JPS61215672A - Functional, electrically conductive bonding material - Google Patents

Functional, electrically conductive bonding material

Info

Publication number
JPS61215672A
JPS61215672A JP5867285A JP5867285A JPS61215672A JP S61215672 A JPS61215672 A JP S61215672A JP 5867285 A JP5867285 A JP 5867285A JP 5867285 A JP5867285 A JP 5867285A JP S61215672 A JPS61215672 A JP S61215672A
Authority
JP
Japan
Prior art keywords
particles
adhesive
conductivity
synthetic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5867285A
Other languages
Japanese (ja)
Inventor
Osamu Hotta
収 堀田
Wataru Shimoma
下間 亘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5867285A priority Critical patent/JPS61215672A/en
Publication of JPS61215672A publication Critical patent/JPS61215672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide the titled bonding material which connects leads to each other electrically and mechanically and controls irreversibly electrical conductivity by heating or irradiation with electromagnetic wave, consisting of synthetic metallic particles and a high-molecular material compsn. CONSTITUTION:At least 50vol% synthetic metallic particles (e.g. polyacetylene doped with perchlorate ion or arsenic hexafluoride ion) having a particle size of 0.03-3mum and electrical conductivity of 10<-2>-10<6>s/cw are blended with a high-molecular material compsn. contg. a synthetic resin such as epoxy resin or alkyd resin, a hardener, carbon particles, metallic particles, insulating particles, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子部品、電子回路や半導体集積回路の製造
や利用に際して用いられる配線や結線用の導電接着材に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a conductive adhesive for wiring and connections used in the manufacture and use of electronic components, electronic circuits, and semiconductor integrated circuits.

従来の技術 従来の導電接着材は、金、銀あるいは炭素の粒子や繊維
を高分子組成物に混練したもので、導電性と接着性の機
能がある材料として、前記の分野で汎用されて、いる。
Prior Art Conventional conductive adhesives are made by kneading gold, silver, or carbon particles or fibers into a polymer composition, and are widely used in the above fields as materials with conductive and adhesive functions. There is.

発明が解決しようとする問題点 従来の導電接着材は、ただ単に導電性があるというのみ
で、その導電性を外部からのエネルギで不可逆的に制御
することが出来なかった。したがって例えば、半導体素
子、サーマルヘッド、液晶表示素子等の電子デバイスで
、もっばら採用されているギヤングボンディングでは、
高集積化とともに、使用する半田や導電性接着材の接着
部からのはみ出しによる線間短絡が多発する問題があっ
た。これははみ出し部分を絶縁化できないという従来技
術の問題点である。
Problems to be Solved by the Invention Conventional conductive adhesives are merely electrically conductive, and their electrical conductivity cannot be irreversibly controlled by external energy. Therefore, for example, in gigantic bonding, which is widely used in electronic devices such as semiconductor elements, thermal heads, and liquid crystal display elements,
With the increase in integration, there has been a problem in which short circuits between lines occur frequently due to the solder and conductive adhesive used protruding from the bonded parts. This is a problem with the prior art in that the protruding portion cannot be insulated.

問題点を解決するための手段 合成金属粒子を含む高分子組成物で接着材を構成するも
のであり、高分子組成物にはカーボン粒ましい。
Means for Solving the Problems The adhesive is composed of a polymer composition containing synthetic metal particles, and the polymer composition preferably contains carbon particles.

作用 本発明の機能性導電接着材は、合成金属粒子を含む高分
子組成物よりなるものであって、リードとリードを機械
的かつ電気的に接続するという機能に加えて、加熱や電
磁波照射によってその導電性を不可逆的に制御できる機
能をもつものである。
Function The functional conductive adhesive of the present invention is made of a polymer composition containing synthetic metal particles, and in addition to the function of mechanically and electrically connecting leads to each other, the functional conductive adhesive material of the present invention has the function of mechanically and electrically connecting leads. It has the function of irreversibly controlling its conductivity.

この不可逆性は、本発明の特徴部分である粒子状に分布
させた合成金属がもたらすものである。
This irreversibility is brought about by the synthetic metal distributed in particulate form, which is a feature of the present invention.

すなわち合成金属は加熱や電磁波照射を施すと、導電性
に寄与している分子の高次構造や、不純物の濃度や分布
が変化する結果、導電性も変化するのである。
In other words, when synthetic metals are heated or exposed to electromagnetic waves, the higher-order structure of molecules that contribute to conductivity and the concentration and distribution of impurities change, resulting in changes in conductivity.

実施例 本発明の接着材は上記の制御性によって、種々、産業上
の効果があり、その実施例を次に述べる。
Examples The adhesive material of the present invention has various industrial effects due to the above-mentioned controllability, and examples thereof will be described below.

本発明の、技術思想を、応用例と構成例でもって説明し
、最後に具体的実施例で説明する。
The technical idea of the present invention will be explained with application examples and configuration examples, and finally with specific examples.

まず、前記ギヤングボンディングに本発明による機能性
導電接着材(以下単に接着材と云う)を用いると、合理
的なボンディングが実現する。すなわち、本発明の接着
材を従来と同様に使用し、接着後に電磁波を照射すれば
、電気的接続が必要な接着部はリードによって電磁波が
遮蔽されるので、導電性を維持でき、短絡の原因となる
はみ出し部の接着材は前記理由によって絶縁化される。
First, when the functional conductive adhesive according to the present invention (hereinafter simply referred to as adhesive) is used for the Guyang bonding, rational bonding can be realized. In other words, if the adhesive of the present invention is used in the same manner as before and electromagnetic waves are irradiated after bonding, the leads will shield electromagnetic waves at the bonded parts where electrical connection is required, maintaining conductivity and eliminating the cause of short circuits. The adhesive material in the protruding portion is insulated for the above-mentioned reason.

したがって短絡原因を完全に除去できるもので、本発明
によって、電子デバイスの高集積化にともない、心配さ
れていた課題は一挙に解決された。
Therefore, the cause of short circuits can be completely eliminated, and the present invention solves at once the problems that have been a concern as electronic devices become more highly integrated.

次に代表例として、プリント基板やIC内の配線に新規
な方法を提供する。すなわち、従来プリント基板はエツ
チング法やアディティブ法で作られていたが、本発明の
接着材を一様に塗布後、マスクを用いて電磁波を照射す
るのみで、きわめて簡単にプリント基板が出来る。同様
にIC内の配線においても、ウェハーにスピンナーで本
発明の接着材を塗布後にマスクを用いて電磁波を照射す
れば配線が完了し、従来工程が一挙に短縮される他に、
配線に凹凸が出来ないので積層形の立体ICの製造には
きわめて都合が良い。
Next, as a representative example, we will provide a new method for wiring inside printed circuit boards and ICs. That is, conventional printed circuit boards have been made by etching or additive methods, but printed circuit boards can be made very easily by simply uniformly applying the adhesive of the present invention and then irradiating electromagnetic waves using a mask. Similarly, for wiring inside an IC, the wiring can be completed by applying the adhesive of the present invention to the wafer using a spinner and then irradiating electromagnetic waves using a mask, which shortens the conventional process at once.
Since no unevenness is formed in the wiring, it is extremely convenient for manufacturing laminated three-dimensional ICs.

前記二つの代表例は何れも導電部と非導電部を不可逆的
に明確化するものであるが、その他に本発明の接着材は
、はソ任意に導電性を制御できるものであり、その初期
の導電性も非常に広範に選択出来る。まず、金属やカー
ボンの粒子を混入すれば導電性が高まり、絶縁性粒子を
混入すると導電性が低下する他、電磁波の吸収性を任意
に制御できる。但し何れも本発明の特徴である不可逆性
を維持する範囲を超えてはならない。さらに初期値は合
成金属の選択によっても調整される。合成金属の導電率
へ、は10〜1o S/crILの範囲にあり、目的に
合わせた値のものが任意に選ばれる。これらのようにし
て本発明の接着材は初期の導電性が調整されるとともに
、不可逆的に変化させた後の導電性は、加熱や電磁波照
射の程度によって調整される。
Both of the above two representative examples irreversibly define the conductive part and the non-conductive part, but the adhesive of the present invention can also control the conductivity at will, and its initial stage The conductivity of the material can also be selected from a very wide range. First, if metal or carbon particles are mixed in, the conductivity will increase, if insulating particles are mixed in, the conductivity will be decreased, and the absorbency of electromagnetic waves can be controlled arbitrarily. However, in either case, the range must not be exceeded to maintain irreversibility, which is a feature of the present invention. Furthermore, the initial value is also adjusted by the selection of synthetic metal. The electrical conductivity of the synthetic metal is in the range of 10 to 10 S/crIL, and a value suitable for the purpose is arbitrarily selected. In this way, the initial conductivity of the adhesive of the present invention is adjusted, and the conductivity after being irreversibly changed is adjusted by the degree of heating or electromagnetic wave irradiation.

本発明で云う合成金属とは、前述のように加熱や電磁波
の照射によって導電性が不可逆的に変化するもの全てを
、含むものであるが、その代表例として次のようなもの
がある。たとえばポリチェニレン、ポリピロール、ポリ
アセチレンおよびポリベリナフタレンなどに過塩素酸イ
オンや六フッ化ヒ素イオンをドープした有機共役系、グ
ラファイトやポリチアジルに塩化鉄や臭素をドープした
無機共役系、ポリビニルカルバゾールや金属フタロシア
ニンにトリニトロフルオレノンやヨウ素をドープした非
共役系等がある。これらのうち、とくに不純物を含む高
分子系が安定性の面ですぐれている。
The synthetic metals referred to in the present invention include all metals whose conductivity changes irreversibly upon heating or irradiation with electromagnetic waves, as described above, and representative examples include the following. For example, organic conjugated systems such as polythenylene, polypyrrole, polyacetylene, and polyberinaphthalene doped with perchlorate ions or arsenic hexafluoride ions, inorganic conjugated systems such as graphite or polythiazyl doped with iron chloride or bromine, polyvinyl carbazole, and metal phthalocyanine. There are non-conjugated systems doped with trinitrofluorenone and iodine. Among these, polymer systems containing impurities are particularly excellent in terms of stability.

この合成金属は、前述のように単体として不可逆性を示
すものであるがこれをさらに粒子状にすると不可逆性が
より顕著となることがわかった。
As mentioned above, this synthetic metal exhibits irreversibility as a single substance, but it has been found that when it is further made into particles, the irreversibility becomes more pronounced.

この効果の詳細な原理は定かでないが、表面積の増加に
よって前述の不純物が移動し易くなるためと推察される
。この点から粒子は小さいほど効果が期待されるが、接
着材としての実用的な特性から0・03〜3μmのサイ
ズが好適である。
Although the detailed principle behind this effect is not clear, it is presumed that the increase in surface area makes it easier for the above-mentioned impurities to move. From this point of view, it is expected that the smaller the particles, the better the effect, but from the viewpoint of practical properties as an adhesive, a size of 0.03 to 3 μm is preferable.

なお、本発明の接着材の導電性を不可逆的に変化させる
方法として種々あるが、導電部と非導電部を明確に区別
したい場合は、断熱状態で電磁波を照射することが望ま
しい。基本的には、電磁波としてその種類を問わないが
、紫外から遠赤外までの広範囲の波長を利用でき、その
選択には、本発明の接着材の吸収波長との適合性を考慮
するとより効果的である。これらの観点から、キセノン
ランプ光、レーザ光や赤外光を用いるのが望°ましいO また、本発明の機能性導電接着材は、粒子成分と結着材
成分とで構成されるものであり、その粒子成分の体積割
合は、充分な導電性が必要な場合には80%以上、導電
性よりも接着強度が必要な場合には60〜80チがそれ
ぞれ望ましい。
There are various methods for irreversibly changing the conductivity of the adhesive of the present invention, but if you want to clearly distinguish between conductive parts and non-conductive parts, it is desirable to irradiate electromagnetic waves in an adiabatic state. Basically, any type of electromagnetic wave can be used, but a wide range of wavelengths from ultraviolet to far infrared can be used, and the selection will be more effective if you take into account its compatibility with the absorption wavelength of the adhesive of the present invention. It is true. From these points of view, it is preferable to use xenon lamp light, laser light, or infrared light. The volume ratio of the particle component is preferably 80% or more when sufficient conductivity is required, and 60 to 80% when adhesive strength is required rather than conductivity.

さらに粒子成分は合成金属粒子のみではなく、金属粒子
またはカーボン粒子と併用することが出来、この場合、
併用粒子の高導電性の寄与により合成金属粒子として低
導電率のものも応用出来る特長がある。なおこの場合、
本発明の機能性の点から、併用粒子の体積は半量以下が
望ましい。
Furthermore, the particle component can be used in combination with not only synthetic metal particles but also metal particles or carbon particles, in which case,
Due to the high conductivity of the particles used in combination, it has the advantage that low conductivity particles can also be used as synthetic metal particles. In this case,
From the viewpoint of functionality of the present invention, it is desirable that the volume of the combined particles is half or less.

一方、結着材は高分子組成物であれば特に制限なく自由
に利用出来るが、接着強度・信頼性の面から、エポキシ
樹脂を代表とする熱硬化性樹脂組成物が望ましい。この
他、一般塗料用のアルキッド、ビニル系等の溶剤可溶性
樹脂も任意に利用出来る。さらにこの高分子組成物が補
強または増量を目的とする絶縁性粒子のような充填材料
を含む場合もある。
On the other hand, as the binder, any polymeric composition can be used without particular restrictions, but thermosetting resin compositions such as epoxy resins are preferred from the viewpoint of adhesive strength and reliability. In addition, solvent-soluble resins such as alkyd and vinyl resins for general paints can also be used as desired. Additionally, the polymeric composition may include filler materials such as insulating particles for reinforcing or bulking purposes.

以上で、本発明の基本構成、その特徴的物性、代表的利
用例における効果、細部構成とその意義を説明したが、
これらの記載が本発明を限定するものではない。
The basic configuration of the present invention, its characteristic physical properties, effects in typical usage examples, detailed configuration and its significance have been explained above.
These descriptions are not intended to limit the invention.

実施例1 テトラブトキシチタン0・1M、トリエチルアルミニウ
ム0・4Mのトルエン溶液をドライアイスメタノールで
冷却し、真空に保たれたガラス容器中に水平に置かれた
ガラス基板上に流下した。
Example 1 A toluene solution of 0.1M tetrabutoxytitanium and 0.4M triethylaluminum was cooled with dry ice methanol and poured onto a glass substrate placed horizontally in a glass container kept in vacuum.

この後、ガラス容器中にアセチレンガスを導入し、厚さ
約O,aμmのポリアセチレン薄膜を得た。
Thereafter, acetylene gas was introduced into the glass container to obtain a polyacetylene thin film with a thickness of about 0.0 μm.

これを他のガラス容器に移し、クロル硫酸で気相ドープ
した。次いで、液体窒素で冷却しながらフリーザミルで
サブミクロンに微粉化して合成金属粒子を調製した。
This was transferred to another glass container and doped with chlorosulfuric acid in the gas phase. Next, the mixture was pulverized to submicron size using a freezer mill while cooling with liquid nitrogen to prepare synthetic metal particles.

この微粉末80体積部とエポキシ樹脂(シェル社製エピ
コート82B )20体積部とを充分に混練し、これに
硬化剤としてトリエチレンテトラミツ2体積部を混練し
て接着材とした。
80 parts by volume of this fine powder and 20 parts by volume of an epoxy resin (Epicoat 82B manufactured by Shell) were thoroughly kneaded, and 2 parts by volume of triethylenetetramite as a hardening agent was kneaded therein to obtain an adhesive.

この接着材を銅板面に約10μm厚さに塗布して80°
Cで約40分間硬化させた後、ピッチ100μmで、線
巾6oμmの金属マスクを載せた上から、10ジユール
/crlのキセノンフラッシュ光を照射した。
Apply this adhesive to a thickness of about 10 μm on the copper plate surface and
After curing with C for about 40 minutes, a metal mask with a pitch of 100 μm and a line width of 6 μm was placed thereon, and a xenon flash light of 10 Joules/crl was irradiated thereon.

マイクロプローブで各部の抵抗を測定したところ、非照
射部で5oonΩ、照射部は2にΩの値が得られ、不可
逆的な導電性の変化を確認した。
When the resistance of each part was measured with a microprobe, the non-irradiated part had a value of 5 ohms and the irradiated part had a value of 2 ohms, confirming an irreversible change in conductivity.

実施例2 次表に記載の各電解質溶液中に、金を蒸着した一対のガ
ラス板電極を挿入し、1111ム74ノ、80分間の通
電でチオフェン、3−メチルチオフェンおよびビロール
を電解重合し、金電極上に約20μm厚さのそれぞれ、
ポリチェニレン、ポリ(3−メチルチェニレン)および
ポリピロール薄膜ヲ得た。
Example 2 A pair of glass plate electrodes coated with gold were inserted into each of the electrolyte solutions listed in the following table, and thiophene, 3-methylthiophene, and virol were electrolytically polymerized by applying current for 1111 mm and 74 mm for 80 minutes. each about 20 μm thick on gold electrodes,
Polythenylene, poly(3-methylthennylene) and polypyrrole thin films were obtained.

ここで電解重合の際に表の支持電解質のアニオン部分が
不純物としてポリマー中にとり込まれるので、薄膜は合
成金属となる。
During electrolytic polymerization, the anion portion of the supporting electrolyte shown in the table is incorporated into the polymer as an impurity, so the thin film becomes a synthetic metal.

電解質溶液の組成 これらの薄膜をそれぞれ約1ff角のペレット状に切断
したのち、液体窒素で冷却しながらフリーザミルでサブ
ミクロンに微粉化して合成金属粒子を調製した。
Composition of Electrolyte Solution Each of these thin films was cut into pellets of about 1 ff square, and then pulverized to submicron size in a freezer mill while cooling with liquid nitrogen to prepare synthetic metal particles.

次に各粒子を用いて実施例1と同様の方法で接着材を調
製し、これを銅板面に約10μl厚さに塗布したのち8
o′Cで約40分硬化させた。
Next, an adhesive was prepared using each particle in the same manner as in Example 1, and this was applied to the surface of the copper plate to a thickness of approximately 10 μl.
It was cured at o'C for about 40 minutes.

この表面にピッチ1oOμmで線巾5oμmの金属マス
クを載せた上から10ジユール/c11のキセノンフラ
ッシュ光を照射した。マイクロプローブで各部の抵抗を
測定したところ、(照射部抵抗/非照射部抵抗)比は、
ポリチェニレンで2×10  、ポリ(3−メチルチェ
ニレン)で7×1o51ポリピロールで4X10’であ
った。
A metal mask having a pitch of 100 μm and a line width of 50 μm was placed on this surface, and a xenon flash light of 10 joules/c11 was irradiated from above. When we measured the resistance of each part with a microprobe, the ratio (resistance of irradiated part/resistance of non-irradiated part) was:
The polythenylene was 2×10, the poly(3-methylthennylene) was 7×1o51, and the polypyrrole was 4×10′.

発明の効果 以上のように本発明は、従来の導電性接着材にはなかっ
た、外部エネルギでその導電性を制御できるという、新
規な機能性を持つ導電性接着材を提供するものである。
Effects of the Invention As described above, the present invention provides a conductive adhesive having a novel functionality in that its conductivity can be controlled by external energy, which was not present in conventional conductive adhesives.

Claims (3)

【特許請求の範囲】[Claims] (1)合成金属粒子を含む高分子組成物よりなることを
特徴とする機能性導電接着材。
(1) A functional conductive adhesive characterized by being made of a polymer composition containing synthetic metal particles.
(2)高分子組成物が金属粒子、カーボン粒子、絶縁性
粒子の何れかを含む特許請求の範囲第1項記載の機能性
導電接着材。
(2) The functional conductive adhesive according to claim 1, wherein the polymer composition contains any one of metal particles, carbon particles, and insulating particles.
(3)合成金属粒子が、不純物を含む導電性高分子であ
る特許請求の範囲第1項または第2項記載の機能性導電
接着材。
(3) The functional conductive adhesive according to claim 1 or 2, wherein the synthetic metal particles are conductive polymers containing impurities.
JP5867285A 1985-03-22 1985-03-22 Functional, electrically conductive bonding material Pending JPS61215672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5867285A JPS61215672A (en) 1985-03-22 1985-03-22 Functional, electrically conductive bonding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5867285A JPS61215672A (en) 1985-03-22 1985-03-22 Functional, electrically conductive bonding material

Publications (1)

Publication Number Publication Date
JPS61215672A true JPS61215672A (en) 1986-09-25

Family

ID=13091071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5867285A Pending JPS61215672A (en) 1985-03-22 1985-03-22 Functional, electrically conductive bonding material

Country Status (1)

Country Link
JP (1) JPS61215672A (en)

Similar Documents

Publication Publication Date Title
WO2003085052A1 (en) Conductive composition, conductive film, and process for the formation of the film
JPS612202A (en) Soldable electroconductive composition, method of producing same, method of treating substrate applied with said composition, method of coating metal and article applied with same composition
JPH0676623A (en) Electrical conductivity gel
JPH01185380A (en) Anisotropically conductive adhesive
US4396666A (en) Solderable conductive employing an organic binder
JP3103956B2 (en) Anisotropic conductive film
JP3879749B2 (en) Conductive powder and method for producing the same
JP6371513B2 (en) Flexible printed wiring board and manufacturing method thereof
EP2555599B1 (en) Membrane wiring board
JPS61215672A (en) Functional, electrically conductive bonding material
JPS6258395B2 (en)
JPS6248001A (en) Manufacture of electric resistance element
JPH1145616A (en) Forming method of conductive filler, conductive paste and circuit body
JP2758432B2 (en) Electron beam curable conductive paste
JPS62179566A (en) Electrically conductive resin composition
JPH0222099B2 (en)
JP2007335392A (en) Connecting method of circuit member
JPH07192790A (en) Anisotropic conductive connection material
JPS5834958B2 (en) Through-hole printed circuit board
CN116417262B (en) Automobile capacitor
JPS6023460A (en) Paint for electrical resistor
JPH02290280A (en) Method for curing conductive coating material
JPS6274975A (en) Conductive ink
JPH028475B2 (en)
JPH10188670A (en) Flat conductive metal powder, its manufacture, and conductive paste with flat conductive metal powder