JPS61214409A - Autotransformer - Google Patents

Autotransformer

Info

Publication number
JPS61214409A
JPS61214409A JP60053294A JP5329485A JPS61214409A JP S61214409 A JPS61214409 A JP S61214409A JP 60053294 A JP60053294 A JP 60053294A JP 5329485 A JP5329485 A JP 5329485A JP S61214409 A JPS61214409 A JP S61214409A
Authority
JP
Japan
Prior art keywords
winding
tap
series
shunt
tertiary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60053294A
Other languages
Japanese (ja)
Other versions
JPH0546691B2 (en
Inventor
Hiroyuki Fujita
裕幸 藤田
Minoru Hoshi
稔 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60053294A priority Critical patent/JPS61214409A/en
Publication of JPS61214409A publication Critical patent/JPS61214409A/en
Publication of JPH0546691B2 publication Critical patent/JPH0546691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/02Auto-transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To prevent a circulating current flowing in the tertiary coil by parallelly connecting the exciter coil with either one of the series coil or the shunt coil. CONSTITUTION:The series coil 1, the shunt coil 2 and the tertiary coil 3 are wound around the main leg 61 of a magnetic iron core, and the tap coil 4 and the exciter coil 5 to excite the side leg 62 are wound around the leg 62. The junction of the series coil 1 and the shunt coil 2 connected in series is connected to one end of the tap coil 4, from the other end of which the secondary terminal (u) is drawn out. The exciter coil 5 is connected with the shunt coil 2 in parallel to be excited.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は単巻変圧器に係り、特に直列巻線側または分路
巻lIj側の電圧を一定に保持するように分路巻線側ま
たは直列巻線側にタップ巻線を直列に接続するようにし
たフォーク結線形の単巻変圧器に関する、 〔発明の背景〕 従来−次巻線側すなわち直列巻線側の電圧を一定に保持
し、二次巻線側すなわち分路巻#側の電圧を切換えるよ
うにした単巻変圧器においては、三次巻線側の電圧を変
動させないようにするため、フォーク結線を採用するの
が有利とさゎている。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an autotransformer, and in particular, the present invention relates to an autotransformer. [Background of the Invention] Conventionally, the voltage on the secondary winding side, that is, the series winding side, is held constant, and the voltage on the secondary winding side, that is, the series winding side, is In autotransformers that switch the voltage on the secondary winding side, that is, on the shunt winding # side, it is advantageous to use a fork connection in order to prevent the voltage on the tertiary winding side from fluctuating. There is.

第7図は、前記の要請にこたえるフォーク結線形の単巻
変圧器の巻線配置を示すもので、磁気鉄心脚6に内側か
ら三次巻線3.タップ巻線42分路巻l112.直列巻
ls1の順に同心配置しである。
FIG. 7 shows the winding arrangement of a fork-connected autotransformer that meets the above requirements, with the tertiary winding 3. Tap winding 42 shunt winding l112. The series windings ls1 are arranged concentrically in this order.

ここで、直列巻l1iJiと分路巻線2とを直列に接続
し、その接続点にタップ巻線4の一端を接続して、この
タップ巻ff54がら二次端子Uを引出している。なお
Uは直列巻a1から引出した一次端子、Nは分路巻線の
低圧側から引出した中性点端子、a、bは三次巻線の端
子を示す。
Here, the series winding l1iJi and the shunt winding 2 are connected in series, one end of the tap winding 4 is connected to the connection point thereof, and the secondary terminal U is drawn out from this tap winding ff54. Note that U indicates a primary terminal drawn out from the series winding a1, N indicates a neutral point terminal drawn out from the low voltage side of the shunt winding, and a and b indicate terminals of the tertiary winding.

この結線法によると、磁気鉄心脚6内の磁束密しない利
点がある。
This connection method has the advantage that the magnetic flux within the magnetic core legs 6 is not dense.

しかし、三次巻#J3と分路巻線2との間にタップ巻線
4を配置しているため、三次巻#j!3−と分路巻線2
との間の距離が太き、くなる。
However, since the tap winding 4 is arranged between the tertiary winding #J3 and the shunt winding 2, the tertiary winding #j! 3- and shunt winding 2
The distance between the two becomes thicker and smaller.

このため、三次巻線3と分路巻線2との間の空間の鎖交
磁束量が大きくなり、この結果、−次側と三次側間およ
び二次側と三次側間のパーセントインピーダンスが夫々
大きくなる。
Therefore, the amount of interlinkage magnetic flux in the space between the tertiary winding 3 and the shunt winding 2 increases, and as a result, the percent impedance between the negative side and the tertiary side and between the secondary side and the tertiary side increases, respectively. growing.

また、第8図に示すようK、分路巻線2の電圧を一定に
保持し、直列巻線1 (Illの電圧を切換えるように
した単巻変圧器においても、前記したことと同様に前記
各パーセントインピーダンスが大きくなる。
Furthermore, as shown in FIG. 8, in an autotransformer in which the voltages of K and shunt windings 2 are held constant and the voltages of series windings 1 (Ill) are switched, the same applies as described above. Each percentage impedance increases.

尚、第8図の巻線配置は第7図と同様であるが、二次端
子Uを分路巻線2とタップ巻線4との接続点から引出し
ている点が相違している。
The winding arrangement in FIG. 8 is similar to that in FIG. 7, except that the secondary terminal U is drawn out from the connection point between the shunt winding 2 and the tap winding 4.

第9図は、これら第7図および算8図の巻線配置におけ
る一次側と三次側間および二次側と三次側間の巻線径方
向の鎖交磁束分布を示す。
FIG. 9 shows the interlinkage magnetic flux distribution in the winding radial direction between the primary side and the tertiary side and between the secondary side and the tertiary side in the winding arrangement shown in FIGS. 7 and 8. FIG.

前記したように、−次側と三次(111問および二次側
聞と三次側間のパーセントインピーダンスが大きいこと
は、三次側の短絡電流を抑制する点では有利であるが、
三次側の電圧変動が大きくなるという面では欠点となる
。このことは、特に、三次側にリアクトルを接続して無
効電力の補償を行なう場合に、三次電圧が降下するとと
Kなり、このため補償可能な鯉効電力が低下するという
面で不具合となる。
As mentioned above, a large percentage impedance between the negative side and the tertiary side (111 questions) and between the secondary side and the tertiary side is advantageous in terms of suppressing the short-circuit current on the tertiary side.
The drawback is that voltage fluctuations on the tertiary side become large. This is particularly problematic in that when a reactor is connected to the tertiary side to compensate for reactive power, a drop in the tertiary voltage results in a drop in the compensable carp effect power.

従ってこの目的のために使用する単巻変圧器としては、
−次側と三次側間および二次側と三次側間のパーセント
インピーダンスを小さくすることが要求される。
Therefore, the autotransformer used for this purpose is
- It is required to reduce the percent impedance between the secondary side and the tertiary side and between the secondary side and the tertiary side.

この要求を満たすために、前記した従来構成の巻線配置
では一次側と三次側間および二次側と三次側間のパーセ
ントインピーダンスを小さくするためには磁気鉄心の径
を非常に大きくし、巻線巻回数を減らし、直列巻線と分
路巻線の間の寸法を非常に大きくするなどの方法による
ため著しく不経済な変圧器となる欠点があった。
To meet this requirement, in the conventional winding arrangement described above, the diameter of the magnetic core must be extremely large to reduce the percent impedance between the primary and tertiary sides and between the secondary and tertiary sides. Since the number of wire turns is reduced and the distance between the series winding and the shunt winding is made very large, the transformer becomes extremely uneconomical.

そこで、前記したパーセントインピーダンスを小さくす
る対策として、雛誌“シーメンス、ツアイトシュリフト
”((S iemen 5−Ze i t sc’hr
ift41(1967’)Heft1.))の第23頁
から第31頁に掲載の論文、ra sok■単相単巻変
圧器より成る1 00 o&Vλ三相パンクJ (10
00−MVA−Drehstromb’jnke  m
it  380−kV−Einph −asen−8p
artransformatoren)VC紹介されて
いる構成がある。
Therefore, as a measure to reduce the above-mentioned percent impedance, the brochure "Siemens, Zeitschrift" ((Siemen 5-Zeit sc'hr.
ift41 (1967') Heft1. )), the paper published on pages 23 to 31 of ra sok
00-MVA-Drehstromb'jnke m
it 380-kV-Einph-asen-8p
There is a configuration introduced by VC.

この構成による考え方は、第10図または第11図に巻
線接続図として示す。
The concept of this configuration is shown as a winding connection diagram in FIG. 10 or FIG. 11.

この考え方の基本は、タップ巻線4とこわを励磁する励
磁巻線31とを前記した磁気鉄心主脚6とは別の磁気鉄
心側脚に巻回配置し、三次巻線3と分路巻線2との距離
を縮小することである。
The basic idea is that the tap winding 4 and the excitation winding 31 that excites the stiffness are wound around a magnetic core side leg separate from the magnetic core main leg 6, and the tertiary winding 3 and the shunt winding are arranged. The goal is to reduce the distance to line 2.

尚、第10図は、分路巻線2側にタップ巻線4を直列に
接続し、直列巻線l側の電圧を一定にしてタップを切換
える例を示し、また、第11図は、直列巻線l側にタッ
プ巻線4を直列に接続し、分路巻線2側の電圧を一定に
してタップを切換える例を示す。いすねの例忙おいても
、励磁巻線31は三次巻線3に並列接続して励磁さねて
いる。
In addition, FIG. 10 shows an example in which the tap winding 4 is connected in series to the shunt winding 2 side and the tap is switched while keeping the voltage on the series winding L side constant, and FIG. An example will be shown in which a tap winding 4 is connected in series to the winding l side and the taps are switched while keeping the voltage on the shunt winding 2 constant. Even during busy times, the excitation winding 31 is connected in parallel to the tertiary winding 3 and is not excited.

しかし、こわら第10図および第11図化量した従来例
においては、定格タップ以外のタップにおいて、タップ
巻線に流れる電流1′↑によるアンペア・ターンを打ち
消すために励磁巻#J31に訪起される電流i:I−が
、三次巻線3を循環して流れるので、三次巻線の実質的
な容量を太きくしな叶わばならないという欠点があった
。また、励磁巻線31と三次巻線3を循環して流ねる電
流Itのため9荷損が増大するという欠点もあった。
However, in the conventional example shown in Figures 10 and 11, in taps other than the rated taps, in order to cancel the ampere turn due to the current 1'↑ flowing in the tap winding, a current is applied to the excitation winding #J31. Since the current i:I- circulates through the tertiary winding 3, there is a drawback that the actual capacity of the tertiary winding must be increased in size. In addition, there was also the drawback that the current It circulating through the excitation winding 31 and the tertiary winding 3 increased load loss.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記した従来技術の欠点を改善し、三
次巻線に流わる循環電流を防止して損失の低減をはかる
ようにしたフォーク結線形の単巻変圧器を提供するにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fork-connected autotransformer which improves the drawbacks of the prior art described above and reduces losses by preventing circulating current from flowing through the tertiary winding.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、直列巻線、分路巻
線、三次巻線等を巻回配置した磁気鉄心主脚とは別個の
磁気鉄心側脚にタップ巻線とこ七を励磁する励磁巻線を
巻回配置し、前記励磁巻線を前記直列巻線または前記分
路巻線のいすわが一方の巻線と並列接続するように構成
したことを特徴とする。
In order to achieve this object, the present invention energizes a tap winding on a side leg of a magnetic core that is separate from a main leg of a magnetic core in which a series winding, a shunt winding, a tertiary winding, etc. are wound. The present invention is characterized in that an excitation winding is wound in a winding arrangement, and the excitation winding is configured such that a chair of the series winding or the shunt winding is connected in parallel with one of the windings.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図乃至第6図について詳細
に説明する。尚、図中、第7図乃至第11図と同一また
は相当部分は、同一符号を付しである。第1図に示す実
施例は、センターコア形の磁気鉄心を用いた実施例を示
し、この磁気鉄心の主脚61に、直列巻#1と、分路巻
線2と、三次巻線3が巻回配置されており、側脚62K
、タップ巻線4と側脚な励磁するための励磁巻線5が巻
装されている。直列巻線1と分路巻@2が直列に接続さ
れ、その接続点にタップ巻線4の一端が接続されタップ
巻線4の他の一端より二次端子Uを引き出している。励
磁巻線5は分路巻線2に並列に接続され励磁される。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 6. In the drawings, the same or equivalent parts as in FIGS. 7 to 11 are designated by the same reference numerals. The embodiment shown in FIG. 1 shows an embodiment using a center core type magnetic core, and the main leg 61 of this magnetic core includes a series winding #1, a shunt winding 2, and a tertiary winding 3. Winding arrangement, side legs 62K
, a tap winding 4 and an excitation winding 5 for excitation are wound on the side legs. A series winding 1 and a shunt winding @2 are connected in series, one end of a tap winding 4 is connected to the connection point thereof, and a secondary terminal U is drawn out from the other end of the tap winding 4. The excitation winding 5 is connected in parallel to the shunt winding 2 and is excited.

このような構成にすることによって、巻線および巻線間
の鎖交磁束分布を考えると、タップ巻線4が主脚61と
は別の側脚62に巻かねているため、三次巻線3と、直
列巻線1および分路巻#2との間の距離を小さくするこ
とができ、鎖交磁束りを譲21FI k示すように小さ
くすることができる。
With such a configuration, considering the windings and the flux linkage distribution between the windings, the tap winding 4 cannot be wound around the side leg 62 that is different from the main leg 61, so the tertiary winding 3 and , the distance between the series winding 1 and the shunt winding #2 can be reduced, and the interlinkage magnetic flux can be reduced as shown in Figure 21FIk.

尚、第2図化おいてAは、分路巻線2と三次巻従って、
直列巻@1すなわち一次側と三次巻卿3すなわち三次側
間および分路巻線2すなわち、二次側と三次側間のパー
セントインピーダンスを小さくすることができる。
In addition, in the second diagram, A is the shunt winding 2 and the tertiary winding, therefore,
The percentage impedance between the series winding @1, that is, the primary side and the tertiary winding 3, that is, the tertiary side, and between the shunt winding 2, that is, the secondary side and the tertiary side can be reduced.

また、前記したように、励磁巻線5と三次巻線3を並列
に接続した場合の循環電流による実質的な巻線容量の増
加および負荷損の増加の問題もない。
Further, as described above, there is no problem of substantial increase in winding capacity and increase in load loss due to circulating current when the excitation winding 5 and the tertiary winding 3 are connected in parallel.

この理由について、第3図を用いて説明する。The reason for this will be explained using FIG. 3.

第3図は、各巻線の電流の流れる方向を示したもので、
タップ位置が中央にある定格の電圧より低い電圧のタッ
プが選択された場合を例示している。フォーク結線の単
巻変圧器は、一般に1選択されるタップ電圧が低い穆、
分路巻線2およびタップ巻線4に流ねる電流が大きくな
るため、負荷損が大きくなり、通常、最低電圧タップで
負荷損が最大となる。
Figure 3 shows the direction of current flow in each winding.
This example shows a case where a tap with a lower voltage than the rated voltage with the tap position in the center is selected. Fork-connected autotransformers are generally selected with low tap voltage,
Since the current flowing through the shunt winding 2 and the tap winding 4 becomes large, the load loss becomes large, and the load loss is usually maximum at the lowest voltage tap.

前記した第10図および!lt図に示した従来の励磁巻
線31と三次巻線3を並列に接続した例では、分路巻線
2とタップ巻線4に流ねる電流が増加するために負荷損
が増加するのに加えて、この励磁巻線31と三次巻線3
を循環して流わる電流によっても負荷損が増加した。し
かし、本実施例忙よりば、分路巻線2にfif、tする
電流1cは、常洸一定で、定格の電圧のタップが選択さ
±また場合の電流に等しくなり、タップ巻線4を流れる
電流ITによるアンペアターンを打ち消すために、励磁
巻線5を流れる電流IEは並列に接続された分路巻線2
を流幻ないで、負荷電流としてタップ巻線を流れ負荷損
が大となる定格電圧より低い電圧のタップにおいて、巻
線間を循環して流れる1に流はない。従って、従来の励
磁巻線31と三次巻線3を並列に接続した例よりも、負
荷損を小さくすることができる。
Figure 10 and ! In the conventional example shown in the lt diagram where the excitation winding 31 and the tertiary winding 3 are connected in parallel, the load loss increases because the current flowing through the shunt winding 2 and the tap winding 4 increases. In addition, this excitation winding 31 and the tertiary winding 3
The load loss also increased due to the current flowing through the circuit. However, according to the present embodiment, the current 1c flowing through the shunt winding 2 is constant and is equal to the current when the tap with the rated voltage is selected. In order to cancel the ampere turns due to the flowing current IT, the current IE flowing through the excitation winding 5 is connected to the shunt winding 2 connected in parallel.
At a tap with a voltage lower than the rated voltage, which flows through the tap winding as a load current and causes a large load loss, there is no flow of 1 circulating between the windings. Therefore, load loss can be made smaller than in the conventional example in which the excitation winding 31 and the tertiary winding 3 are connected in parallel.

また、定格電圧より低い電圧のタップにおいては、従来
の構成では分路巻#2に流わる1流が増加するのに対し
、本実施例の構成では増加しない。
Furthermore, in the tap with a voltage lower than the rated voltage, the one current flowing to shunt winding #2 increases in the conventional configuration, but does not increase in the configuration of the present embodiment.

このため、従来の構成では、循環電流のため、三次巻線
3の容量を実質的に大きくし、分路巻線2と励磁巻線5
を合わせた容量を従来の分路巻線の容量と同一にすれば
良いため、分路巻線2そのものの容量を小さくすること
ができる。
For this reason, in conventional configurations, the capacity of the tertiary winding 3 is substantially increased due to the circulating current, and the shunt winding 2 and the excitation winding 5
Since the combined capacity of the shunt winding 2 can be made the same as the capacity of the conventional shunt winding, the capacitance of the shunt winding 2 itself can be reduced.

本実施例の構成では、定格電圧より高い電圧のタップで
は、励磁巻l/s5を流上る電流Izは分路巻線2を流
れ、循環電流となるが、この電流は最低電圧タップのと
きに励磁巻線5を流れる電流より小さいので、負荷損は
最低電圧タップの場合より小さく、この循環電流が問題
になることは1.−い。
In the configuration of this embodiment, at a tap with a voltage higher than the rated voltage, the current Iz flowing up the excitation winding l/s5 flows through the shunt winding 2 and becomes a circulating current, but this current Since it is smaller than the current flowing through the excitation winding 5, the load loss is smaller than in the case of the lowest voltage tap, and this circulating current becomes a problem because 1. - Yes.

第1図乃至第3図の実施例は、分路巻線2にタップ巻l
R4を直列に接続し、タップ切換によっても、直列巻線
1・の電圧を一定に保持するようにした単巻変圧器に本
発明を適用した場合を示した。
In the embodiments of FIGS. 1 to 3, the shunt winding 2 has a tap winding l.
A case where the present invention is applied to an autotransformer in which R4 is connected in series and the voltage of the series winding 1 is held constant even by changing taps is shown.

第4図乃至第6回は直1列巻糾1゛にタップ巻線4を直
列に接続し、タップ切換によっても、/;J−%巻i電
圧を一定に保持するようにした単巻り圧器に本発明を適
用した実施例を示す。
In Figures 4 to 6, the tap winding 4 is connected in series to the single series winding 1, and the voltage of the /; J-% winding is kept constant even by changing the tap. An embodiment in which the present invention is applied to a pressure vessel will be shown.

この実施例がf1図および第3図の構成と異なる点は、
分路巻線2の高圧側から二次端子Uを引出し、この二次
端子uKタップ巻線4の一端を接続したこと、また、励
磁巻#J5は直列巻i1に並列に接続したことにある。
This embodiment differs from the configurations in Figure f1 and Figure 3 as follows:
The secondary terminal U is drawn out from the high voltage side of the shunt winding 2, and one end of this secondary terminal uK tap winding 4 is connected, and the excitation winding #J5 is connected in parallel to the series winding i1. .

第5図は、第4−の巻線配wt、VCおける巻線径方向
の鎖交磁束分布を示し、!211Nの鎖交磁束分布と略
同−の傾向を示す。
FIG. 5 shows the interlinkage magnetic flux distribution in the winding radial direction in the 4-th winding wiring wt, VC, and ! It shows almost the same tendency as the flux linkage distribution of 211N.

第6図は、本実施例において、定格の電圧より低い電圧
のタップが選択された状態での電流の流通状況を示す。
FIG. 6 shows the current flow situation when a tap with a voltage lower than the rated voltage is selected in this embodiment.

高圧側である直列巻線1111jでタップ切換を行なう
単巻変圧器では、一般に選択されるタップの電圧が低い
程、直列巻線1およびタップ巻線4 K @ねる電流が
大きくなるため、負荷損が大きくなり、通常、最低電圧
タップで負荷損が最大となる。
In an autotransformer in which tap switching is performed by the series winding 1111j on the high voltage side, the lower the voltage of the selected tap, the larger the current flowing through the series winding 1 and tap winding 4 K@, so the load loss is reduced. is large, and the load loss is usually greatest at the lowest voltage tap.

しかし、第6図に示すようK、本実施例によれば、直列
巻線1に流ねる電流Isは常に一定で、定格電圧のタッ
プが選択された場合の電流に等しくなり、タップ巻1l
I4を流わる電流1tlでよるアンペアターンを打消す
ために、励磁巻線5を流わる電流1gは、並列1c接続
された直列巻線1を流れないで、負荷電流とし、てタッ
プ巻線4を流ハる。
However, as shown in FIG. 6, according to this embodiment, the current Is flowing through the series winding 1 is always constant and equal to the current when the tap with the rated voltage is selected,
In order to cancel the ampere turn caused by the current 1 tl flowing through I4, the current 1 g flowing through the excitation winding 5 does not flow through the series winding 1 connected in parallel 1c, but instead becomes a load current and is applied to the tap winding 4. Flowing.

すなわち、本実施例によれば、負荷損が大となる定格電
圧より低い電圧のタップにおいて、%線間を循環してP
fわる電流はない。
In other words, according to this embodiment, in a tap with a voltage lower than the rated voltage where the load loss is large, P is circulated between the % lines.
There is no current that changes f.

従って、従来の励磁巻#31と三次巻絶3を並列KN続
した例よりも、負荷損を小さくすることができる、 また、定格電圧より低い電圧のタップにおいては、従来
例の構成では直列巻線1に流わる電流Isが増加するの
に対し、本実施例の構成では増加し列巻線1そのもの容
l−を小さくすることができる。
Therefore, the load loss can be lower than the conventional example in which the excitation winding #31 and the tertiary winding disconnection 3 are connected in parallel. While the current Is flowing through the wire 1 increases, in the configuration of this embodiment, it increases and the capacity l- of the column winding 1 itself can be reduced.

また、本実施例の構成では、タップが中央位置にある定
格電圧より高い電圧のタップでは、励磁巻#5を流れる
電流”I z lt直列巻線を流れ、循環電流となるが
、この電流は最低電圧タップのときに励磁巻線5を流わ
る電流より小さいので、負荷損は最低電圧タップの場合
より小さく、前記した第1図、第3図の実施例と同様に
、この循環電流が悪影養を及ぼすことはない。
In addition, in the configuration of this embodiment, at a tap with a voltage higher than the rated voltage with the tap in the center position, the current flowing through the excitation winding #5 flows through the series winding and becomes a circulating current, but this current Since it is smaller than the current flowing through the excitation winding 5 at the lowest voltage tap, the load loss is smaller than at the lowest voltage tap, and as in the embodiments shown in FIGS. 1 and 3 described above, this circulating current is It has no negative influence.

〔発明の効果〕〔Effect of the invention〕

以上実施例によって説明したようK、本発明によれば、
フォーク結線形の単巻変圧器において、三次巻線に流動
る循環tIL流を防止して、損失の低減を行い得る単巻
変圧器を提供することができる。
As explained above using the embodiments, according to the present invention,
In a fork-connected autotransformer, it is possible to provide an autotransformer that can reduce loss by preventing the circulating tIL flow flowing into the tertiary winding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す単巻変圧器の巻線配置
図、第2図は第1図の巻線配置における巻線径方向の鎖
交磁束分布を示す図、第3図は、第1図の巻線接続図、
第4図は本発明の他の実施例を示す単巻変圧器の巻線配
置図、第5図はtP4図の巻線配置における巻線径方向
の鎖交磁束分布を示す図、第6図は第4図の巻線接続図
である。 17図乃至第11図は従来の単巻変圧器の例を示すもの
で、第7図および第8図は、巻線配置図、第9図は、こ
れらの巻線配置における巻線径方向の鎖交磁束分布を示
す図、第10図および第11図は、他の従来例の巻#接
続図を示す。 1:直列巻線、2:分路巻線、3:三次巻線、4:タッ
プ巻線、5:励磁巻#。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 −−第8図 第9図 第10図
Fig. 1 is a winding layout diagram of an autotransformer showing an embodiment of the present invention, Fig. 2 is a diagram showing the interlinkage magnetic flux distribution in the winding radial direction in the winding arrangement of Fig. 1, and Fig. 3 is the winding connection diagram in Figure 1,
Fig. 4 is a winding arrangement diagram of an autotransformer showing another embodiment of the present invention, Fig. 5 is a diagram showing the interlinkage magnetic flux distribution in the winding radial direction in the winding arrangement of Fig. tP4, and Fig. 6 is a winding connection diagram of FIG. 4. Figures 17 to 11 show examples of conventional autotransformers, Figures 7 and 8 are winding arrangement diagrams, and Figure 9 is a diagram of the winding radial direction in these winding arrangements. The diagrams showing the flux linkage distribution, FIGS. 10 and 11, show the winding # connection diagrams of other conventional examples. 1: Series winding, 2: Shunt winding, 3: Tertiary winding, 4: Tap winding, 5: Excitation winding #. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7--Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 1、主脚および側脚からなる磁気鉄心と、この磁気鉄心
の主脚側に同心的に巻回配置した直列巻線、分路巻線お
よび三次巻線と、前記磁気鉄心の側脚側に同心的に巻回
配置したタップ巻線および励磁巻線とを備え、前記タッ
プ巻線は前記直列巻線または前記分路巻線のいずれか一
方の巻線と直列接続して前記直列巻線または前記分路巻
線の電圧を切換えるようにした単巻変圧器において、前
記励磁巻線は、前記直列巻線または前記分路巻線のいず
れか一方の巻線と並列接続するように構成したことを特
徴とする単巻変圧器。
1. A magnetic core consisting of a main leg and a side leg; a series winding, a shunt winding, and a tertiary winding concentrically wound on the main leg side of the magnetic core; A tap winding and an excitation winding are arranged concentrically, and the tap winding is connected in series with either the series winding or the shunt winding, and the tap winding is connected in series with either the series winding or the shunt winding. In the autotransformer configured to switch the voltage of the shunt winding, the excitation winding is configured to be connected in parallel with either the series winding or the shunt winding. An autotransformer featuring:
JP60053294A 1985-03-19 1985-03-19 Autotransformer Granted JPS61214409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053294A JPS61214409A (en) 1985-03-19 1985-03-19 Autotransformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053294A JPS61214409A (en) 1985-03-19 1985-03-19 Autotransformer

Publications (2)

Publication Number Publication Date
JPS61214409A true JPS61214409A (en) 1986-09-24
JPH0546691B2 JPH0546691B2 (en) 1993-07-14

Family

ID=12938703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053294A Granted JPS61214409A (en) 1985-03-19 1985-03-19 Autotransformer

Country Status (1)

Country Link
JP (1) JPS61214409A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136309A (en) * 1981-02-18 1982-08-23 Toshiba Corp Single-phase autotransformer
JPS57147215A (en) * 1981-03-06 1982-09-11 Toshiba Corp Single-phase autotransformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136309A (en) * 1981-02-18 1982-08-23 Toshiba Corp Single-phase autotransformer
JPS57147215A (en) * 1981-03-06 1982-09-11 Toshiba Corp Single-phase autotransformer

Also Published As

Publication number Publication date
JPH0546691B2 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
US3509507A (en) Grounded y - y three-phase transformer
US20210280367A1 (en) Zero-sequence blocking transformer
JPS61214409A (en) Autotransformer
US5371485A (en) Two core phase angle regulating transformer
JPH0543734U (en) Series voltage fluctuation countermeasure device
US3621428A (en) Electrical windings and method of constructing same
JP3544465B2 (en) Single-phase autotransformer
JP3343945B2 (en) Transformer winding
JPH05159948A (en) On-load tap changing single-phase autotransformer
JP2642825B2 (en) Single phase load tap change transformer
JP2723322B2 (en) Transformer for cyclo converter
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JPH065444A (en) Phase shifter
JP3556817B2 (en) Tap-switching autotransformer under load
JPH0132347Y2 (en)
JPS62104015A (en) Single-phase auto-transformer
JPH0212007B2 (en)
JPH06318525A (en) Single-phase auto-transformer
JPH0320891B2 (en)
JPH01216512A (en) Autotransformer
JPS58109A (en) Autotransformer
JPS6037706A (en) Transformer with no-voltage tap changer
JPH08316053A (en) Single phase transformer with central leg core
JPH0630304B2 (en) Transformer
JPS62205611A (en) Transformer for three-phase, two-phase conversion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees