JPS61215996A - Decay heat removing emergency cooling device for fast breeder reactor - Google Patents
Decay heat removing emergency cooling device for fast breeder reactorInfo
- Publication number
- JPS61215996A JPS61215996A JP60057699A JP5769985A JPS61215996A JP S61215996 A JPS61215996 A JP S61215996A JP 60057699 A JP60057699 A JP 60057699A JP 5769985 A JP5769985 A JP 5769985A JP S61215996 A JPS61215996 A JP S61215996A
- Authority
- JP
- Japan
- Prior art keywords
- coolant
- cooling system
- reactor
- fast breeder
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は液体金属冷却高速増殖炉における崩康熱を除去
するための冷却装置に関するものである0
〔従来の技術〕
冷却材として液体ナトリウム等を使用したループ製液体
金属冷却の高速増殖炉プラントは、第2図に示す如く原
子炉容器51内の炉心部52にて発生する熱によりて一
次冷却材53を加熱昇温し、この加熱昇温し九一次冷却
材53を一次主循環ボンプ54によりて中間熱交換器5
5に循環させる一次主冷却系と、中間熱交換器55によ
りて受熱し昇温した二次冷却材を二次主循環ポンプ56
によりて蒸気発生器57に循環させる二次主冷却系と、
ならびに蒸気発生器57にて発生した蒸気を発電プラン
ト58に送給して発電を行う水・蒸気系とによって構成
されている。又、この高速増殖炉プラントの崩壊熱除去
のための冷却系としては、例えば直接炉心冷却系と補助
炉心冷却系とが設けられている。直接炉心冷却系は原子
炉容器51内の一次冷却材53中に浸漬された熱交換器
59をスタック60を備えた空気冷却器61に接続し、
原子炉容器51内で発生した崩壊熱を、空気冷却器61
により空気冷却することによって炉心部52を冷却する
ようにしている。又補助炉心冷却系の一例としては、蒸
気発生器57の出力側の蒸気出力系から分岐してスタッ
ク62を備えた空気冷却器63に接続する。このように
して原子炉容器51内で発生した崩壊熱を一次主冷却系
および二次主冷却系によって蒸気に変換し、この蒸気を
空気冷却器63によシ空気冷却することによって炉心部
52を冷却するようにしている。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling device for removing decay heat in a liquid metal cooled fast breeder reactor. [Prior Art] Liquid sodium or the like is used as a coolant. As shown in FIG. 2, a fast breeder reactor plant with loop liquid metal cooling using a The heated primary coolant 53 is passed through the primary main circulation pump 54 to the intermediate heat exchanger 5.
5, and a secondary main circulation pump 56 that circulates the secondary coolant that has been heated and heated by the intermediate heat exchanger 55.
A secondary main cooling system that circulates to the steam generator 57 by
and a water/steam system that supplies steam generated by the steam generator 57 to a power generation plant 58 to generate electricity. Further, as cooling systems for removing decay heat in this fast breeder reactor plant, for example, a direct core cooling system and an auxiliary core cooling system are provided. The direct core cooling system connects a heat exchanger 59 immersed in a primary coolant 53 in a reactor vessel 51 to an air cooler 61 with a stack 60;
Decay heat generated within the reactor vessel 51 is transferred to an air cooler 61.
The reactor core 52 is cooled by air cooling. Further, as an example of an auxiliary core cooling system, the steam output system on the output side of the steam generator 57 is branched off and connected to an air cooler 63 provided with a stack 62 . The decay heat generated in the reactor vessel 51 in this way is converted into steam by the primary main cooling system and the secondary main cooling system, and this steam is air-cooled by the air cooler 63 to cool the reactor core 52. I'm trying to cool it down.
また原子炉一次系の冷却材純化系はコールドトラップ6
4と電磁ポンプ65とにより形成され、電磁ポンプ65
によりて原子炉容器51中の一次冷却材53を吸引し、
コールドトラップ64にて冷却材中の不純物を除去する
ようにしている0
第3図は炉外燃料貯蔵槽の冷却系であり、炉外燃料貯蔵
槽71内には使用済みの燃料72が冷却材73に浸漬さ
れて保管されており、又冷却材73中に浸漬された熱交
換器74はスタック75を備えた空気冷却器76に接続
されて炉外燃料貯蔵槽冷却系を形成しており、燃料72
から発生した崩壊熱を空気冷却器76によって空気冷却
して燃料72を冷却している。炉外燃料冷却系の冷却材
純化系はコールドトラップ77と電磁ポンプ78とによ
り形成され、電磁ポンプ78によって炉外燃料貯蔵槽7
1中の冷却材73を吸引し、コールドトラップ77にて
冷却材中の不純物を除去するようにしている。In addition, the coolant purification system of the reactor primary system is cold trap 6.
4 and an electromagnetic pump 65, the electromagnetic pump 65
to suck the primary coolant 53 in the reactor vessel 51,
A cold trap 64 is used to remove impurities from the coolant.0 Figure 3 shows the cooling system of the ex-core fuel storage tank. A heat exchanger 74 immersed in a coolant 73 is connected to an air cooler 76 with a stack 75 to form an extra-core fuel storage tank cooling system, fuel 72
The decay heat generated by the fuel 72 is cooled by the air cooler 76, thereby cooling the fuel 72. The coolant purification system of the ex-core fuel cooling system is formed by a cold trap 77 and an electromagnetic pump 78.
The coolant 73 in the coolant 1 is sucked, and impurities in the coolant are removed in a cold trap 77.
上記の如く炉心の崩壊熱除去のためには、高速増殖炉に
直接炉心冷却系、補助炉心冷却系の如く、複数の冷却系
が設けられている。これは崩壊熱のために炉心温度が上
昇し、燃料が過熱するおそれが生じた場合、この崩壊熱
を安全確実に除去して事故を未然に防止するように崩壊
熱除去系に多重性、多様性が要求されるからである。そ
のために多数の冷却系統を設置し、又熱交換器や配管材
料など機器の設計品質を高める必要があるので、装置が
複雑となり、かつ高コストになるという問題点があった
。As mentioned above, in order to remove decay heat from the core, fast breeder reactors are provided with a plurality of cooling systems, such as a direct core cooling system and an auxiliary core cooling system. This means that when the core temperature rises due to decay heat and there is a risk of fuel overheating, the decay heat removal system is designed to have redundancy and variety in order to safely and reliably remove this decay heat and prevent accidents. This is because sexuality is required. For this purpose, it is necessary to install a large number of cooling systems and to improve the design quality of equipment such as heat exchangers and piping materials, resulting in a problem that the equipment becomes complex and expensive.
本発明は上記の問題点に鑑みなされたもので、炉外燃料
貯蔵槽の冷却系を共用するという手段によシ崩壊熱除去
系の多重性、多様性を図り、崩壊熱除去の信頼性を向上
させる冷却装置である0
〔問題点を解決するための手段〕
本発明は、原子炉容器内の一次冷却材を主循環ポンプに
よって中間熱交換器に循環させる一次主冷却系と、一次
冷却材を電磁ポンプによってコールドトラップに循環さ
せる冷却材純化系とを備えた高速増殖炉ならびに、前記
原子炉容器に併設された炉外燃料貯蔵槽内の冷却材中に
浸・潰された熱交換器および空気冷却器との間に冷却材
を循環させる炉外燃料貯蔵槽冷却系と、冷却材を電磁ポ
ンプによってコールドトラップに循環させる冷却材純化
系とを備えた炉外燃料貯蔵装置とにおいて、前記高速増
殖炉の冷却材純化系に接続されたコールドトラップと、
炉外燃料貯蔵装置の冷却材純化系に接続されたコールド
トラップとのそれぞれの入口側と出口側とを冷却材の連
絡管にて接続したことを特徴とするものである。The present invention was made in view of the above problems, and aims at increasing the redundancy and diversity of the decay heat removal system by sharing the cooling system of the ex-core fuel storage tank, thereby improving the reliability of decay heat removal. [Means for Solving Problems] The present invention provides a primary main cooling system that circulates primary coolant in a reactor vessel to an intermediate heat exchanger by a main circulation pump, and A fast breeder reactor equipped with a coolant purification system that circulates water to a cold trap using an electromagnetic pump; An ex-core fuel storage system comprising: an ex-core fuel storage tank cooling system that circulates coolant between an air cooler and a coolant purification system that circulates coolant to a cold trap using an electromagnetic pump; a cold trap connected to the coolant purification system of the breeder reactor;
It is characterized in that the inlet and outlet sides of the cold trap connected to the coolant purification system of the ex-core fuel storage device are connected by a coolant communication pipe.
以上の如く構成されており、原子炉容器内で発生した崩
壊熱は、通常の熱除去系もしくは崩壊熱除去系によりて
冷却される。ここで万一上記通常の除去系が使用できな
くなった場合には一次冷却材は原子炉容器から連絡管に
よって炉外燃料貯蔵槽に移送され、冷却材は原子炉容器
と炉外燃料貯蔵槽との間を循環しながら炉外燃料貯蔵槽
冷却系によって冷却される。With the above structure, the decay heat generated within the reactor vessel is cooled down by a normal heat removal system or a decay heat removal system. In the event that the above-mentioned normal removal system cannot be used, the primary coolant is transferred from the reactor vessel to the ex-core fuel storage tank via a connecting pipe, and the coolant is transferred between the reactor vessel and the ex-core fuel storage tank. It is cooled by the external fuel storage tank cooling system while circulating between the
本発明の一実施例を第1図の機器接続図にょシ説明する
。15は高速増殖炉の主冷却系統であり、原子炉容器1
内には一次冷却材3を加熱する炉心部2が設置さnてい
る。この原子炉容器1には、加熱された一次冷却材3を
一次主循環ボンブ4によりて中間熱交換器5に循環させ
る一次冷却系が接続されており、ついで中間熱交換器5
には、受熱昇温した二次冷却材を、二次主循環ポンプ6
によつて蒸気発生器7に循環させる二次冷却系が接続さ
れている。更に蒸気発生器7には発生した蒸気を発電機
8に送給する水・蒸気系が接続されている。9は直接炉
心冷却系の熱交換器であり一次冷却材3中に浸漬されて
おり、スタック10を備えた空気冷却器J1に接続され
、熱交換器9と空気冷却器11との間に放冷用冷却材が
循環するようになりている。12はコールドトラップで
あり、電磁ポンプ13が直列に接続されて原子炉一次系
の冷却材純化系を形成している。16は炉外燃料貯蔵装
置であり、炉外燃料貯蔵槽21内には使用済みの燃料2
2が冷却材23中に浸漬されて保管されている。24は
炉外燃料貯蔵槽冷却系の熱交換器であり、冷却材23中
に浸漬されており、スタック25を備えた空気冷却器2
6に接続され、熱交換器24と空気冷却器26との間に
放冷用冷却材が循環するようになっている。An embodiment of the present invention will be explained with reference to the equipment connection diagram shown in FIG. 15 is the main cooling system of the fast breeder reactor, and the reactor vessel 1
A reactor core section 2 for heating a primary coolant 3 is installed inside the reactor. A primary cooling system that circulates heated primary coolant 3 to an intermediate heat exchanger 5 via a primary main circulation bomb 4 is connected to the reactor vessel 1.
, the secondary coolant whose temperature has been raised by receiving heat is transferred to the secondary main circulation pump 6.
A secondary cooling system is connected to the steam generator 7 by means of a secondary cooling system. Further, a water/steam system is connected to the steam generator 7 to feed the generated steam to the generator 8. 9 is a heat exchanger of the direct core cooling system, which is immersed in the primary coolant 3, is connected to the air cooler J1 equipped with the stack 10, and has a heat exchanger between the heat exchanger 9 and the air cooler 11. Cold coolant is allowed to circulate. 12 is a cold trap, and an electromagnetic pump 13 is connected in series to form a coolant purification system of the reactor primary system. 16 is an ex-core fuel storage device, and the used fuel 2 is stored in the ex-core fuel storage tank 21.
2 is stored immersed in a coolant 23. 24 is a heat exchanger of the outside fuel storage tank cooling system, which is immersed in the coolant 23, and an air cooler 2 equipped with a stack 25.
6, and a coolant for cooling is circulated between the heat exchanger 24 and the air cooler 26.
27はコールドトラップであり、電磁ポンプ28が直列
に接続されて炉外燃料冷却系の冷却材純化系を形成して
いる。27 is a cold trap, and an electromagnetic pump 28 is connected in series to form a coolant purification system of the extra-core fuel cooling system.
以上の如く溝底された高速増殖炉15の原子炉一次系の
冷却材純化系に接続されているコールドトラップ12の
出入口側と、炉外燃料貯蔵装置116の冷却材純化系に
接続されているコールドトラップ27の入出口側とをそ
れぞれ冷却材連絡管29a 、29bにて接続し、この
連絡管29a 、29bには途中にバルブ30a、30
bを設ける。As described above, the inlet/outlet side of the cold trap 12 connected to the coolant purification system of the reactor primary system of the fast breeder reactor 15, which has been grooved at the bottom, is connected to the coolant purification system of the ex-core fuel storage device 116. The inlet and outlet sides of the cold trap 27 are connected through coolant communication pipes 29a and 29b, respectively, and valves 30a and 30 are installed in the middle of the communication pipes 29a and 29b.
b.
なお上述の一次冷却材、二次冷却材。放冷用冷却材とし
ては液体ナトリウムなどの液体金属の冷却材を使用する
。In addition, the above-mentioned primary coolant and secondary coolant. A liquid metal coolant such as liquid sodium is used as a coolant for cooling.
次にこの冷却装置の作用について説明すると、原子炉容
器l内で発生した崩壊熱は、一次冷却系による通常の熱
除去系、崩壊熱除去系である直接炉心冷却系などによっ
て除熱を行う。ここで万一上記の除去系が使用できない
がまたは除熱不足の場合に、バルブ30a 、30bを
開放し、電磁ポンプ13および28を作動させて、崩壊
熱によって加熱昇温している一次冷却材3を原子炉容器
1から冷却材連絡管29a、29bによって炉外燃料貯
蔵槽21に移送させ、同時に炉外燃料貯蔵槽21の冷却
材23を原子炉容器1に逆送させて一次冷却劇3と冷却
材23とを相互に循環させる。このようにして原子炉容
器1内を冷却するとともに、昇温した冷却材23を炉外
貯蔵槽冷却系によって冷却させる。Next, the function of this cooling system will be explained. Decay heat generated in the reactor vessel 1 is removed by a normal heat removal system using a primary cooling system, a direct core cooling system which is a decay heat removal system, etc. In the unlikely event that the above-mentioned removal system cannot be used or the heat removal is insufficient, the valves 30a and 30b are opened and the electromagnetic pumps 13 and 28 are operated to remove the primary coolant, which has been heated by decay heat. 3 is transferred from the reactor vessel 1 to the ex-core fuel storage tank 21 through the coolant communication pipes 29a and 29b, and at the same time, the coolant 23 in the ex-core fuel storage tank 21 is sent back to the reactor vessel 1 to perform the primary cooling operation 3. and the coolant 23 are mutually circulated. In this way, the inside of the reactor vessel 1 is cooled, and the coolant 23 whose temperature has increased is cooled by the external storage tank cooling system.
以上の如くにして崩壊熱は直接炉心冷却系および炉外燃
料貯蔵槽冷却系によって空気冷却されるようになりでお
り、これら崩壊熱除去のだめの系統としては、相互に独
立しかつ充分な多様性をもつようになっている。As described above, decay heat is now air-cooled by the direct core cooling system and the ex-core fuel storage tank cooling system, and these decay heat removal systems are mutually independent and have sufficient diversity. It is designed to have a
〔発明の効果〕
以上説明したように、従来の崩壊熱除去には除去系の数
、除熱容量、除熱方法に多重性、多様性をもたせ、例え
ば直接炉心冷却系、補助炉心冷却系の如く、多数の冷却
系統を設置して対応しているが、本発明では、原子炉冷
却材純化系と炉外貯蔵槽の純化系とを冷却材連絡管にて
接続するという簡単な手段により、原子炉容器内の崩壊
熱を炉外燃料貯蔵槽の冷却系を使って冷却できるように
しており、低コストにて崩壊熱除去系の多重性、多様性
を増大させ、崩壊熱除去の信頼性を向上させるものでろ
る。[Effects of the Invention] As explained above, conventional decay heat removal has multiplicity and diversity in the number of removal systems, heat removal capacity, and heat removal methods, such as direct core cooling system and auxiliary core cooling system. However, in the present invention, a simple means of connecting the reactor coolant purification system and the purification system of the external storage tank with a coolant communication pipe is used to solve the problem. The decay heat inside the reactor vessel can be cooled using the cooling system of the fuel storage tank outside the reactor, increasing the redundancy and diversity of the decay heat removal system at low cost and improving the reliability of decay heat removal. It's something that will improve it.
第1図は本発明の一実施例の機器接続図、第2図は従来
の高速増殖炉の機器接続図、第3図は従来の炉外燃料貯
蔵装置の機器接続図である。FIG. 1 is an equipment connection diagram of an embodiment of the present invention, FIG. 2 is an equipment connection diagram of a conventional fast breeder reactor, and FIG. 3 is an equipment connection diagram of a conventional ex-core fuel storage device.
Claims (1)
熱交換器に循環させる一次主冷却系と、一次冷却材を電
磁ポンプによってコールドトラップに循環させる冷却材
純化系とを備えた高速増殖炉ならびに、前記原子炉容器
に併設された炉外燃料貯蔵槽内の冷却材中に浸漬された
熱交換器および空気冷却器との間に冷却材を循環させる
炉外燃料貯蔵槽冷却系と、冷却材を電磁ポンプによって
コールドトラップに循環させる冷却材純化系とを備えた
炉外燃料貯蔵装置とにおいて、前記高速増殖炉ならびに
炉外燃料貯蔵装置のそれぞれの冷却材純化系に接続され
たコールドトラップの入口側と出口側とをそれぞれ冷却
材連絡管にて接続したことを特徴とする高速増殖炉の崩
壊熱除去非常冷却装置。A fast breeder reactor equipped with a primary main cooling system that circulates the primary coolant in the reactor vessel to an intermediate heat exchanger by a main circulation pump, and a coolant purification system that circulates the primary coolant to a cold trap by an electromagnetic pump; , an ex-core fuel storage tank cooling system that circulates coolant between a heat exchanger and an air cooler immersed in a coolant in an ex-core fuel storage tank attached to the reactor vessel; and a coolant. an inlet of the cold trap connected to each coolant purification system of the fast breeder reactor and the ex-core fuel storage system; A decay heat removal emergency cooling system for a fast breeder reactor, characterized in that the side and outlet sides are connected by coolant communication pipes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60057699A JPS61215996A (en) | 1985-03-22 | 1985-03-22 | Decay heat removing emergency cooling device for fast breeder reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60057699A JPS61215996A (en) | 1985-03-22 | 1985-03-22 | Decay heat removing emergency cooling device for fast breeder reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61215996A true JPS61215996A (en) | 1986-09-25 |
Family
ID=13063179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60057699A Pending JPS61215996A (en) | 1985-03-22 | 1985-03-22 | Decay heat removing emergency cooling device for fast breeder reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61215996A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230142980A1 (en) * | 2019-09-25 | 2023-05-11 | Ge-Hitachi Nuclear Energy Americas Llc | Coolant cleanup and heat-sinking systems and methods of operating the same |
-
1985
- 1985-03-22 JP JP60057699A patent/JPS61215996A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230142980A1 (en) * | 2019-09-25 | 2023-05-11 | Ge-Hitachi Nuclear Energy Americas Llc | Coolant cleanup and heat-sinking systems and methods of operating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11145424B2 (en) | Direct heat exchanger for molten chloride fast reactor | |
US3968653A (en) | Apparatus for the removal of after heat in a sodium-cooled fast reactor | |
US4830815A (en) | Isolation condenser with shutdown cooling system heat exchanger | |
CA2066828A1 (en) | Passive indirect shutdown cooling system for nuclear reactors | |
US4382908A (en) | After-heat removal system for a gas-cooled nuclear reactor | |
JPS6333697A (en) | Container-heat removing device | |
JPS61215996A (en) | Decay heat removing emergency cooling device for fast breeder reactor | |
JPH02223896A (en) | Cooling device for used fuel pool | |
GB2104710A (en) | Standby heat removal system for a nuclear reactor using flow diodes | |
US3251747A (en) | Arrangement for the removal of decay heat from a nuclear reactor | |
US5289511A (en) | Liquid-metal cooled nuclear reactor | |
JPH02176596A (en) | Decay heat removal system for fast breeder | |
CN112420226B (en) | Passive residual heat removal system based on annular air cooler | |
JPH0814634B2 (en) | Distributed reactor | |
JPH058996B2 (en) | ||
KR20220161740A (en) | Integral metal heat exchanger and nuclear power plant having the same | |
Mueller et al. | Cooling system for a nuclear reactor | |
JPS58201094A (en) | Reactor coolant cleanup system | |
JPS58195184A (en) | Method of controlling output from nuclear reactor | |
JPH0427517B2 (en) | ||
CN116189933A (en) | Submerged containment vessel with active water cooled heat sink | |
JPS6027895A (en) | Fast breeder reactor | |
JPS5929840B2 (en) | Nuclear reactor core cooling system | |
JPS6036998A (en) | Cooling device for nuclear reactor | |
JPS63165798A (en) | Decay-heat removal system of fast breeder reactor |