 3250 A is used as the laser beam 14. . When attempting to fabricate a diffraction grating with a fine period, for example, when the period is 2600A, the incident angle is 39° and the reflectance reaches nearly 40%.

入射波と基板からの反射波との干渉作用により、基板面
上には強い定在波が生じる。実際の露光プロセスはこの
定在波により行われることになる。
Due to the interference between the incident wave and the reflected wave from the substrate, a strong standing wave is generated on the substrate surface. The actual exposure process will be performed using this standing wave.

この定在波の電界の強度分布は、基板面より垂直方向つ
まりホトレジスト膜中で周期的に変化する。
The intensity distribution of the electric field of this standing wave changes periodically in a direction perpendicular to the substrate surface, that is, within the photoresist film.

第3図に基板からの距離りに依存して定在波の強度分布
lの変化の様子を示す。基板11としてはGa As基
板、ホトレジスト!!J12としてはAZ−1350、
レーザ光14として露光波長が3250A 、周期が2
600^である条件を用いている。第3図からも明らか
なように、基板11とホトレジストl!12との界面に
おいて、光の強度は最小、となり、ホトレジスト模12
中で周期的に変化する。つまり、この後の化学エツチン
グプロセスで問題となる基板界面付近の領域が最も露光
されにくい領域となっている。
FIG. 3 shows how the intensity distribution l of the standing wave changes depending on the distance from the substrate. The substrate 11 is a GaAs substrate and a photoresist! ! J12 is AZ-1350,
As the laser beam 14, the exposure wavelength is 3250A and the period is 2.
A condition of 600^ is used. As is clear from FIG. 3, the substrate 11 and the photoresist l! At the interface with photoresist pattern 12, the light intensity is minimum, and the photoresist pattern 12
It changes periodically inside. In other words, the region near the substrate interface, which will be a problem in the subsequent chemical etching process, is the region most difficult to be exposed to light.

いま第4図に示すような実施例の構成を考える。Let us now consider the configuration of an embodiment as shown in FIG.

第1の層20としては第2の層12のホトレジスト膜と
ほぼ屈折率の等しい絶縁膜を用いる。したがって、第1
の層20と第2の層12との界面での光の反射は無視す
ることができ、レジスト単層の場合と定在波の強度分布
は変わらないものとみなせる。
As the first layer 20, an insulating film having approximately the same refractive index as the photoresist film of the second layer 12 is used. Therefore, the first
The reflection of light at the interface between the layer 20 and the second layer 12 can be ignored, and the intensity distribution of the standing wave can be considered to be the same as in the case of a single resist layer.

第2の層12の膜厚は、定在波の強度分布が最大となる
領域付近に第1の層20と第2の層12の界面が存在す
るように設定しておく。つまり第2の層12としてのホ
トレジスト膜と、第1の層20としての絶縁膜との界面
は、光の強度が最大となる領域に近接しているのである
。このことによって、不安定なホログラフィック露光に
おいてもレジスト界面における露光が容易となり、レジ
スト回折格子マスクを制御性よく得ることが可能となる
The thickness of the second layer 12 is set so that the interface between the first layer 20 and the second layer 12 exists near the region where the intensity distribution of the standing waves is maximum. In other words, the interface between the photoresist film as the second layer 12 and the insulating film as the first layer 20 is close to the region where the intensity of light is maximum. This facilitates exposure at the resist interface even in unstable holographic exposure, making it possible to obtain a resist grating mask with good controllability.

発明の効果 以上述べたように本発明は、光集積回路に用いられる微
細な周期をもつ回折格子の作製に際し、均一に再現性よ
く、かつ簡易に作成し得るものであり、その実用上の効
果は極めて大である。
Effects of the Invention As described above, the present invention enables the fabrication of a diffraction grating with a fine period for use in optical integrated circuits, which can be produced uniformly, with good reproducibility, and easily. is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の一実施例の回折格子作
成方法を説明するための断面図、第2図(a)、(b)
はレーザ光の基板への入射角度とその反射率依存性を示
す関係図、第3図は基板からの距離に依存する定在波の
強度分布を示す関係図、第4図ば基板に積層された絶縁
膜及びホトレジスト膜の様子を示す断面図、第5図(a
)〜(d )は従来の回折格子作成方法を説明するため
の断面図である。 11・・・基板、12・・・ホトレジストIm(第2の
層)、13・・・レジスト回折格子マスクパターン、1
4.14’・・・レーザ光、15・・・回折格子、20
・・・絶縁膜(第1の層) 代理人   森  本  義  弘 第1図 第2図 OJo        60 入射絢0(it) 第8図 Ojoo     1000    1JOO順4(A
) 第4図 第5図 4′
FIGS. 1(a) to (f) are cross-sectional views for explaining a method for producing a diffraction grating according to an embodiment of the present invention, and FIGS. 2(a) and (b)
Figure 3 is a relationship diagram showing the incident angle of laser light on the substrate and its dependence on reflectance, Figure 3 is a relationship diagram showing the intensity distribution of the standing wave depending on the distance from the substrate, and Figure 4 is the relationship diagram showing the intensity distribution of the standing wave depending on the distance from the substrate. A cross-sectional view showing the state of the insulating film and photoresist film, FIG.
) to (d) are cross-sectional views for explaining a conventional method for producing a diffraction grating. DESCRIPTION OF SYMBOLS 11... Substrate, 12... Photoresist Im (second layer), 13... Resist grating mask pattern, 1
4.14'... Laser light, 15... Diffraction grating, 20
... Insulating film (first layer) Agent Yoshihiro Morimoto Figure 1 Figure 2 OJo 60 Incident light 0 (it) Figure 8 Ojoo 1000 1 JOO order 4 (A
) Figure 4 Figure 5 Figure 4'

Claims (1)

【特許請求の範囲】 1、基板面上に所望の周期を有する回折格子を形成する
に際し、前記基板面上に絶縁膜からなる第1の層と感光
性媒質からなる第2の層を順次積層し、二光束干渉露光
方法を用いて前記基板面上に干渉パターンの転写を行う
ことを特徴とする回折格子の製造方法。 2、第1の層の絶縁膜として、第2の層の感光性媒質と
ほぼ屈折率の等しい特性を有する材質を用い、干渉露光
時の干渉パターンの周期によってきまる最適な膜厚を有
せしめることを特徴とする特許請求の範囲第1項記載の
回折格子の製造方法。
[Claims] 1. When forming a diffraction grating having a desired period on a substrate surface, a first layer made of an insulating film and a second layer made of a photosensitive medium are sequentially laminated on the substrate surface. A method for manufacturing a diffraction grating, characterized in that an interference pattern is transferred onto the substrate surface using a two-beam interference exposure method. 2. As the insulating film of the first layer, a material having a refractive index almost equal to that of the photosensitive medium of the second layer is used, and the film has an optimal film thickness determined by the period of the interference pattern during interference exposure. A method for manufacturing a diffraction grating according to claim 1, characterized in that:
JP5926985A 1985-03-22 1985-03-22 Manufacture of diffraction grating Pending JPS61217003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5926985A JPS61217003A (en) 1985-03-22 1985-03-22 Manufacture of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5926985A JPS61217003A (en) 1985-03-22 1985-03-22 Manufacture of diffraction grating

Publications (1)

Publication Number Publication Date
JPS61217003A true JPS61217003A (en) 1986-09-26

Family

ID=13108480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5926985A Pending JPS61217003A (en) 1985-03-22 1985-03-22 Manufacture of diffraction grating

Country Status (1)

Country Link
JP (1) JPS61217003A (en)

Similar Documents

Publication Publication Date Title
US5225039A (en) Method for producing a diffraction grating
US4049944A (en) Process for fabricating small geometry semiconductive devices including integrated components
KR101131101B1 (en) Method for manufacturing of reflective type polarizer
JPH06201909A (en) Production of diffraction grating
JPH06300909A (en) Formation of diffraction grating by using holographic interference exposing method and optical semiconductor device using the same
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JPS61217003A (en) Manufacture of diffraction grating
EP0490320B1 (en) A method for producing a diffraction grating
JP2824314B2 (en) Method of manufacturing reflective optical bending waveguide
JPS6033505A (en) Manufacture of diffraction grating
JP2527833B2 (en) Method of manufacturing diffraction grating
JPS60127776A (en) Semiconductor light emitting device
JP3112153B2 (en) Grating fabrication method
JPS61212803A (en) Manufacture of diffraction grating
JPS5983111A (en) Preparation of optical integrated circuit
JPH07234310A (en) Production of diffraction grating and production of optical wavelength conversion element
JPS60216304A (en) Preparation of diffraction grating
JPH0461331B2 (en)
JPS60191209A (en) Production for diffraction grating
JPS62165392A (en) Manufacture of diffraction grating
JPS61189503A (en) Manufacture of diffraction grating
JPH07198922A (en) Formation of diffraction grating
JPH09184909A (en) Manufacture of diffraction grating limited in region
JPS62109389A (en) Manufacture of diffraction grating
JPH04356001A (en) Production of diffraction grating