JPS61216490A - Semiconductor light position detector - Google Patents

Semiconductor light position detector

Info

Publication number
JPS61216490A
JPS61216490A JP60057754A JP5775485A JPS61216490A JP S61216490 A JPS61216490 A JP S61216490A JP 60057754 A JP60057754 A JP 60057754A JP 5775485 A JP5775485 A JP 5775485A JP S61216490 A JPS61216490 A JP S61216490A
Authority
JP
Japan
Prior art keywords
layer
resistance
position detector
amorphous silicon
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60057754A
Other languages
Japanese (ja)
Other versions
JPH0691276B2 (en
Inventor
Shigenori Torihata
鳥畑 成典
Hisaaki Imaizumi
今泉 久朗
Hiroshi Miyata
浩 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP5775485A priority Critical patent/JPH0691276B2/en
Publication of JPS61216490A publication Critical patent/JPS61216490A/en
Publication of JPH0691276B2 publication Critical patent/JPH0691276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02024Position sensitive and lateral effect photodetectors; Quadrant photodiodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To improve the position detecting accuracy by setting to allow the length of current collecting electrodes, specific resistance, width and thickness of a material to satisfy specific conditions. CONSTITUTION:The length of current collecting electrodes is represented by #l, the specific resistance of a material is rhom, the width is w and the thickness is d, and P is represented by l.rhom/w.d. The rhos/P (where rhos is the sheet resistance of a resistance layer) in the relationship between the position detecting accuracy and rhos/P is confirmed to have k 167 according to experiments to have the value to indicate substantially constant value K for the position detecting accuracy, and d, w, l and rhom are so selected that rhos/P becomes the value K or larger to improve the position detecting accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体層の材料にアモルファスシリコ/を使
用した半導体光位置検出器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a semiconductor optical position detector using amorphous silicon as a material for a semiconductor layer.

(従来の技術) 本出願人は、先に特願昭57年161470号に係る半
導体光位置検出器を提案した。
(Prior Art) The present applicant previously proposed a semiconductor optical position detector according to Japanese Patent Application No. 161470 of 1982.

この半導体光位置検出器は、i型アモルファスシリコン
層の一方の面に9型アモルファスシリコン層を、他方の
面にn型アモルファスシリコン層を形成してなる半導体
層を備え、この半導体層の一方または双方の面に抵抗層
を形成するとと4 K。
This semiconductor optical position detector includes a semiconductor layer formed by forming a 9-type amorphous silicon layer on one surface of an i-type amorphous silicon layer and an n-type amorphous silicon layer on the other surface. When a resistive layer is formed on both sides, the voltage is 4K.

該抵抗層に集電電極を配設した構成をもつ。It has a configuration in which a current collecting electrode is disposed on the resistance layer.

(発明が解決しようとする問題点) ところで、単結晶シリコンを便用した周知の位置検出器
は、半導体層自体を抵抗層として機能させているので、
集電を極の抵抗に比して抵抗層のシート抵抗が著しく高
く(たとえば1 knlo、 ’)、したがって集電電
極の抵抗が検出精度にあまシ影響しない。
(Problems to be Solved by the Invention) By the way, in a well-known position detector using single crystal silicon, the semiconductor layer itself functions as a resistance layer.
The sheet resistance of the resistive layer is significantly higher than the resistance of the current collecting electrode (for example, 1 knlo,'), so that the resistance of the current collecting electrode does not significantly affect the detection accuracy.

これに対し、アモルファスシリコンを使用した上記従来
の位置検出器は、抵抗層をITO等で形成していること
から、そのシート抵抗が著しく低い(たとえば50Ω/
口)。このために、第10図に示されるように光ビーム
が位置t?に入射すると、抵抗層4に光生成電流が流れ
た際の電位分布が集電電極5as5bに生じ、これが位
置検出精度を低下させるという問題点があった。なお、
同図において集電電極5m、5bKは電流を取出すため
のリード線7がそれぞれ接続されている。
On the other hand, in the conventional position detector using amorphous silicon, the resistance layer is formed of ITO or the like, so its sheet resistance is extremely low (for example, 50Ω/
mouth). To this end, the light beam is moved to position t?, as shown in FIG. When the current is incident on the resistor layer 4, a potential distribution occurs in the current collecting electrode 5as5b when the photogenerated current flows through the resistance layer 4, which causes a problem in that the accuracy of position detection is reduced. In addition,
In the figure, lead wires 7 for extracting current are connected to current collecting electrodes 5m and 5bK, respectively.

(問題点を解決するための手段) かかる従来の問題点を解決するため1本発明では、l型
アモルファスシリコン層の一方の面にl型アモルファス
シリコン層を形成し、他方の面にn型アモルファスシリ
コン層を形成してなる半導体層を備え、この半導体層の
少くとも受光面側に透光性を有する抵抗層を形成し、こ
の抵抗層の端部に位置信号取出し用の集電電極を配設し
てなる半導体光位置検出器において、位置検出精度と〃
i ρ、/   (ただし、ρ6は上記抵抗層のシート抵抗
)d との関係におけるρ、/l!JLが、上記位置検出精度
d がほぼ一定な値を示す領域内の値をもつように、上記第
txiの長さt、材料の比抵抗ρ□2幅vbよび厚みd
を設定するよつにしている。
(Means for Solving the Problems) In order to solve such conventional problems, in the present invention, an L-type amorphous silicon layer is formed on one surface of the L-type amorphous silicon layer, and an n-type amorphous silicon layer is formed on the other surface. The device includes a semiconductor layer formed by forming a silicon layer, a resistive layer having light-transmitting properties is formed at least on the light-receiving surface side of the semiconductor layer, and a current collecting electrode for extracting position signals is arranged at the end of the resistive layer. The position detection accuracy and
i ρ, / (where ρ6 is the sheet resistance of the above resistance layer) ρ, /l! in relation to d ! The length t of the txi, the material's specific resistance ρ
I'm trying to set it up.

(実施例) 以下、本発明の実施例を添付図面を参照して詳細に説明
する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図(3)は本発明に係る半導体光位置検出器の一実
施例を示す平面図、同図(b) 、 (clは各々同図
−)のA −A’線、B −8’線による断面図である
。また第2図は、この実施例の一部断面斜視図である。
FIG. 1(3) is a plan view showing an embodiment of the semiconductor optical position detector according to the present invention, lines A-A' and B-8' in FIG. FIG. FIG. 2 is a partially sectional perspective view of this embodiment.

この実施例に係る半導体光位置検出器はガラス等からな
る基板1上に透光性導を膜からなる抵抗層2がス・々ツ
タ法もしくは真空蒸着法によって形成されている。そし
て、この抵抗層2の上面に半導体層3が形成され、さら
に該層3の上面に前記抵抗層2と同様の材料からなる抵
抗層4が同様の方法によって形成されている。なお抵抗
層2,4の膜厚は、たとえば10001程度に設定され
る。
In the semiconductor optical position detector according to this embodiment, a resistance layer 2 made of a light-transmitting conductive film is formed on a substrate 1 made of glass or the like by a starch drop method or a vacuum evaporation method. A semiconductor layer 3 is formed on the upper surface of this resistive layer 2, and a resistive layer 4 made of the same material as the resistive layer 2 is further formed on the upper surface of this layer 3 by the same method. Note that the film thickness of the resistance layers 2 and 4 is set to, for example, about 10,001 mm.

上記半導体層3は、第3図に示す如くp型アモル7アル
シリコン431,1ffiアモルファスシリコン層32
およびn型アモルファスシリコ7層33からなる3層構
造を有している。なお、これらの層はCVD (ebI
!rnical vapor dspomltion)
法等によって形成され、それらの膜厚dptdi bよ
びdnは九とえばd、−200X〜250X、di=4
000〜6000Xおよびdn=300〜500XVc
設定される。
The semiconductor layer 3 is made of p-type amorphous silicon 431, 1ffi amorphous silicon layer 32 as shown in FIG.
It has a three-layer structure consisting of seven layers 33 of n-type amorphous silicon and seven layers 33 of n-type amorphous silicon. Note that these layers were formed by CVD (ebI
! nical vapor dspomltion)
The film thicknesses dptdi b and dn are 9, for example, d, -200X to 250X, di=4
000~6000X and dn=300~500XVc
Set.

上記抵抗層20両端部には棒状をなした一対のX方向集
電電極5m 、5bが対向配置され、同様に抵抗層40
両端部には一対のy方向集電電価6a*6bが対向配置
されている。そして、これらの集電電極5 a e 5
 b a 6 a t 6 bの中央部には、電流を取
出す九めのリード線7がそれぞれ接続されている。
A pair of bar-shaped X-direction current collecting electrodes 5m and 5b are disposed opposite to each other at both ends of the resistance layer 20, and similarly, the resistance layer 40
A pair of y-direction current collecting potentials 6a*6b are arranged opposite to each other at both ends. And these current collecting electrodes 5 a e 5
A ninth lead wire 7 from which current is taken out is connected to the center of b a 6 a t 6 b.

いま、第4図に示す如く電極5m、5bおよび6 m 
e 6 bの厚さをa、@をW、長さをり、材料の比抵
抗をρ。とじ、かつ抵抗層2.4のシート抵抗を各々ρ
、とすると、このシート抵抗と集電を極る撮h(央験鷹
167)以上になると検出精度がほぼ一定な値を呈する
Now, as shown in Fig. 4, electrodes 5m, 5b and 6m
e 6 The thickness of b is a, @ is W, the length is ρ, and the specific resistance of the material is ρ. The sheet resistance of the resistive layer 2.4 is ρ.
, the detection accuracy exhibits a nearly constant value when the sheet resistance and current collection are at their peak (Okentaka 167) or higher.

それ故、ハ、バー〇〇が上記値に以上となるようにd 
、 v 、 tおよびρ。を選定することによシ、検出
ncを向上することができ、実験によればに中167程
度であることが確認された。
Therefore, d so that bar〇〇 is greater than or equal to the above value
, v, t and ρ. By selecting , it is possible to improve the detection nc, and experiments have confirmed that the detection nc is about 167.

そこで本実施例では、抵抗層2.4のシート抵抗が50
0/口で集電電極の材料としてアルミニウム(ρエキ2
.65 X 10−’Ω画)1−便用した場合に、d 
= 10000(X) 、 w = 0.8 (cd、
L = 8−に設定し、これによシρ”へ亭を約189
(>167)にしている。
Therefore, in this embodiment, the sheet resistance of the resistance layer 2.4 is 50
Aluminum (ρ exhaust 2
.. 65
= 10000 (X), w = 0.8 (cd,
Set L = 8-, so that the distance to ρ” is approximately 189
(>167).

以下、この実施例の作用を説明する。The operation of this embodiment will be explained below.

いま第6図ca+ 、 (bl 、 (e)に示すよう
に上記半導体光位置検出器に光ビーム人が入射すると、
その入射位置Pに光生成電流が発生する。このとき抵抗
層2においては入射位置Pと電極51.5b間の抵抗r
工1+rx2によって上記IIIL流が分割され、また
抵抗層4においては位置Pと116m、6b間の抵抗r
ア1 e ry2によって上記電流が分割されるので。
Now, as shown in Fig. 6 ca+, (bl, (e)), when a light beam enters the semiconductor optical position detector,
A photogenerated current is generated at the incident position P. At this time, in the resistance layer 2, the resistance r between the incident position P and the electrode 51.5b
The above IIIL flow is divided by process 1+rx2, and in resistance layer 4, the resistance r between position P and 116m and 6b is
Since the above current is divided by a1 e ry2.

II蓮5 m 、 5 bから電流IK1* ”x2が
、またt(’16ム。
From II lotus 5 m, 5 b, the current IK1*'x2 is also t('16 m.

6bから電流エア1 、1y2が各々取出される。Current air 1 and 1y2 are each taken out from 6b.

上記各分割電流■x1.’x2+Ty1.Iy2け、通
常、第7図て例示するような信号処理回路に入力される
Each of the above divided currents x 1. 'x2+Ty1. Iy2 is normally input to a signal processing circuit as illustrated in FIG.

この処理回路は上記各電流が入力されるプリアンプ13
〜16と、電流和Ix1+■x21?よびry1+r、
2 t−得る加算器17および18と、″IIL流差I
工1−r工2およびI、l−エア2を得る減算器19卦
よび20と、加算器17と減算器19の各出力の比およ
び加算器18と減算器20の各出力の比を得る除算器2
1卦よび22とから構成され、除算器21シよび22か
ら下式(1)に示すX方向の光入射位置信号PXおよび
下式(2)に示すy方向の光入射位置信号P、が各々出
力される。
This processing circuit includes a preamplifier 13 to which each of the above-mentioned currents is input.
~16 and the current sum Ix1+■x21? and ry1+r,
2 t-get adders 17 and 18 and ``IIL current difference I
Obtain subtractors 19 and 20 to obtain G1-r G2 and I, l-AIR 2, and obtain the ratio of each output of adder 17 and subtractor 19 and the ratio of each output of adder 18 and subtractor 20. Divider 2
The light incident position signal PX in the X direction shown in equation (1) below and the light incident position signal P in the y direction shown in equation (2) below are obtained from dividers 21 and 22, respectively. Output.

なお、この処理回路によれば、入射光の強度およびその
変化に影響されない位置信号を得ることができる。
Note that, according to this processing circuit, it is possible to obtain a position signal that is not affected by the intensity of incident light and its changes.

本実施例に係る位置検出器の出力特性は、第8図のグラ
フに示すとおりである。なおこのグラフでは、光ビーム
が入射された点線の交点に対して、実線上の各熱点が検
出位置を示してbる。この実施例の場合、同図から検出
誤差t/L((6)が、最大0.8%であることがわか
る。
The output characteristics of the position detector according to this embodiment are as shown in the graph of FIG. In this graph, each hot spot on the solid line indicates a detection position with respect to the intersection of the dotted lines where the light beam is incident. In the case of this example, it can be seen from the figure that the detection error t/L ((6) is 0.8% at maximum.

これに対し、同一条件下でdのみをd = 3000K
に設定してρ” ’(侮のを約57(〈167)にした
場合、第9図に示すような出力特性となる。この場合、
検出誤差は1.5チとなシ、上記本実施例の場合に比べ
ると、検出精度が悪くなる。なお、同各図はX方向のみ
の検出誤差を示している。
On the other hand, under the same conditions only d is d = 3000K
If the value of ρ is set to approximately 57 (<167), the output characteristics will be as shown in Figure 9. In this case,
The detection error is 1.5 inches, which means that the detection accuracy is worse than in the case of this embodiment. Note that each figure shows the detection error only in the X direction.

ところで、上記実施例においては、基板1をガラスで形
成し、かつ抵抗層2を透光性導電膜で形成しである。し
たがってこの実施的によれば、基板l側が光ビームを入
射させた場合でもその光ビーム入射位置を検出すること
ができる。つまり、この実施例に係る位置検出器は、半
導体層3のいずれの面に光ビームを入射させた場合でも
その入射位置を検出しうる。
By the way, in the above embodiment, the substrate 1 is made of glass, and the resistive layer 2 is made of a transparent conductive film. Therefore, according to this embodiment, even if the light beam is incident on the substrate l side, the light beam incident position can be detected. In other words, the position detector according to this embodiment can detect the incident position of the light beam no matter which surface of the semiconductor layer 3 the light beam is incident on.

なお、抵抗層4側を受光側に限定した場合には、抵抗層
2卦よび基板1を共に遮光性材料で形成してもよい。ま
た、基板l側を受光側に限定した場合には、抵抗層4を
遮光性材料で形成してよt、−i。
In addition, when the resistance layer 4 side is limited to the light-receiving side, both the resistance layer 2 and the substrate 1 may be formed of a light-shielding material. Further, when the substrate l side is limited to the light receiving side, the resistive layer 4 may be formed of a light-shielding material.

上記実施例は、第1図に示したように、抵抗層2および
4に各々一対のt極5m 、5bおよび6a、6bが配
設されているが、第11図に示す如く各電圧をたとえば
抵抗層4に全て配置することも可能である。ただしこの
場合、抵抗層2に代えて導を膜からなる共通電極23が
設けられる。
In the above embodiment, as shown in FIG. 1, a pair of t-poles 5m, 5b and 6a, 6b are provided in each of the resistance layers 2 and 4, but each voltage is changed as shown in FIG. It is also possible to arrange them all in the resistance layer 4. However, in this case, instead of the resistive layer 2, a common electrode 23 made of a conductive film is provided.

また上記実施例では半導体、i3のnl−側に抵抗層2
を形成し、2層側に抵抗層4を形成しているが、p+r
1層をこれとは逆の態様で形成してもよい。
Further, in the above embodiment, there is a resistive layer 2 on the nl- side of the semiconductor i3.
is formed, and the resistance layer 4 is formed on the second layer side, but p+r
One layer may also be formed in the opposite manner.

(発明の効果) 以上説明したように1本発明に係る半導体先位おけるρ
、4−が、位置検出精度がほぼ一定な値d を示す領域内の値をもつよう:(、集電電画の長さ6、
材料の比抵抗ρffl、幅Wおよび厚みdを設定したの
で、位置検出精度を向上させることができる。
(Effects of the Invention) As explained above, ρ in the first semiconductor according to the present invention
, 4- has a value within the region where the position detection accuracy is a nearly constant value d: (, the length of the current collection image 6,
Since the specific resistance ρffl, width W, and thickness d of the material are set, the position detection accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体光位置検出器の一実ya例
を示し、同図(、l)けその平面図、同図fb)は同図
(1)のA−A’線による断面図、同図(c)は同図(
、)の8− B’ilCよる断面図、第2図は第1図に
示した実施列の斜視図、第3図は半導体層の構成を示し
た部分拡大図、第4図は集電電画の形状を示した斜視図
、第5図は抵抗層の抵抗と集電に極の抵抗の比江対する
検出誤差の変化態様を示したグラフ、第6図はM1図江
示し之実施例の作用を説明する図、第7図は処理回路の
一例を示したグロック図、第8図は第1図に示した実施
例において(ρa /−!5>d を約1891CI、た場合の出力特性を示したグラフ。 第9図は抵抗層の抵抗と集電電極の抵抗との比(ρν2
を約57にしfc場合の位置検出器の出力特性を示すグ
ラフ、第10図は集電電画における電位分布の態J3A
を示した電位分布図、第11図は本発明に係る半導体光
位置検出器の他の実施例を漿念的に示した斜視図である
。 1・・・基板、2,4・・・抵抗層、3・・・半導体層
、5m、5b、6  龜  、6b  ・・・ 集 1
【 電 偶E  、  7  ・・・ リ − ト9線
。 第2図 ア 第3図 第4図 第5図 第6図 ]      2 第7図 第8図 d=10000(入) 第9図 d −3000(A) 第10図
FIG. 1 shows an actual example of the semiconductor optical position detector according to the present invention, and FIG. Figure, Figure (c) is Figure (
), FIG. 2 is a perspective view of the implementation row shown in FIG. 1, FIG. 3 is a partially enlarged view showing the structure of the semiconductor layer, and FIG. 4 is a current collecting image. FIG. 5 is a graph showing how the detection error changes with respect to the resistance of the resistance layer and the resistance of the current collecting pole. FIG. 6 is the effect of the embodiment shown in FIG. FIG. 7 is a clock diagram showing an example of the processing circuit, and FIG. 8 shows the output characteristics when (ρa/-!5>d is approximately 1891CI) in the embodiment shown in FIG. Figure 9 shows the ratio of the resistance of the resistance layer to the resistance of the current collecting electrode (ρν2
A graph showing the output characteristics of the position detector when fc is set to about 57. Figure 10 shows the state of potential distribution in the current collection image J3A
FIG. 11 is a perspective view schematically showing another embodiment of the semiconductor optical position detector according to the present invention. DESCRIPTION OF SYMBOLS 1...Substrate, 2, 4...Resistance layer, 3...Semiconductor layer, 5m, 5b, 6 head, 6b... Collection 1
[Electronic couple E, 7... Reit 9 wire. Figure 2 A Figure 3 Figure 4 Figure 5 Figure 6] 2 Figure 7 Figure 8 d = 10000 (in) Figure 9 d -3000 (A) Figure 10

Claims (1)

【特許請求の範囲】[Claims] i型アモルファスシリコン層の一方の面にp型アモルフ
ァスシリコン層を形成し、他方の面にn型アモルファス
シリコン層を形成してなる半導体層を備え、この半導体
層の少くとも受光面側に透光性を有する抵抗層を形成し
、この抵抗層の端部に位置信号取出し用の集電電極を配
設してなる半導体光位置検出器において、位置検出精度
とρ_s/(lpm/wd)(ただし、ρ_sは上記抵
抗層のシート抵抗)との関係におけるρ_s/(lpm
/wd)が、上記位置検出精度がほぼ一定な値を示す領
域内の値をもつように、上記集電電極の長さl、材料の
比抵抗ρ_m、幅wおよび厚みdを設定するようにした
ことを特徴とする半導体光位置検出器。
A semiconductor layer is formed by forming a p-type amorphous silicon layer on one surface of an i-type amorphous silicon layer and an n-type amorphous silicon layer on the other surface, and a light-transmitting layer is provided at least on the light-receiving surface side of this semiconductor layer. In a semiconductor optical position detector, in which a resistive layer with a characteristic of , ρ_s is ρ_s/(lpm
The length l, the specific resistance ρ_m of the material, the width w, and the thickness d of the current collecting electrode are set so that /wd) has a value within a region in which the position detection accuracy is approximately constant. A semiconductor optical position detector characterized by the following.
JP5775485A 1985-03-22 1985-03-22 Method for forming collector electrode in semiconductor optical position detector Expired - Fee Related JPH0691276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5775485A JPH0691276B2 (en) 1985-03-22 1985-03-22 Method for forming collector electrode in semiconductor optical position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5775485A JPH0691276B2 (en) 1985-03-22 1985-03-22 Method for forming collector electrode in semiconductor optical position detector

Publications (2)

Publication Number Publication Date
JPS61216490A true JPS61216490A (en) 1986-09-26
JPH0691276B2 JPH0691276B2 (en) 1994-11-14

Family

ID=13064666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5775485A Expired - Fee Related JPH0691276B2 (en) 1985-03-22 1985-03-22 Method for forming collector electrode in semiconductor optical position detector

Country Status (1)

Country Link
JP (1) JPH0691276B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950579A (en) * 1982-09-16 1984-03-23 Komatsu Ltd Semiconductor optical position detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950579A (en) * 1982-09-16 1984-03-23 Komatsu Ltd Semiconductor optical position detector

Also Published As

Publication number Publication date
JPH0691276B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
TWI468820B (en) Touch sensor
JPH04395B2 (en)
JPS61216490A (en) Semiconductor light position detector
JPH01226179A (en) Semiconductor light position detector
US5014100A (en) Image sensor free from undesirable incident light rays which have not been reflected in the surface bearing the image to be sensed
JPS6249680A (en) Semiconductor position detector
JPS61201482A (en) Semiconductor optical position detector
JPS6080272A (en) Charge transfer element
JPS62184304A (en) Two-dimensional semiconductor optical position detector
JP2511208B2 (en) Two-dimensional optical position detector
TWI763430B (en) Touch display apparatus
JP2771709B2 (en) Optical position detector
JPS61129509A (en) Semiconductor optical position detector
KR101305826B1 (en) Touch panel and method for manufacturing the same
JPH0620160B2 (en) Semiconductor position detector
JP3203104B2 (en) Photovoltaic device
JPS63164281A (en) Position detecting device
JP3111544B2 (en) Solar radiation sensor
JPH0269624A (en) Pyroelectric infrared ray detecting element
JPS58162055A (en) Thin film photoelectric converter
JPS63137321A (en) Position detector
JPH04343276A (en) Light position detector
JPS61269384A (en) Photo position-detecting device
JPS61229372A (en) Semiconductor position detector
JPS63137320A (en) Position detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees