JPS61216464A - Monolithic integrated element of photodiode and transistor - Google Patents

Monolithic integrated element of photodiode and transistor

Info

Publication number
JPS61216464A
JPS61216464A JP60057806A JP5780685A JPS61216464A JP S61216464 A JPS61216464 A JP S61216464A JP 60057806 A JP60057806 A JP 60057806A JP 5780685 A JP5780685 A JP 5780685A JP S61216464 A JPS61216464 A JP S61216464A
Authority
JP
Japan
Prior art keywords
layer
transistor
epitaxial growth
buried
buried layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60057806A
Other languages
Japanese (ja)
Inventor
Kazuo Kiyohashi
幾世橋 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60057806A priority Critical patent/JPS61216464A/en
Publication of JPS61216464A publication Critical patent/JPS61216464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Abstract

PURPOSE:To enable to accelerate the switching speed by constructing to have a transistor formed in the second epitaxially grown layer on the second buried layer and the first conductive type insulating region for electrically insulating a photodiode and the transistor. CONSTITUTION:Sb is diffused in a P-type silicon substrate 11 having 20-40OMEGA-cm of specific resistance to form the first Sb buried layer 12 having 20.5OMEGA/square of a layer resistance, boron is then diffused to form a boron buried layer 13 having 18OMEGA/square of layer resistance, and phosphorus is then diffused to form a phosphorus buried layer 14 having 20OMEGA/square of layer resistance. Thereafter, the first N-type epitaxially grown layer 15 having 2OMEGA-cm of specific resistance and 14mum of thickness is formed. Then, the second Sb buried layer 16 having 20.5OMEGA/square of layer resistance is formed, and the second epitaxially grown layer 17 having 6mum of thickness and the same specific resistance as the first layer is formed on the layer 15 in which the second layer is completely formed. Thus, the switching speed of the transistor can be accelerated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は受光ダイオードとトランジスタの集積素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an integrated device of a light receiving diode and a transistor.

(従来の技術) 従来、受光ダイオードとその光検出電流を増幅するため
のトランジスタを四−チップ内に形成するモノリシック
型の集積素子において、受光ダイオードの光検出電流を
大きくとるためには、光検出活性層を対象とする光の波
長に応じである値以上に厚くとる必豊かあるが、トラン
ジスタのエミッタ直下のコレクタ領域の厚さは、スイッ
チング速度を速くするためにはある値以下に薄くする必
要がある。このように同一基板上にこの基板と異なる導
電型の光活性領域とコレクタ領域とを厚さをかえて形成
する方法としては、従来二′N埋込拡散法が行なわれて
いた。とζろが、前記二重埋込拡散法では、トランジス
タ部のコレクタ領域の厚さを、必要な専さに抑えておき
ながら受光ダイオード部の光活性領域の厚さを充分厚く
することは困難である。この仁とを図面を用いて説明す
る。
(Prior art) Conventionally, in a monolithic integrated device in which a photodetector diode and a transistor for amplifying its photodetection current are formed in a four-chip device, in order to increase the photodetection current of the photodetector diode, photodetection Although it is necessary to make the active layer thicker than a certain value depending on the wavelength of the light targeted at it, the thickness of the collector region directly under the emitter of the transistor needs to be thinner than a certain value in order to increase the switching speed. There is. As a method for forming a photoactive region and a collector region of different conductivity types on the same substrate with different thicknesses, the 2'N buried diffusion method has conventionally been used. However, with the double buried diffusion method described above, it is difficult to increase the thickness of the photoactive region of the photodetector diode sufficiently while suppressing the thickness of the collector region of the transistor to the required thickness. It is. This will be explained using drawings.

第2図は従来の受光ダイオードとトランジスタのモノリ
シック集積素子の一例の断面図である。
FIG. 2 is a cross-sectional view of an example of a conventional monolithic integrated device of a light receiving diode and a transistor.

P型シリコン基板llc、まずアンチモン(sb)を拡
散してSb埋込層2を形成し、充分基板1側にsbを押
し込んだ後、他の領域に8b埋込層3を形成する。その
後で、N−のエピタキシャル成長層4を形成する。次に
受光ダイオード部とトランジスタ部を電気的に絶縁する
P 絶縁拡散層5と受光ダイオードのN@電極用コンタ
クト拡散層6蓬びにトランジスタのコレクタ用コンタク
ト拡散層7を形成する。その後、受光ダイオードのP+
層8とトランジスタのPffiペース9を形成し、最後
にトランジスタのN型エミッタ10を形成する。
On the P-type silicon substrate llc, first, antimony (SB) is diffused to form an Sb buried layer 2, and after sb is sufficiently pushed into the substrate 1 side, an 8B buried layer 3 is formed in another region. After that, an N- epitaxial growth layer 4 is formed. Next, a P insulating diffusion layer 5 for electrically insulating the light receiving diode section and the transistor section, a contact diffusion layer 6 for the N@ electrode of the light receiving diode, and a contact diffusion layer 7 for the collector of the transistor are formed. After that, P+ of the photodiode
The layer 8 and the Pffi paste 9 of the transistor are formed, and finally the N-type emitter 10 of the transistor is formed.

上述のように形成した従来法の集積素子の受光ダイオー
ド部Pとトランジスタ部のsb埋込層の濃度プロファイ
ルの一例を第3図に示す。第3図の中でNp及びNrが
それぞれ受光ダイオード部及びトランジスタ部の埋込層
2.3の濃度プロファイルである。第3図はN−エピタ
キシャル層厚が6μmの場合を示し、受光ダイオード部
の埋込層2のsbの濃度プロファイルのピーク値が、ト
ランジスタ部よシも3μm基板側にせシさがりている。
FIG. 3 shows an example of the concentration profile of the sb buried layer of the light receiving diode section P and the transistor section of the conventional integrated device formed as described above. In FIG. 3, Np and Nr are the concentration profiles of the buried layer 2.3 of the light receiving diode section and the transistor section, respectively. FIG. 3 shows a case where the thickness of the N-epitaxial layer is 6 μm, and the peak value of the concentration profile of sb in the buried layer 2 of the light-receiving diode portion is lowered by 3 μm toward the substrate side than the transistor portion.

従って、エピタキシャル層表面から9μmのSb濃度プ
ロファイルのピーク位置までが受光ダイオードの光活性
領域□として利用できる。
Therefore, the area from the surface of the epitaxial layer to the peak position of the Sb concentration profile of 9 μm can be used as the photoactive region □ of the light receiving diode.

(発明及解決しようとする問題点) ところが、短波長の光、例えばガリウムアルミニウムヒ
素発光ダイオードの光(ピーク波長0,66nm)を対
象とする場合には、受光ダイオードの光活性領域は9μ
m程度あれば、入射光の大部分のエネルギーを有効に光
電流として利用できるが、ビーク波長0.77nmの発
光ダイオードを光源としたときKは、入射光を充分に利
用するには光活性領域が20μm必要である。しかしな
がら、前述の従来法では、トランジスタ部のコレクタ領
域厚さを6μmK保ったままで、受光ダイオード部の光
活性領域の厚さを20μmKすることは不可能である。
(Problems to be Invented and Solved) However, when targeting short wavelength light, for example, light from a gallium aluminum arsenide light emitting diode (peak wavelength 0.66 nm), the photoactive area of the light receiving diode is 9 μm.
If K is about 100 m, most of the energy of the incident light can be effectively used as photocurrent, but when a light source is a light emitting diode with a peak wavelength of 0.77 nm, K is the photoactive region required to fully utilize the incident light. is required to be 20 μm. However, in the conventional method described above, it is impossible to increase the thickness of the photoactive region of the photodetector diode portion to 20 μmK while maintaining the thickness of the collector region of the transistor portion to 6 μmK.

本発明の目的は、従来の欠点を除去し、受光ダイオード
部の光活性領域を充分厚く形成して光検出電流を大きく
シ、トランジスタのエミッタ直下の」レクタ領域の淳さ
を薄くしてスイッチング速度を速くすることのできる受
光ダイオードとトランジスタの集積素子を提供すること
にある。
The purpose of the present invention is to eliminate the conventional drawbacks, to increase the photodetection current by forming the photoactive region of the photodetector diode sufficiently thickly, and to increase the switching speed by reducing the thickness of the rector region directly under the emitter of the transistor. An object of the present invention is to provide an integrated device of a light receiving diode and a transistor that can speed up the process.

(問題点を解決するための手段) 本発明の受光ダイオードとトランジスタのモノリシック
受光素子は、第1導電型の半導体基板と、該半導体基板
上に形成された第2導電型の第1エピタキシヤル成長島
と、該第1エピタキシャル成長層と前記半導体基板の接
合部に形成され@1エピタキシャル成長層よシも比抵抗
の低い第2導電型の第1埋込層と、前記第1エピタキシ
ャル成長層上に形成された第2導電型の第2エピタキシ
ャル成長層と、該第2エピタキシャル成長層と前記第1
エピタキシヤル成長場の接合部に形成され第2エピタキ
シャル成長層よシも比抵抗が低゛くかつ前記第1埋込層
が形成されてない上層部に形成された#I2細込層と、
前記第1埋込層上の第2エピタキシャル成長層中に形成
されたP−N接合型受光ダイオードと、前記第2埋込層
上の第2°エピタキシヤル成長層中に形成されたトラン
ジスタと、前記受光ダイオード部とトランジスタ部を電
気的に絶縁する第1導電型の絶縁領域とを含んで構成さ
れる。
(Means for Solving the Problems) A monolithic light receiving element of a light receiving diode and a transistor of the present invention includes a semiconductor substrate of a first conductivity type and a first epitaxial growth of a second conductivity type formed on the semiconductor substrate. an island, a first buried layer of a second conductivity type formed at a junction between the first epitaxial growth layer and the semiconductor substrate and having a lower resistivity than the @1 epitaxial growth layer, and a first buried layer formed on the first epitaxial growth layer. a second epitaxial growth layer of a second conductivity type; the second epitaxial growth layer and the first epitaxial growth layer;
an #I2 fine layer formed at the junction of the epitaxial growth field, having a resistivity lower than that of the second epitaxial growth layer, and formed in the upper layer where the first buried layer is not formed;
a P-N junction type light receiving diode formed in a second epitaxial growth layer on the first buried layer; a transistor formed in a second epitaxial growth layer on the second buried layer; It is configured to include a first conductivity type insulating region that electrically insulates the light receiving diode section and the transistor section.

(実施例) □次に1本発明の実施例について図面を用いて説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

比抵抗20〜40Ω−αのr型シリコン基板11にSb
を拡散して層抵抗20.50/口の第18b埋込層12
を形成し、次にホウ素の)を拡散して層抵抗18Ω/口
のホウ素埋込層13を形成し、次にリン(乃を拡散して
層抵抗20Ω/口のリン埋込層14を形成する。その後
、比抵抗2Ω−α、厚さ14μmのN型第1エピタキシ
ャル成長層15を形成する。次に層抵抗20゜5Ω/口
の第28b埋込層16を形成する。その後、前述の第2
8b埋込層の形成が完了した第1エピタキシャル成長層
15上に第1エピタキシャル成長層と同じ比抵抗(2Ω
−cm)で厚さ6μmの第2エピタキシャル成長層17
を形成する。
Sb on the r-type silicon substrate 11 with a specific resistance of 20 to 40 Ω-α
18b buried layer 12 with a layer resistance of 20.50/hole
, then diffuse boron () to form a boron buried layer 13 with a layer resistance of 18 Ω/hole, and then diffuse phosphorus (boron) to form a phosphorus buried layer 14 with a layer resistance of 20 Ω/hole. Thereafter, an N-type first epitaxial growth layer 15 with a specific resistance of 2 Ω-α and a thickness of 14 μm is formed.Next, a 28b buried layer 16 with a layer resistance of 20°5 Ω/hole is formed. 2
8b The same resistivity as the first epitaxial growth layer (2Ω
-cm) and 6 μm thick second epitaxial growth layer 17
form.

次に、受光ダイオード部とトランジスタ部を電気的に絶
縁する丸めの絶縁ホウ素拡散層18とダイオードのN側
電極用並びにトランジスタの;レクタ電極用のコンタク
トリン拡散層19を形成する。なお絶縁ホウ素拡散層1
8と埋込ホウ素層13は、それぞれ拡散せシ下シとせシ
上、DKよシ連結される。また、トランジスタ部のコン
タクトリン拡散層19は拡散せシ下DKよシ第28b埋
込層16と連結される。またダイオード部のコンタクト
リン拡散層19とリン埋込層14はそれぞれ拡散せり下
シとせシ上シによシ連結される。
Next, a round insulating boron diffusion layer 18 for electrically insulating the light receiving diode section and the transistor section and a contact phosphorus diffusion layer 19 for the N-side electrode of the diode and the rector electrode of the transistor are formed. Note that the insulating boron diffusion layer 1
8 and the buried boron layer 13 are connected to the bottom and top of the diffusion lines and the DK, respectively. Further, the contact phosphorus diffusion layer 19 of the transistor portion is connected to the 28b buried layer 16 below the diffusion layer DK. Further, the contact phosphorus diffusion layer 19 and the phosphorus buried layer 14 of the diode portion are connected by the lower diffusion groove and the upper groove, respectively.

前述の絶縁ホウ素拡散並びにコンタクトリン拡散工程の
完了後ホウ累拡散によシダイオードのP+層20とトラ
ンジスタのベース領域21を同時に形成し、その後リン
拡散によシエミッタ22を形成する。なお、ダイオード
部のP 層20及びトランジスタ部のベース21の表面
撫度はI X 10f−c11″″Sで、P−N接合深
さは素子裏面から1μmである。
After completing the above-described insulating boron diffusion and contact phosphorus diffusion steps, the P+ layer 20 of the diode and the base region 21 of the transistor are simultaneously formed by boron diffusion, and then the emitter 22 is formed by phosphorus diffusion. Note that the surface roughness of the P layer 20 of the diode section and the base 21 of the transistor section is Ix10f-c11''''S, and the P-N junction depth is 1 μm from the back surface of the element.

上記実施例の受光ダイオードの内部量子効率は、波長0
.74μm並びに0.94μmの場合、それぞれ90%
、30%である。これに対して、従来法の一例の受光ダ
イオードの内部量子効率は、それぞれ74%、17%で
あル、本発明によれば、トランジスタ部のスイッチング
特性を劣化させることなしに受光ダイオードの内部量子
効率を大幅に改善できる。
The internal quantum efficiency of the light receiving diode of the above example is
.. 90% for 74μm and 0.94μm respectively
, 30%. On the other hand, the internal quantum efficiency of the photodiode according to the conventional method is 74% and 17%, respectively. According to the present invention, the internal quantum efficiency of the photodiode can be reduced without deteriorating the switching characteristics of the transistor section. Efficiency can be significantly improved.

(発明の効果) 以上説明したように1本発明によれば、受光ダイオード
部の光活性領域を充分厚く形成でき、トランジスタのエ
ミッタ直下のコレクタ領域の厚さを薄くでき、光検出電
流を大きくシ、トランジスタのスイッチング速度を速く
することのできる受光ダイオードとトランジスタの七ノ
リシック集積素子を得ることができる。
(Effects of the Invention) As explained above, according to the present invention, the photoactive region of the photodetector diode can be formed sufficiently thick, the collector region directly under the emitter of the transistor can be thinned, and the photodetection current can be greatly shunted. , it is possible to obtain a seven-nolithic integrated device of a photodiode and a transistor that can increase the switching speed of the transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は従来の受
光ダイオードとトランジスタのモノリシック集積素子の
一例の断面図、第3図は従来の受光ダイオードとトラン
ジスタのそノリシック集積素子の受光ダイオード部とト
ランジスタ部のアンチモン埋込層の濃度プロファイルを
一例を示す濃度分布図である。 1・・・・・・P型シリ;ン基板、2・・・・・・sb
埋込層、3・・・・・・sb埋込層、4・・・・・・N
−エピタキシャル成長層、5・・・・・・P 絶縁拡散
層、6・・・・・・コンタクト拡散層(受光ダイオード
N側電極用)、7・・・・・・コンタクト拡散層(トラ
ンジスタのコレクタ用)、8・・・・・・P 層、9・
・・・・・P型ベース、10・・・・・・N型エミッタ
、−11・・・・・・P型シリコン基板、12・・・・
・・第18b埋込層、13・・・・・・ホウ素埋込層、
14・・・・・・リン埋込層、15・・・・・・Nli
第1エピタキシャル成長層、16・・・・・・第2Sb
埋込層、17・・・・・・N型第2エピタキシャル成長
層、18・・・・・・絶縁ホウ素拡散層、19・・・・
・・コンタクトリン拡散層、20・・・・・・P”層、
21・・・・・・PMベースs 22・・・・・・N’
gzミッタ。 ・l〕パ、−一 \Jン
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a cross-sectional view of an example of a conventional monolithic integrated device of a light receiving diode and a transistor, and FIG. 3 is a cross-sectional view of an example of a conventional monolithic integrated device of a light receiving diode and a transistor. FIG. 3 is a concentration distribution diagram showing an example of concentration profiles of antimony buried layers in a light receiving diode section and a transistor section. 1...P type silicon substrate, 2...sb
Buried layer, 3...sb Buried layer, 4...N
-Epitaxial growth layer, 5...P Insulating diffusion layer, 6...Contact diffusion layer (for photodetector diode N-side electrode), 7...Contact diffusion layer (for transistor collector) ), 8...P layer, 9.
... P type base, 10 ... N type emitter, -11 ... P type silicon substrate, 12 ...
... 18th b buried layer, 13... boron buried layer,
14...phosphorus buried layer, 15...Nli
First epitaxial growth layer, 16...2nd Sb
Buried layer, 17... N-type second epitaxial growth layer, 18... Insulating boron diffusion layer, 19...
...Contact phosphorus diffusion layer, 20...P'' layer,
21...PM base s 22...N'
gz mitta.・l〕Pa, -1\Jn

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板と、該半導体基板上に形成され
た第2導電型の第1エピタキシャル成長層と、該第1エ
ピタキシャル成長層と前記半導体基板の接合部に形成さ
れ第1エピタキシャル成長層よりも比抵抗の低い第2導
電型の第1埋込層と、前記第1エピタキシャル成長層上
に形成された第2導電型の第2エピタキシャル成長層と
、該第2エピタキシャル成長層と前記第1エピタキシャ
ル成長層の接合部に形成され第2エピタキシャル成長層
よりも比抵抗が低くかつ前記第1埋込層が形成されてな
い上層部に形成された第2埋込層と、前記第1埋込層上
の第2エピタキシャル成長層中に形成されたP−N接合
型受光ダイオードと、前記第2埋込層上の第2エピタキ
シャル成長層中に形成されたトランジスタと、前記受光
ダイオード部とトランジスタ部を電気的に絶縁する第1
導電型の絶縁領域とを含むことを特徴とする受光ダイオ
ードとトランジスタのモノリシック集積素子。
A semiconductor substrate of a first conductivity type, a first epitaxial growth layer of a second conductivity type formed on the semiconductor substrate, and a first epitaxial growth layer formed at a junction between the first epitaxial growth layer and the semiconductor substrate, A first buried layer of a second conductivity type with low resistance, a second epitaxial growth layer of a second conductivity type formed on the first epitaxial growth layer, and a junction between the second epitaxial growth layer and the first epitaxial growth layer. a second buried layer formed in an upper layer portion having a resistivity lower than that of the second epitaxially grown layer and on which the first buried layer is not formed; and a second epitaxially grown layer on the first buried layer. a P-N junction type light receiving diode formed therein, a transistor formed in a second epitaxial growth layer on the second buried layer, and a first transistor electrically insulating the light receiving diode part and the transistor part.
1. A monolithic integrated device of a light receiving diode and a transistor, characterized in that the device includes a conductive type insulating region.
JP60057806A 1985-03-22 1985-03-22 Monolithic integrated element of photodiode and transistor Pending JPS61216464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057806A JPS61216464A (en) 1985-03-22 1985-03-22 Monolithic integrated element of photodiode and transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057806A JPS61216464A (en) 1985-03-22 1985-03-22 Monolithic integrated element of photodiode and transistor

Publications (1)

Publication Number Publication Date
JPS61216464A true JPS61216464A (en) 1986-09-26

Family

ID=13066161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057806A Pending JPS61216464A (en) 1985-03-22 1985-03-22 Monolithic integrated element of photodiode and transistor

Country Status (1)

Country Link
JP (1) JPS61216464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202567A (en) * 1986-02-28 1987-09-07 Canon Inc Optical sensor and manufacture of the same
JPS63122164A (en) * 1986-11-11 1988-05-26 Pioneer Electronic Corp Optical sensor integrated circuit
US5252851A (en) * 1991-01-30 1993-10-12 Sanyo Electric Co., Ltd. Semiconductor integrated circuit with photo diode
EP0576009A1 (en) * 1992-06-25 1993-12-29 Sanyo Electric Co., Limited. Optical semiconductor device and fabrication method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202567A (en) * 1986-02-28 1987-09-07 Canon Inc Optical sensor and manufacture of the same
JPS63122164A (en) * 1986-11-11 1988-05-26 Pioneer Electronic Corp Optical sensor integrated circuit
US5252851A (en) * 1991-01-30 1993-10-12 Sanyo Electric Co., Ltd. Semiconductor integrated circuit with photo diode
EP0576009A1 (en) * 1992-06-25 1993-12-29 Sanyo Electric Co., Limited. Optical semiconductor device and fabrication method therefor

Similar Documents

Publication Publication Date Title
JPH06350135A (en) Radiation emitting-diode provided with improved radiation capability
JP4084958B2 (en) Manufacturing method of semiconductor light receiving device
JPH01205564A (en) Optical semiconductor device and its manufacture
JP2662062B2 (en) Photoelectric conversion device
US5939769A (en) Bipolar power transistor with high collector breakdown voltage and related manufacturing process
US5466948A (en) Monolithic silicon opto-coupler using enhanced silicon based LEDS
JPS61216464A (en) Monolithic integrated element of photodiode and transistor
JP4109159B2 (en) Semiconductor photo detector
JPS58193B2 (en) Semiconductor optical detection device
JPS5996781A (en) Photo diode
JPS605076B2 (en) Semiconductor photodetector
JPS62131570A (en) Semiconductor light receiving device
JP2546097Y2 (en) Light emitting diode
JPS6214478A (en) Photo-sensor
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JPH04242980A (en) Light-receiving element
JPH02196463A (en) Photodetector with built-in circuit
RU205312U1 (en) PHOTOELECTRIC CONVERTER BASED ON InP
JPS63299163A (en) Photosemiconductor integrated circuit
JPS59125668A (en) Photovoltaic device
JPS61268078A (en) Semiconductor photosensor
JPS61185979A (en) Integrated photoelectric conversion element
JPS6244430B2 (en)
JP2798773B2 (en) Light receiving element
Takahashi et al. Evaluation of effective recombination velocity related to the potential barrier in n/n+ silicon epitaxial wafers