JPS61214958A - Inner-surface polishing for metal pipe - Google Patents
Inner-surface polishing for metal pipeInfo
- Publication number
- JPS61214958A JPS61214958A JP5515385A JP5515385A JPS61214958A JP S61214958 A JPS61214958 A JP S61214958A JP 5515385 A JP5515385 A JP 5515385A JP 5515385 A JP5515385 A JP 5515385A JP S61214958 A JPS61214958 A JP S61214958A
- Authority
- JP
- Japan
- Prior art keywords
- metal pipe
- polishing
- metal tube
- etching agent
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は高純度ガスや液体の導通に通した金属管の内面
研磨方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for polishing the inner surface of a metal tube through which high-purity gas or liquid is passed.
(発明の背景)
近年、電子工業、特に半導体工業の発達によりその製造
プロセスに用いられるガスや液体中の微細な塵埃、或い
は微生物の除去が重要な技術的課題となっている。(Background of the Invention) In recent years, with the development of the electronic industry, particularly the semiconductor industry, the removal of fine dust or microorganisms from gases and liquids used in the manufacturing process has become an important technical issue.
例えば、1メガビツトのDRAM (ダイナミックラン
ダムアクセスメモリ)では、設計上の最小線幅は1〜1
.2μであり、更に4メガビツトのそれにおいては1μ
以下となることは容易に理解される。For example, in a 1 megabit DRAM (dynamic random access memory), the minimum design line width is 1 to 1
.. 2μ, and 1μ for 4 megabits.
The following is easily understood.
又、他の一例を挙げれば、MO3構造のトランジスタに
おいて、酸化珪素の膜厚が1メガビツトでは200人程
度であり、4メガビツトでは100人の膜厚が要求され
るであろうことも容易に推定できる。In addition, to give another example, it can be easily estimated that in MO3 structure transistors, a silicon oxide film thickness of about 200 layers is required for 1 megabit, and a thickness of 100 layers is required for 4 megabits. can.
しかしながら、最小線幅が1μの設計で、これに用いる
ガス中に1μの塵埃が存在すると、その塵埃が1ケでも
チップ上の重要な部分に落下すればそのチップは不良品
となることは当然のことであり、従うで、現在一般に考
えられているのは、最小線幅の約1 /10.例えば最
小線幅1μであれば0.1μmまでの異物については許
容可能であるといわれている。However, if the design has a minimum line width of 1μ and there is 1μ of dust in the gas used for this, it is natural that if even one piece of dust falls onto an important part of the chip, the chip will be defective. Accordingly, what is currently generally considered to be approximately 1/10 of the minimum line width. For example, it is said that if the minimum line width is 1 μm, foreign matter up to 0.1 μm can be tolerated.
又、一方では高性能なフィルターが開発され、0.1#
mの異物といえども殆ど100%に近い補集効率で補集
することのできるフィルターも市販されているが、問題
はフィルター以降における配管の内面に吸蔵或いは付着
している異物であり、このような異物はガスの流れと共
に極めて長期に亘り(長い場合には一年以上も)パイプ
の振動や膨張、収縮により少しずつ管外に放出されて半
導体製造上、好ましくない現象を呈していることが判明
している。On the other hand, high-performance filters have been developed, and 0.1 #
Although there are filters on the market that can collect even 500 m of foreign matter with a collection efficiency close to 100%, the problem lies in the foreign matter that is occluded or attached to the inner surface of the piping after the filter. These foreign substances are released little by little out of the pipe as the pipe vibrates, expands, and contracts over an extremely long period of time (in some cases, for over a year) along with the gas flow, causing undesirable phenomena in semiconductor manufacturing. It's clear.
又、前述した酸化珪素膜の生成においては、厚さ100
人のものを必要とする時期が目前に迫っており、このよ
うな100人、即ち、0.01μmの膜厚ではその中に
含まれる異物は殆ど原子4〜5ケの大きさになるものと
考えられる。In addition, in the production of the silicon oxide film mentioned above, the thickness is 100 mm.
The time is approaching when human materials will be needed, and with a film thickness of 100 people, that is, 0.01 μm, most of the foreign particles contained in it will be the size of 4 to 5 atoms. Conceivable.
このような極限状態におけるパーティクル(塵埃)の配
管内での挙動は未だ確かな定説はないが、少なくともパ
イプの内面とガスとの界面においてパーティクルの吸蔵
、脱着が行われていると想像するに足りる現象を見いだ
すことができる。Although there is still no established theory regarding the behavior of particles (dust) in pipes under such extreme conditions, it is safe to imagine that particles are absorbed and desorbed at least at the interface between the inner surface of the pipe and the gas. You can discover phenomena.
発明者等の研究によれば、例えば内表面粗さの最大高さ
く以下、内表面粗さと称す)が1.6μの通常市販のパ
イプと、内面を完全に研磨して内表面粗さを0.2μm
に仕上げたパイプとを、どちらも完全にアルカリ説脂し
たのち純水し洗浄し、次いで不動態化処理をして更に純
水で完全に洗浄、乾燥した両パイプ(長さ4811、内
径28.4mm)の空気流入側から、0゜05μのパー
ティクルで99.9999999%の補集効率を持った
フィルターを通じてこれらのパイプに圧力4 kg /
ci G 、常温にてINn?/Hrの乾燥空気を流
入させ、出口側においてパーティクルカウンター(PM
S社製り、AS−X)を用いてパイプに振動を与えなが
らパーティクルの検出実験を行ったところ、市販パイプ
では0.1 μm以上のパーティクルが1回の測定で1
0ケ以下になるためには少なくとも500時間を要する
のに対し、0.2μ曙の内表面粗さを持つ内面研磨管で
は2時間足らずで0018mのパーティクルが1回の測
定角たり10ケ以下になるのが実験で見いだした。又、
これらのパイプ内を流通する空気の入口側のフィルター
を外し、再びこれらパイプ内にパーティクルを導入した
のち、あらためてフィルターを取りつけてパイプ出口側
でパーティクルのカウントを行ったところ、市販のパイ
プでは前回同様に500時間位要するのに対し、0.2
μ−の内表面粗さの内面研磨管では1時間足らずで0.
1μmのパーティクルが10ケ以下になることが確認さ
れた。このような効果的な塵埃補集は、内表面粗さが少
なくとも0.5μm以下になると顕著に現れる。According to the research conducted by the inventors, for example, a commercially available pipe with a maximum height of 1.6μ (hereinafter referred to as inner surface roughness) and a pipe whose inner surface is completely polished to reduce the inner surface roughness to 0. .2μm
Both pipes were completely degreased with alkali, washed with pure water, then passivated, thoroughly washed with pure water, and dried. From the air inlet side of 4 mm), a pressure of 4 kg /
ci G, INn at room temperature? /Hr of dry air is introduced, and a particle counter (PM
When we conducted a particle detection experiment while applying vibration to a pipe using a pipe (manufactured by S company, AS-X), we found that one particle of 0.1 μm or larger was detected in one measurement in a commercially available pipe.
It takes at least 500 hours to reduce particles to 0.0018m particles per measurement angle in less than 2 hours with an internally polished tube with an inner surface roughness of 0.2μ. This is what I found through experimentation. or,
After removing the filters on the inlet side of the air flowing through these pipes and introducing particles into these pipes again, we reinstalled the filters and counted the particles at the pipe outlet side. While it takes about 500 hours to
An internally polished tube with an inner surface roughness of μ-0.0 in less than 1 hour.
It was confirmed that the number of particles of 1 μm was reduced to 10 or less. Such effective dust collection becomes noticeable when the inner surface roughness is at least 0.5 μm or less.
パイプの内表面粗さが0.5μ鋼以下になると、粒状の
パーティクルでは転がり摩擦抵抗の減少によってパイプ
の外へ放出され易くなることは想像に難くないが、電子
顕微鏡で観察される0、18m級のパーティクルの中に
は表面から見て線状に観察されるものも多い。It is not hard to imagine that when the inner surface roughness of a pipe becomes 0.5 μm or less, granular particles are more likely to be ejected from the pipe due to the reduction in rolling friction resistance, but the 0.18 m Among the particles of this type, many are observed as linear when viewed from the surface.
このような線状のパーティクルでも容易に管外に放出で
きる現象については、単に転がり抵抗の減少のみでは充
分な説明ができなく、管の不動能膜とパーティクルの界
面において吸着力が極めて小さくなっていると考える方
が説明がつき易い。The phenomenon in which even linear particles can be easily ejected outside the tube cannot be adequately explained simply by a reduction in rolling resistance, but because the adsorption force at the interface between the tube's passive film and the particles becomes extremely small. It is easier to explain if you think that there is.
勿論、この他に通常のパイプであれば内表面積が理論表
面積の数倍に達していると思われるが、0゜5μm以下
に研磨されたパイプでは内表面積が理論表面積の1.1
〜1.5倍位になっていると考えられるので、その分だ
けパーティクルの付着面積が減少している効果も現れて
いる。Of course, in the case of a normal pipe, the inner surface area would be several times the theoretical surface area, but for a pipe polished to 0.5 μm or less, the inner surface area would be 1.1 times the theoretical surface area.
Since it is thought that it is about 1.5 times larger, the effect that the particle adhesion area is reduced by that amount is also appearing.
一方、金属や合金で製造されたパイプは一般に造管時に
熱処理や成型工程中、パイプ内面にスケールやキズが発
生し、表面粗さとしては5〜30μの極めて粗雑な内表
面を呈している。On the other hand, pipes made of metals or alloys generally have scales and scratches on their inner surfaces during heat treatment and molding processes during pipe manufacturing, resulting in an extremely rough inner surface with a surface roughness of 5 to 30 microns.
又、金属でも板状のものは、圧延工程時に極めて平滑な
ロールを用いると、ロール面が金属面に転写されて平滑
な面を持った板を製造することが可能であり、更に平滑
度を要求すれば、平面研磨により表面粗さ0.1 μm
の板も容易に製造することが可能である。In addition, for plate-shaped metals, if extremely smooth rolls are used during the rolling process, the roll surface will be transferred to the metal surface, making it possible to manufacture a plate with a smooth surface. If requested, surface roughness of 0.1 μm can be achieved by surface polishing.
It is also possible to easily manufacture a plate.
さらに、造管時に板と同様の平滑なロール面で大径パイ
プから徐々に細径パイプへと該パイプの内面側に平滑な
ロールを挿嵌し且つ外面側から3本のロールで縮管する
ことにより、管内面の表面粗度を下げる技術的な試みも
実行されているが、この方法で得られるパイプも表面粗
さは1μが限度で、最終工程でロールを抜き取る時に生
じる傷等を避けることが困難である。Furthermore, during pipe making, a smooth roll is inserted into the inner surface of the pipe from a large diameter pipe to a small diameter pipe with a smooth roll surface similar to that of a plate, and the pipe is contracted from the outer surface using three rolls. Therefore, technical attempts have been made to reduce the surface roughness of the inner surface of the tube, but the surface roughness of the pipe obtained using this method is limited to 1 μm to avoid scratches that occur when the rolls are removed in the final process. It is difficult to do so.
又、従来からホーニングと称するパイプの内面研磨技術
もあるが、この方法はパイプの内面を砥石を用いて研磨
する方法であり、表面粗さとしては0゜2μm以下の研
磨でも可能であるが、研磨可能な長さ及び内径において
限界があり、内径の大きいパイプでは全長4mを越える
パイプでもホーニング加工は可能であるが、内径数II
III程度では列置長尺管の研磨が不可能で、精々、0
.5〜1m位がその長さとしての加工可能な限界である
。又、内径十数lll11では長さとしての研磨加工が
可能な限界が2m位である。There is also a technique for polishing the inner surface of a pipe called honing, but this method uses a grindstone to polish the inner surface of the pipe, and it is possible to polish the inner surface of the pipe to a surface roughness of 0°2 μm or less. There is a limit to the length and inner diameter that can be polished, and honing is possible even for pipes with large inner diameters that exceed 4 m in total length, but
It is impossible to polish long tubes arranged in a row at level III, and at best, the polishing is 0.
.. The maximum length that can be processed is about 5 to 1 m. Further, for an inner diameter of about 10 lll11, the maximum length that can be polished is about 2 m.
その他のパイプ内面研磨技術としては電解研磨法が知ら
れているが、全長が4m以上の細径パイプではパイプの
内面に設置した電解電極の抵抗のために、両端部と中央
部とでは電解研磨量が異なって中央部で最良の仕上げ面
に研磨すると両端部では過研磨状態となり、ステンレス
等の合金、特に5US316等のモリブデンを含む合金
管では合金の各成分の異なるイオン化傾向の作用によっ
て電解研磨量に差異が生じ、過電解研磨による表面粗さ
の増大現象が発生するという問題点がある。Electrolytic polishing is another well-known technique for polishing the inner surface of pipes, but due to the resistance of the electrolytic electrodes installed on the inner surface of the pipe, electrolytic polishing is required for both ends and the center of small diameter pipes with a total length of 4 m or more. If the amount is different and the center is polished to the best finished surface, both ends will be over-polished.In alloys such as stainless steel, especially alloy tubes containing molybdenum such as 5US316, electrolytic polishing is caused by the different ionization tendencies of each component of the alloy. There is a problem in that a difference occurs in the amount and the surface roughness increases due to over-electrolytic polishing.
勿論、これらの複合技術による管内面研磨法も広く検討
されているが、夫々固有の欠点を解消しがたく、従来の
技術では内径20n+m以下で長さが3m以上のパイプ
の内表面粗さを0.5μm以下にすることが不可能であ
った。Of course, tube inner surface polishing methods using these combined techniques have also been widely studied, but it is difficult to overcome the inherent drawbacks of each, and conventional techniques are difficult to improve the inner surface roughness of pipes with an inner diameter of 20n+m or less and a length of 3m or more. It was impossible to reduce the thickness to 0.5 μm or less.
(発明の目的)
本発明はこのような問題点に鑑みてなされたもので、小
径で長尺な金属管であってもその内面を高精度に鏡面研
磨が可能な金属管の内面研磨方法を提供するものである
。(Objective of the Invention) The present invention has been made in view of the above problems, and provides a method for polishing the inner surface of a metal tube, which enables mirror polishing of the inner surface of a long metal tube with high precision. This is what we provide.
(発明の構成)
上記目的を達成するために、本発明の内面研磨方法は金
属管に挿通したロープ等の外周面を金属管の内面に沿っ
て移動させることにより金属管内に供給した研磨砥粒混
入エツチング剤を金属内面に摺接させながら通過させて
該内面の表面粗さが0゜5μm以下に研磨することを特
徴とするものである。(Structure of the Invention) In order to achieve the above object, the internal surface polishing method of the present invention includes polishing abrasive particles supplied into the metal tube by moving the outer peripheral surface of a rope or the like inserted through the metal tube along the inner surface of the metal tube. This method is characterized in that the mixed etching agent is passed through the inner surface of the metal while being in sliding contact with the inner surface to polish the inner surface to a surface roughness of 0.5 μm or less.
(実施例の説明)
本発明の実施例を図面について説明すると、(1)は内
径が20m+w以下であって長さが3m以上の細径長尺
の金属管で、この金属管(1)を適宜な固定治具(2)
(2)により固定する。(Description of Embodiments) To explain the embodiments of the present invention with reference to the drawings, (1) is a long thin metal tube with an inner diameter of 20 m+w or less and a length of 3 m or more. Appropriate fixing jig (2)
Fix according to (2).
次いで、この金属管(11の内部にロープ等の索条物(
3)を挿通する。この索条物(3)には長さ方向に一定
間隔毎に研磨砥粒を混入させたエツチング剤を含浸し得
る布片或いはスポンジ状物等の摺接体(4)(4)・・
・(4)を取りつけである。Next, a cable such as a rope (
3) Insert. This cable (3) has a sliding body (4) such as a piece of cloth or a sponge-like material that can be impregnated with an etching agent mixed with abrasive grains at regular intervals in the length direction.
・(4) is attached.
摺接体(4)に含浸させるエツチング剤としては、研磨
すべき金属管(1)が銅又は銅合金等の場合、次のよう
な配合組成物を使用する。As the etching agent to be impregnated into the sliding contact body (4), when the metal tube (1) to be polished is made of copper or copper alloy, the following composition is used.
硝 酸 15重量%硫 酸
5 〃リ ン 酸
10 〃スルファミン酸 1
〃
ノニオン系界面活性剤 1〜
アルミナ 30 〃
水 38 〃
又、金属管がステンレス鋼管やチタン、ジルコニウム等
の金属を含有する管等の場合には次のような配合組成物
をエツチング剤として使用する。Nitric acid 15% by weight Sulfuric acid 5 Phosphoric acid
10 Sulfamic acid 1
〃 Nonionic surfactant 1 ~ Alumina 30 〃 Water 38 〃 In addition, when the metal pipe is a stainless steel pipe or a pipe containing metal such as titanium or zirconium, the following composition is used as an etching agent. .
硝 酸 200重量%酸性フッア
ンモニウム 5 〃
フ ツ 酸 2 〃リ
ン 酸 10 〃カルボキ
シル基を有する
インヒビター 5 〃
界面活性剤 1〜
アルミナ 25 〃
水 残
上記組成物において、硝酸は金属管内面の不動脆化を図
るために添加され、この硝酸と硫酸、リン酸又はフッ酸
は混酸として用いて金属面の選択溶解を防ぐものである
。Nitric acid 200% by weight acidic fluorammonium 5 Fluoric acid 2
Acid 10 Inhibitor having a carboxyl group 5 Surfactant 1 - Alumina 25 Water Residual In the above composition, nitric acid is added to make the inner surface of the metal tube immobile and brittle, and this nitric acid is combined with sulfuric acid, phosphoric acid or Hydrofluoric acid is used as a mixed acid to prevent selective dissolution of metal surfaces.
又、スルファミン酸等はインヒビターとして働き、金属
表面の過エツチングを防ぐ酸化抑制剤であり、酸液の表
面張力を減少させて金属内面とのヌレ特性を良くし、液
のレベリング向上のために界面活性剤が添加されている
。In addition, sulfamic acid is an oxidation inhibitor that acts as an inhibitor and prevents over-etching of the metal surface.It reduces the surface tension of the acid solution, improves the wetting characteristics with the metal inner surface, and improves the leveling of the solution at the interface. An activator is added.
さらに、研摩粒としてのアルミナの粒度は0゜5゜μ〜
40μの粒径のものが使用される。このエツチング液剤
の粘度は適宜に決定すればよいが、上述したような摺接
体に吸収含浸させて金属管(1)の内面を研摩する場合
には250〜400cpsに調整される。又、多tfM
i系の増粘剤を適量エツチング剤に加えればアルミナの
分散性を一層良好にすることができる。Furthermore, the particle size of alumina as abrasive grains is 0°5°μ~
A particle size of 40μ is used. The viscosity of this etching liquid may be determined as appropriate, but it is adjusted to 250 to 400 cps when the inner surface of the metal tube (1) is polished by absorbing and impregnating the above-mentioned sliding contact member. Also, many tfM
If an appropriate amount of i-type thickener is added to the etching agent, the dispersibility of alumina can be further improved.
このように調整してエツチング剤を摺接体(4)に含浸
させるには、金属管(11内に挿入する前に研磨砥粒混
入エラ、チング剤中に浸入、通過させるか或いは金属管
内に研磨砥粒混入エツチング剤を供給することにより行
う。In order to impregnate the sliding contact body (4) with the etching agent by adjusting the etching agent in this manner, before inserting it into the metal tube (11), use an abrasive-containing gill, infiltrate and pass through the etching agent, or insert it into the metal tube (11). This is done by supplying an etching agent mixed with abrasive grains.
摺接体(4)にエツチング剤を含浸させて索条物(3)
を金属管内に長さ方向に引張移動させると、摺接体(4
)の外周面が金属管(1)の内周面を摺動しながら金属
管(1)の一端から他端に通過し、その間に研摩砥粒混
入エツチング剤が摺接体(4)によって積極的に金属管
(1)の内周面に摺接し、その内周面を研磨するもので
ある。摺接体(4)を取り付けた索条物(3)は金属管
内を一方方向にのみ移動させてもよく、往復移動させて
もよいものであり、又、摺接体(4)が安定した状態で
研磨面に接するように金属管(1)を回転させることも
必要であり、この研磨作業を適宜時間行って金属管(1
)の内周面を全長に亘り最大高さ粗さ0.5以下まで研
磨する。The sliding body (4) is impregnated with an etching agent to form a cable (3).
When the sliding body (4
) passes from one end of the metal tube (1) to the other end while sliding on the inner surface of the metal tube (1), during which time the etching agent mixed with abrasive grains is actively applied by the sliding member (4). It slides on the inner circumferential surface of the metal tube (1) and polishes the inner circumferential surface. The cable (3) to which the sliding body (4) is attached may be moved only in one direction within the metal tube, or may be moved back and forth, and the cable (3) attached to the sliding body (4) may be It is also necessary to rotate the metal tube (1) so that it is in contact with the polished surface, and this polishing operation is performed for an appropriate amount of time until the metal tube (1) is in contact with the polished surface.
) is polished to a maximum height roughness of 0.5 or less over the entire length.
なお、摺接体(4)を使用することなく、研磨砥粒混入
エツチング剤を含浸した繊維ローブの外周面を直接金属
管内面に摺接させても同様な研磨が可能である。Note that similar polishing can be performed by directly sliding the outer peripheral surface of a fiber lobe impregnated with an etching agent containing abrasive grains onto the inner surface of the metal tube without using the sliding member (4).
次に、第2図は別な研磨手段を示すもので、管の端部を
挿嵌、固定する嵌合孔(5)と該嵌合孔(5)の中心線
上に連通した小径の軸挿通孔(6)とを前後端面間に貫
設し、且つ外周面適所から軸挿通孔(6)に連通ずる液
剤導孔(7)を設けてなる一対の支持治具(8) (8
)を使用し、この支持治具(8) (8)を管の長さ寸
法を存して対設し、嵌合孔(5) (51に金属管(1
)の両端部を挿嵌、固定する。さらに、支持治具(8)
(8)の挿通孔(61(61間に回転軸(9)を挿通
し、その一端をモータαωに連結しである。又、金属管
(11に挿入している軸部分には、金属管の内周面に摺
接するポリプロピレン等の高分子化合物よりなるブラシ
体又はフェルトテープ等の液剤移送部材11を螺旋状に
巻着しである。Next, Fig. 2 shows another polishing means, in which a fitting hole (5) into which the end of the tube is inserted and fixed, and a small diameter shaft inserted in communication with the center line of the fitting hole (5). A pair of support jigs (8) each having a liquid guide hole (7) extending through the hole (6) between the front and rear end surfaces and communicating with the shaft insertion hole (6) from an appropriate position on the outer peripheral surface.
), install the support jig (8) (8) oppositely to each other with the same length as the tube, and insert the metal tube (1) into the fitting hole (5) (51).
) and secure it. Furthermore, the support jig (8)
The rotating shaft (9) is inserted between the insertion holes (61 (61) of (8), and one end thereof is connected to the motor αω. Also, the shaft portion inserted into the metal tube (11) is inserted into the metal tube (11). A brush body made of a polymer compound such as polypropylene or a liquid agent transfer member 11 such as a felt tape is wound spirally around the inner peripheral surface of the brush body.
なお、軸挿通孔(6)の端部はパツキン等によって閉塞
しておく。Note that the end of the shaft insertion hole (6) is closed with a packing or the like.
今、一方の支持治具(8)の導孔(6)から前述した組
成の研磨砥粒混入エツチング剤を供給すると共にモータ
α〔を駆動して軸(9)を回転させると、エツチング剤
は軸(9)の螺旋状移送部材11によって金属管(1)
の内周面に摺接させられながら他方の支持治具(8)側
に移送され、金属管の内周面を研磨するものであり、こ
うして金属管(1)の内周面を研磨しながら、金属管の
他端から流出した研磨砥粒混入エツチング剤は他方の支
持治具(8)の下向き導孔(6)から排出される。Now, when the abrasive grain-containing etching agent having the composition described above is supplied from the guide hole (6) of one of the support jig (8) and the shaft (9) is rotated by driving the motor α, the etching agent is The metal tube (1) by the helical transfer member 11 of the shaft (9)
The inner circumferential surface of the metal tube (1) is polished while being transferred to the other supporting jig (8) while being in sliding contact with the inner circumferential surface of the metal tube (1). The abrasive grain-containing etching agent flowing out from the other end of the metal tube is discharged from the downward guide hole (6) of the other supporting jig (8).
なお、この研磨方法の場合、エツチング剤の粘度を前述
した粘度より大きい4000〜6000cps程度にし
ておくことが望ましい。In the case of this polishing method, it is desirable that the viscosity of the etching agent be set to about 4,000 to 6,000 cps, which is higher than the above-mentioned viscosity.
このような研磨作業において、金属管(1)を軸方向に
水平往復移動をさせれば一層研磨効果が大となり、又、
摺接体を使用することなく、スパイラル状の金属製若し
くは高分子化合物製軸材を金属管内で回転させ、高粘度
(20000cps )の研磨砥粒混入エツチング剤を
金属管内で攪拌することも同様な研磨効果が得られるも
のである。In such polishing work, the polishing effect will be even greater if the metal tube (1) is horizontally reciprocated in the axial direction, and
A similar method can be achieved by rotating a spiral metal or polymer compound shaft material in a metal tube and stirring an etching agent containing abrasive grains with a high viscosity (20,000 cps) in the metal tube without using a sliding body. This provides a polishing effect.
このようにして研磨された金属管(1)はその内面をイ
オン交換水で充分洗浄し、乾燥空気を用いて乾燥する。The inner surface of the thus polished metal tube (1) is thoroughly washed with ion-exchanged water and dried using dry air.
(発明の効果)
以上のよ・うに本発明の金属管の内面研磨方法によれば
、研磨砥粒混入エツチング剤を金属管の内面に摺接させ
て研磨するものであるから、内径が20以下で長さが3
m以上の金属管であっても全長に亘って内面を均一に研
磨でき、しかも、最大高さ粗さが0.5μm以下の研磨
度に能率良く研磨できるものであり、小径長尺の金属管
の高精密研磨方法として極めて有益な発明である。(Effects of the Invention) As described above, according to the method for polishing the inner surface of a metal tube of the present invention, since the etching agent containing abrasive grains is brought into sliding contact with the inner surface of the metal tube, the inner diameter of the metal tube is 20 or less. and the length is 3
It is possible to uniformly polish the inner surface of a metal tube over its entire length even if it is a metal tube with a diameter of 0.5 μm or more, and it can be efficiently polished to a polishing degree with a maximum height roughness of 0.5 μm or less. This invention is extremely useful as a high-precision polishing method.
又、こうして得られた研磨管は、極めて微細な塵埃でも
その内面に殆ん、ど付着させることがなく、フィルター
から半導体製造部に至る間の配管等に最適であってその
製造プロセスに用いられるガスを常に高純度に保持でき
、従って精度の高い製品を能率よく製造できるものであ
る。In addition, the polished tube thus obtained does not allow even extremely fine dust to adhere to its inner surface, making it ideal for piping from the filter to the semiconductor manufacturing department, and used in the manufacturing process. Gas can always be kept at a high purity, and therefore highly accurate products can be manufactured efficiently.
図面は本発明の実施例を示すもので、第1図は摺接体の
使用による研磨手段の簡略図、第2図は+!1旋状物の
使用による研磨手段の簡略図である。
(1)・・・金属管、(3)・・・索条物、(4ト・・
摺接体、(9)・・・回転軸、11・・・液剤移送部材
。The drawings show an embodiment of the present invention, and FIG. 1 is a simplified diagram of a polishing means using a sliding contact, and FIG. 2 is a +! 1 is a simplified diagram of a polishing means using a monovolute; FIG. (1)... Metal pipe, (3)... Cable, (4...
Sliding contact body, (9)... Rotating shaft, 11... Liquid agent transfer member.
Claims (1)
って移動させることにより金属管内に供給したエッチン
グ剤と研磨砥粒を金属管内面に摺接させて該内面を表面
粗さが最大高さ(Rmax)0.5μm以下に研磨する
ことを特徴とする金属管の内面研磨方法。By moving the outer peripheral surface of a rope, etc. inserted into the metal tube along the inner surface of the metal tube, the etching agent and abrasive grains supplied into the metal tube are brought into sliding contact with the inner surface of the metal tube, and the inner surface is made to have the maximum surface roughness. A method for polishing the inner surface of a metal tube, characterized by polishing the inner surface of a metal tube to a height (Rmax) of 0.5 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5515385A JPS61214958A (en) | 1985-03-19 | 1985-03-19 | Inner-surface polishing for metal pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5515385A JPS61214958A (en) | 1985-03-19 | 1985-03-19 | Inner-surface polishing for metal pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61214958A true JPS61214958A (en) | 1986-09-24 |
Family
ID=12990803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5515385A Pending JPS61214958A (en) | 1985-03-19 | 1985-03-19 | Inner-surface polishing for metal pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61214958A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020262562A1 (en) * | 2019-06-25 | 2020-12-30 | 大阪サニタリー株式会社 | Device for polishing metal pipe inner surface, and metal pipe |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125965A (en) * | 1979-03-21 | 1980-09-29 | Teruhiko Yamazoe | Device for polishing inside surface of pipe |
-
1985
- 1985-03-19 JP JP5515385A patent/JPS61214958A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125965A (en) * | 1979-03-21 | 1980-09-29 | Teruhiko Yamazoe | Device for polishing inside surface of pipe |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020262562A1 (en) * | 2019-06-25 | 2020-12-30 | 大阪サニタリー株式会社 | Device for polishing metal pipe inner surface, and metal pipe |
JP2021003748A (en) * | 2019-06-25 | 2021-01-14 | 大阪サニタリー株式会社 | Polishing device for inner face of metallic pipe |
CN114007811A (en) * | 2019-06-25 | 2022-02-01 | 大阪卫生有限公司 | Inner surface grinding device for metal pipe and metal pipe |
CN114007811B (en) * | 2019-06-25 | 2023-12-08 | 大阪卫生有限公司 | Inner surface grinding device for metal tube and metal tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5932486A (en) | Apparatus and methods for recirculating chemical-mechanical polishing of semiconductor wafers | |
US6709981B2 (en) | Method and apparatus for processing a semiconductor wafer using novel final polishing method | |
JPH01193166A (en) | Pad for specularly grinding semiconductor wafer | |
CN100443260C (en) | Scatheless grinding method for rigid, fragile crystal wafer | |
CN101468448A (en) | Chemical mechanical polishing technological process | |
JPS61214958A (en) | Inner-surface polishing for metal pipe | |
JPS6237380A (en) | Method for polishing inside surface of metallic pipe | |
JP2009136926A (en) | Conditioner and conditioning method | |
CN110846665B (en) | Stainless steel polishing agent and preparation method and application thereof | |
JP5310848B2 (en) | Silicon wafer polishing method and silicon wafer | |
Chen et al. | Loose abrasive truing and dressing of resin bond diamond cup wheels for grinding fibre optic connectors | |
JPS61291674A (en) | Polishing agent | |
US20080203352A1 (en) | Formulation of grinding coolant | |
JPS61182750A (en) | Internal polished metal pipe and its manufacture | |
Guo et al. | Technical performance of zirconia-coated carbonyl-iron-particles based magnetic compound fluid slurry in ultrafine polishing of PMMA | |
CN105940450B (en) | The manufacturing method of substrate for magnetic disc and the manufacturing method of disk | |
Zefang et al. | Chemical mechanical polishing of aluminum alloys using alumina-based slurry | |
JP2783329B2 (en) | Abrasive for glass polishing | |
JPS59166464A (en) | Polishing surface plate and method of manufacturing it | |
JP4612214B2 (en) | Method for polishing ceramic roll and polishing foil | |
JP4554799B2 (en) | Polishing tool based on fluororesin | |
JP2002346938A (en) | Grinder for grinding glass surface | |
CN114774003A (en) | NiP modified layer chemical mechanical polishing solution and preparation method and application thereof | |
Tsai et al. | Development of Combined Diamond Impregnated Lapping Plates | |
JPS5815666A (en) | Processing method |