JPH08316053A - Single phase transformer with central leg core - Google Patents

Single phase transformer with central leg core

Info

Publication number
JPH08316053A
JPH08316053A JP7114164A JP11416495A JPH08316053A JP H08316053 A JPH08316053 A JP H08316053A JP 7114164 A JP7114164 A JP 7114164A JP 11416495 A JP11416495 A JP 11416495A JP H08316053 A JPH08316053 A JP H08316053A
Authority
JP
Japan
Prior art keywords
winding
tertiary
central leg
windings
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7114164A
Other languages
Japanese (ja)
Inventor
Morihiko Iwagami
守彦 岩上
Masayoshi Ito
政芳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7114164A priority Critical patent/JPH08316053A/en
Publication of JPH08316053A publication Critical patent/JPH08316053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE: To provide a single phase transformer in which the tertiary winding is provided on the return path leg while sustaining the equivalent capacity at same level as a transformer where the tertiary winding is provided on the central leg. CONSTITUTION: A tertiary winding comprises two unit tertiary windings 23A, 23B which are mounted, respectively, on two return path legs 12, 13 of a central leg core 1A. The unit tertiary windings 23A, 23B are connected in series such that the fluxes generated therefrom are canceled each other. Since the magnetomotive forces induced by tertiary load currents flowing through the unit tertiary windings 23A, 23B are canceled each other in the magnetic path of central leg core 1A, the exciting winding can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、1本の主脚とこれを
挟んで配置される2本の帰路脚を持つ、いわゆる中央脚
鉄心を備えた単相変圧器、特に変圧器の幅寸法を短縮す
るために三次巻線を帰路脚に設ける構成の単相変圧器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-phase transformer having a so-called central leg iron core, which has one main leg and two return legs sandwiching the main leg, and particularly, the width dimension of the transformer. The present invention relates to a single-phase transformer having a structure in which a tertiary winding is provided on a return leg to shorten the voltage.

【0002】[0002]

【従来の技術】高圧側の定格電圧が500kv、一次、
二次容量が1000MVAのような超々高圧大容量変圧
器は、鉄道輸送される場合に、1台の三相器で構成する
と重量、長さ方向、幅方向の全てあるいはいずれかが輸
送制限を越えてしまうのか普通である。したがって、単
相器3台で実質的に1台の三相変圧器を構成するものと
し、輸送時には単相器それぞれを別々に輸送する方式が
採用される。このときに採用される単相器の構成として
は、二脚鉄心のそれぞれの主脚に一群の巻線を設けた構
成、あるいは、中央脚鉄心の中央脚に一群の巻線を設け
た構成のいずれかが採用されるのが普通である。前者の
場合は輸送時の幅寸法の制限を受ける場合に巻線を2分
割してその外径を小さくするために採用され、後者はこ
のような制限を受けない場合に採用される。中央脚鉄心
の場合は巻線が1群だけでよいので価格的に有利である
という利点がある。
2. Description of the Related Art High voltage side rated voltage is 500 kv, primary,
When an ultra-high voltage, large capacity transformer with a secondary capacity of 1000 MVA is transported by rail, if one three-phase device is used, weight, length and / or width may exceed the transport limits. It's normal to end up. Therefore, it is assumed that three single-phase transformers substantially constitute one three-phase transformer, and that the single-phase transformers are separately transported during transportation. As the configuration of the single-phase unit adopted at this time, a group of windings is provided on each main leg of the two-leg iron core, or a group of windings is provided on the central leg of the central leg iron core. It is usual that either one is adopted. The former case is adopted to divide the winding into two to reduce the outer diameter when the width dimension during transportation is restricted, and the latter case is adopted when such a restriction is not imposed. In the case of the central leg iron core, there is an advantage that it is advantageous in terms of cost since only one group of windings is required.

【0003】図4は中央脚鉄心を持つ従来の単相変圧器
の鉄心と巻線の配置図である。この図において、中央脚
鉄心1は、中央脚11、この中央脚11を挟んで左右に
配置された2本の帰路脚12,13、及び、これら中央
脚11と帰路脚12,13の上下をそれぞれ磁気的、機
械的に連結する継鉄14,15からなる。中央脚11に
は高圧巻線21と低圧巻線22が、帰路脚12には三次
巻線23と励磁巻線24がそれぞれ設けられている。後
述するように励磁巻線24は低圧巻線22に並列接続さ
れている。
FIG. 4 is a layout view of an iron core and a winding of a conventional single-phase transformer having a central leg iron core. In this figure, a central leg iron core 1 includes a central leg 11, two return legs 12 and 13 arranged on the left and right sides of the central leg 11, and upper and lower sides of the central leg 11 and the return legs 12 and 13. The yokes 14 and 15 are magnetically and mechanically connected to each other. The central leg 11 is provided with a high-voltage winding 21 and a low-voltage winding 22, and the return leg 12 is provided with a tertiary winding 23 and an exciting winding 24. The excitation winding 24 is connected in parallel with the low-voltage winding 22 as described later.

【0004】帰路脚12に三次巻線23及び励磁巻線2
4が挿入される構成が採用されるのは次の理由による。
三次巻線も中央脚11に設ける一般的な構成では、巻線
の径が大きくなって幅寸法が輸送制限を越えることがあ
ることと、最も電圧が低くしたがって最内径側に配置さ
れる三次巻線が設けられるために、高圧巻線、低圧巻線
ともに径が大きくなって巻線材料である導線の増大、こ
れにともなって負荷損が増大して効率が低下する、など
の重大な影響があり、帰路脚に三次巻線を設けることに
よって変圧器の価格、効率ともに改善することができる
からである。また、励磁巻線24が設けられるのは、三
次巻線23だけを帰路脚12に設けると、三次巻線23
に流れる負荷電流の全てが励磁電流となって帰路脚12
及びこれとともに閉磁路を構成する各鉄心脚に異常な磁
束を生成し鉄心が飽和して変圧器としての機能を果たし
得なくなるからである。
A tertiary winding 23 and an excitation winding 2 are provided on the return leg 12.
The reason why the configuration in which 4 is inserted is adopted is as follows.
In a general configuration in which the tertiary winding is also provided on the center leg 11, the diameter of the winding may increase and the width may exceed the transportation limit. Also, since the voltage is the lowest, the tertiary winding is arranged on the innermost diameter side. Since the wires are provided, the diameters of both the high-voltage winding and the low-voltage winding are increased, the number of conductive wires, which are the winding material, is increased, and the load loss is increased and the efficiency is reduced. This is because the price and efficiency of the transformer can be improved by providing a tertiary winding on the return leg. Further, the excitation winding 24 is provided only when the tertiary winding 23 is provided on the return leg 12.
All of the load current that flows into the return leg 12
Also, with this, an abnormal magnetic flux is generated in each iron core leg forming the closed magnetic circuit, the iron core is saturated, and the function as a transformer cannot be achieved.

【0005】中央脚11には高圧巻線21、低圧巻線2
2のうちのいずれかの一次巻線が供給する励磁電流によ
って励磁されて主磁束Φが生成され、この主磁束Φは中
央脚11の継鉄14又は15との接続部であるT字部で
両側に別れて半分のΦ/2ずつが継鉄14,15及び帰
路脚12,13に分流する。励磁巻線24は前述のよう
に低圧巻線22に並列接続されてしかもその巻数N 4
低圧巻線22の巻数N2 の2倍に設定されている。低圧
巻線22に誘起される電圧がそのまま励磁巻線24の印
加電圧であるから、励磁巻線24の1ターン当たりの電
圧は低圧巻線22の1ターン当たりの電圧、すなわち、
中央脚11の1ターン当たりの誘起電圧の2分の1にな
ることから、帰路脚12の1ターン当たりの誘起電圧は
中央脚11の2分の1、したがって、帰路脚12の磁束
も図示のように中央脚11の磁束Φの2分の1であるΦ
/2になる。帰路脚13の磁束は、中央脚11の磁束か
ら帰路脚12の磁束を差し引いた値になるからやはり帰
路脚12のと同じΦ/2になる。
The central leg 11 has a high-voltage winding 21 and a low-voltage winding 2
Depending on the exciting current supplied by the primary winding of either
The main magnetic flux Φ is generated by being excited by
At the T-shaped part that is the connection part of the central leg 11 with the yoke 14 or 15
Divided on both sides, half of each Φ / 2 is the yoke 14, 15 and return.
The flow is divided into the road legs 12 and 13. The excitation winding 24 is as described above.
Is connected in parallel to the low-voltage winding 22 and its number of turns N FourIs
Number of turns of low-voltage winding 22 N2It is set to twice. low pressure
The voltage induced in the winding 22 is directly applied to the excitation winding 24.
Since it is an applied voltage,
The pressure is the voltage per turn of the low voltage winding 22, that is,
Half of the induced voltage per turn of the central leg 11
Therefore, the induced voltage per turn of the return leg 12 is
Half of the central leg 11 and therefore the flux of the return leg 12
Φ which is one half of the magnetic flux Φ of the central leg 11 as shown
/ 2. Is the magnetic flux of the return leg 13 the magnetic flux of the central leg 11?
The value obtained by subtracting the magnetic flux of the return leg 12 from
It becomes Φ / 2 which is the same as that of the road leg 12.

【0006】図5は図4の各巻線の接続図である。この
図において、高圧巻線21を一応一次巻線としておく。
このように限定したとしても以下の説明が一般性を失う
ものではない。U端子から高圧巻線21に一次電流I1
が流れ込み、低圧巻線22には電流I2Wが流れる。一
方、励磁巻線24に電流I4 が流れる。この電流I4
電流I2Wと一緒になって二次電流としてu端子から流れ
出す。三次巻線23には三次の負荷電流I3 が流れる。
励磁電流成分を除けば、高圧巻線21の電流I1と低圧
巻線22の電流I2Wとはアンペアターンが平衡し、三次
巻線23の電流I 3 と励磁巻線24の電流I4 ともアン
ペアターンが平衡している。すなわち、それぞれの巻線
の巻数を添字を合わせて、N1 、N2 、N3 、N4 とす
ると、次式が成立する。 N1 1 =N2 2W、 N3 3 =N4 4 なお、二次電流I2 は電流I2Wから電流I4 を差し引い
た値である。すなわち、I2 =I2W−I4 である。これ
を書き直すと、I2W=I2 +I4 となり、この式の意味
するところは、低圧巻線22に流れる電流は二次負荷電
流と三次負荷電流に対応する励磁巻線の電流との和であ
る、ということになる。
FIG. 5 is a connection diagram of each winding of FIG. this
In the figure, the high-voltage winding 21 is tentatively a primary winding.
Even with this limitation, the following explanation loses generality
Not a thing. Primary current I from U terminal to high voltage winding 211
Flows into the low-voltage winding 22 and a current I2WFlows. one
Current I to the excitation winding 24FourFlows. This current IFourIs
Current I2WAnd flows as a secondary current from the u terminal.
put out. A tertiary load current I is applied to the tertiary winding 23.3Flows.
Excluding the exciting current component, the current I of the high voltage winding 211And low pressure
Current I of winding 222WAnd the ampere turns are in equilibrium and the third order
Current I of winding 23 3And the current I of the excitation winding 24FourTomo Anne
Pair turns are in equilibrium. Ie each winding
Number of turns of N1, N2, N3, NFourTosu
Then, the following equation is established. N1I1= N2I2W, N3I3= NFourIFour The secondary current I2Is the current I2WFrom current IFourDeduct
It is a value. That is, I2= I2W-IFourIs. this
Is rewritten, I2W= I2+ IFourAnd the meaning of this expression
The current flowing in the low voltage winding 22 is the secondary load voltage.
Current and the current in the excitation winding corresponding to the tertiary load current.
It means that

【0007】図6は中央脚鉄心が形成する磁気回路とこ
の磁気回路に磁束を生成する起磁力の関係を示す磁気回
路図である。この図において、直線は中央脚鉄心1の磁
気回路を表し、図1の中央脚鉄心1のそれぞれの脚を直
線で表したものである。円は起磁力源すなわち巻線を表
し、それぞれに対応する巻線の符号を付けて図4、図5
との対応を明らかにしてある。この図において、中央脚
11では高圧巻線21のアンペアターン(N1 1 )と
低圧巻線22のアンペアターン(N2 2 )とが互いに
反対方向になっていて一次巻線である高圧巻線21の励
磁電流成分を除いてアンペアターンが平衡している。し
たがって、中央脚11の起磁力は励磁電流成分I1eと巻
数N1 の積(N1 1e)である。帰路脚12では、三次
巻線23のアンペアターン(N3 3 )と励磁巻線24
のアンペアターン(N4 4 )とが励磁巻線24の励磁
電流成分I4eを除いて平衡している。励磁電流成分I4e
は低圧巻線22から供給されるので、結局この成分もI
1eと同様に一次電流として供給されるものである。
FIG. 6 is a magnetic circuit diagram showing a relationship between a magnetic circuit formed by the central leg iron core and a magnetomotive force for generating a magnetic flux in this magnetic circuit. In this figure, a straight line represents the magnetic circuit of the central leg iron core 1, and each leg of the central leg iron core 1 of FIG. 1 is represented by a straight line. Circles represent magnetomotive force sources, that is, windings.
The correspondence with is clarified. In the figure, in the central leg 11, the ampere-turns (N 1 I 1 ) of the high-voltage winding 21 and the ampere-turns (N 2 I 2 ) of the low-voltage winding 22 are in opposite directions to each other, which is the primary winding. Ampere turns are balanced except for the exciting current component of the voltage winding 21. Therefore, the magnetomotive force of the central leg 11 is the product (N 1 I 1e ) of the exciting current component I 1e and the number of turns N 1 . In the return leg 12, the ampere-turn (N 3 I 3 ) of the tertiary winding 23 and the excitation winding 24
Ampere-turn (N 4 I 4 ) is balanced with the excitation current component I 4e of the excitation winding 24. Excitation current component I 4e
Since this is supplied from the low voltage winding 22, this component is also I
Like 1e , it is supplied as a primary current.

【0008】[0008]

【発明が解決しようとする課題】前述のように、励磁巻
線24を設けているのは、帰路脚12における三次巻線
23の電流I3 の起磁力を打ち消すためにである。そし
て、前述のように三次巻線23のアンペアターンと励磁
巻線24のアンペアターンとは負荷電流に比べてはるか
に小さな値の励磁電流成分を除いて同じであるから、実
質的には三次巻線23と励磁巻線24とは同じアンペア
ターン、すなわち、同じ容量である。例えば、高圧巻線
21、低圧巻線22の容量が100MVA、三次巻線2
3の容量が30MVA(高圧巻線21、低圧巻線22の
容量に対して三次巻線23の容量は約3分の1が普通で
ある)とすると、各巻線の容量の和は、100+100
+30+30=260MVAとなる。このことはこの変
圧器の等価容量はこの半分の130MVAであるという
ことになる。一方、一般的に三次巻線を持つ変圧器の公
称の等価容量は一次、二次、三次の容量の和の2分の
1、すなわち、115MVAであり、同じ鉄心脚に高圧
巻線、低圧巻線、三次巻線が設けられる通常の変圧器で
はこの値が各巻線の容量の和の2分の1と一致する。す
なわち、図1に示す変圧器では通常の変圧器の(130
−115)/115≒0.13、すなわち、約13%だ
け等価容量が大きいことになる。変圧器の重量は容量の
4分の3乗に比例し、価格は重量に略比例することか
ら、13%の等価容量の増加は約10%の価格上昇とな
る。
As described above, the exciting winding 24 is provided in order to cancel the magnetomotive force of the current I 3 of the tertiary winding 23 in the return leg 12. Further, as described above, the ampere-turn of the tertiary winding 23 and the ampere-turn of the exciting winding 24 are the same except for the exciting current component having a much smaller value than the load current, so that the tertiary winding is substantially the same. The line 23 and the excitation winding 24 have the same ampere-turn, that is, the same capacitance. For example, the high-voltage winding 21 and the low-voltage winding 22 have a capacity of 100 MVA and the tertiary winding 2
Assuming that the capacity of 3 is 30 MVA (the capacity of the tertiary winding 23 is usually about 1/3 of the capacity of the high voltage winding 21 and the low voltage winding 22), the sum of the capacities of the respective windings is 100 + 100.
It becomes + 30 + 30 = 260 MVA. This means that the equivalent capacity of this transformer is half this, 130 MVA. On the other hand, generally, the nominal equivalent capacity of a transformer having a tertiary winding is one half of the sum of the primary, secondary, and tertiary capacities, that is, 115 MVA. In a conventional transformer provided with a wire and a tertiary winding, this value corresponds to one half of the sum of the capacities of the windings. That is, in the transformer shown in FIG.
-115) /115≈0.13, that is, the equivalent capacity is increased by about 13%. Since the weight of the transformer is proportional to the third power of the capacity and the price is approximately proportional to the weight, an increase in equivalent capacity of 13% results in a price increase of about 10%.

【0009】この発明の目的はこのような問題を解決
し、三次巻線を帰路脚に設けてしかも等価容量が帰路脚
を中央脚に設けたのと同じになる中央脚を持つ単相変圧
器を提供することにある。
The object of the present invention is to solve such a problem and to provide a single-phase transformer having a central leg which has a tertiary winding in the return leg and whose equivalent capacity is the same as when the return leg is provided in the central leg. To provide.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
にこの発明によれば、中央脚鉄心とこの中央脚鉄心の中
央脚に巻線が設けられてなる単相変圧器において、中央
脚の両側に配置された2本の帰路脚にそれぞれ単位三次
巻線が設けられ、これら2つの単位三次巻線が直列接続
されるとともに、起磁力の方向が同じ方向であるものと
する。また、この場合、2つの単位三次巻線が巻き方向
を含めて同じ構造を持ち、一方の単位三次巻線の下部と
他方の単位三次巻線の上部とが接続され、接続されない
2つの端子が外部に引き出される端子となるものとする
とよい。また、2つの単位三次巻線の巻き方向が互いに
逆以外は同じ構造を持ち、それぞれの単位三次巻線の下
部又は上部を接続し、接続されない2つの端子が外部に
引き出される端子となるものとするとよい。
In order to solve the above problems, according to the present invention, in a single-phase transformer having a central leg iron core and a winding provided on the central leg of the central leg iron core, It is assumed that two return legs arranged on both sides are respectively provided with unit tertiary windings, these two unit tertiary windings are connected in series, and the directions of magnetomotive forces are in the same direction. Further, in this case, the two unit tertiary windings have the same structure including the winding direction, and the lower part of one unit tertiary winding and the upper part of the other unit tertiary winding are connected, and two terminals that are not connected are It may be a terminal that is pulled out to the outside. Also, the two unit tertiary windings have the same structure except that the winding directions are opposite to each other, and the lower or upper part of each unit tertiary winding is connected, and two terminals that are not connected become terminals to be drawn to the outside. Good to do.

【0011】[0011]

【作用】この発明の構成において、2本の帰路脚にそれ
ぞれ単位三次巻線を巻回し、これら2つの単位三次巻線
が生成する磁束が互いに打ち消すように直列接続するこ
とによって、2つの単位三次巻線の直列回路で構成され
る三次巻線に流れる負荷電流成分はこれらの単位三次巻
線が互いに打ち消し合う。
In the structure of the present invention, the unit tertiary windings are respectively wound around the two return legs and are connected in series so that the magnetic fluxes generated by these two unit tertiary windings cancel each other out. These unit tertiary windings cancel the load current components flowing in the tertiary windings formed by a series circuit of windings.

【0012】また、2つの単位三次巻線を巻き方向を含
めて同じ構造にし、一方の単位三次巻線の下部と他方の
単位三次巻線の上部とを接続し、接続されない2つの端
子を外部に引き出す端子とすることによって、2つの単
位三次巻線は同じ方向の起磁力を発生させこの起磁力の
方向は中央脚を除く長方形の磁路の中で互いに反対方向
の起磁力となって互いに打ち消し合う。2つの単位三次
巻線の巻き方向を逆にし構造は同じにし、それぞれの単
位三次巻線の下部又は上部を接続し、接続されない2つ
の端子が外部に引き出される端子とするようにしても、
前述と同じように起磁力は互いに打ち消し合う。
Further, the two unit tertiary windings have the same structure including the winding direction, the lower part of one unit tertiary winding and the upper part of the other unit tertiary winding are connected, and two terminals which are not connected are externally connected. The two unit tertiary windings generate magnetomotive force in the same direction by making the terminals to be drawn out, and the directions of these magnetomotive forces become opposite magnetomotive forces in the rectangular magnetic path except the central leg. Cancel each other out. Even if the winding directions of the two unit tertiary windings are reversed and the structures are made the same and the lower or upper portions of the respective unit tertiary windings are connected so that the two terminals that are not connected are the terminals that are drawn to the outside,
The magnetomotive forces cancel each other out as before.

【0013】[0013]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す単相変圧器の中央脚鉄心
と巻線の配置図であり、図4と同じ構成要素には同じ符
号を付けて重複する説明を省く。図1の図4と異なる点
は、帰路脚13にも巻線が設けられており、代わりに帰
路脚12に設けられている巻線は1つだけになっている
ことである。帰路脚12,13にそれぞれ設けられてい
る巻線は単位三次巻線23A,23Bである。このよう
に巻線の配置が図4とは異なることによって、中央脚鉄
心1Aの寸法は図4の中央脚鉄心1の寸法とは異なる。
すなわち、図4では、帰路脚12に三次巻線23と励磁
巻線24とが挿入されているので、中央脚11から右側
の継鉄14,15の長さは左側よりも長くなっている。
これに対して、図1では巻線配置が左右対称なので継鉄
14,15の中央脚11を境にした左右の長さは同じで
ある。すなわち、中央脚鉄心1Aは左右対称構造になっ
ている。このことは、巻線の配置が左右対称であること
から当然の帰結でもある。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a layout view of a central leg iron core and a winding of a single-phase transformer showing an embodiment of the present invention. The same components as those in FIG. The difference from FIG. 4 of FIG. 1 is that the return leg 13 is also provided with a winding, and instead the return leg 12 is provided with only one winding. The windings provided on the return legs 12 and 13 are unit tertiary windings 23A and 23B, respectively. Since the arrangement of the windings is different from that of FIG. 4, the size of the central leg iron core 1A is different from the size of the central leg iron core 1 of FIG.
That is, in FIG. 4, since the tertiary winding 23 and the excitation winding 24 are inserted in the return leg 12, the lengths of the yokes 14 and 15 on the right side from the central leg 11 are longer than those on the left side.
On the other hand, in FIG. 1, since the winding arrangement is symmetrical, the left and right lengths of the yokes 14 and 15 with the central leg 11 as a boundary are the same. That is, the central leg iron core 1A has a bilaterally symmetrical structure. This is also a natural consequence of the fact that the winding arrangement is symmetrical.

【0014】図2は図1の巻線の接続図であり、図5と
は高圧巻線21、低圧巻線22は同じである。2つの単
位三次巻線23A,23Bは図示のように直列接続され
ているので単位三次巻線23A,23Bに流れる電流は
同じである。図3は図1の中央脚鉄心1の励磁系を示す
磁気回路図であり、図6と類似なので重複する説明を省
く。この図において、単位三次巻線23A,23Bの起
磁力は図の矢印で示すように同じ方向を向いている。そ
して、これらの単位三次巻線23A,23Bに流れる電
流は同じでしかも巻数を含めて構成も同じに製作される
のでそれぞれの巻数のアンペアターン、すなわち、起磁
力の大きさも同じである。したがって、両側の帰路脚1
2,13と上下の継鉄14A,15Aとで構成される長
方形の磁路の起磁力は完全に打ち消される。一方、中央
脚11の起磁力は一次巻線である高圧巻線21の励磁電
流成分を除いた起磁力は低圧巻線22と起磁力を打ち消
しあっており、励磁電流成分による起磁力によって中央
脚11には磁束Φが生成されこの磁束Φが両側に別れて
それぞれ継鉄14A,15A及び帰路脚12,13にΦ
/2ずつが分流する点は図6のそれと同じてある。
FIG. 2 is a connection diagram of the windings shown in FIG. 1. The high voltage winding 21 and the low voltage winding 22 are the same as those in FIG. Since the two unit tertiary windings 23A and 23B are connected in series as shown, the currents flowing through the unit tertiary windings 23A and 23B are the same. FIG. 3 is a magnetic circuit diagram showing the excitation system of the central leg iron core 1 of FIG. 1, and is similar to FIG. In this figure, the magnetomotive forces of the unitary tertiary windings 23A and 23B are oriented in the same direction as indicated by the arrows in the figure. The currents flowing through these unitary tertiary windings 23A and 23B are the same, and since the configurations including the number of turns are also made the same, the amperage of each number of turns, that is, the magnitude of the magnetomotive force is also the same. Therefore, both return legs 1
The magnetomotive force of the rectangular magnetic path formed by the upper and lower yokes 14 and 15A is completely canceled. On the other hand, the magnetomotive force of the central leg 11 cancels the magnetomotive force of the high-voltage winding 21, which is the primary winding, excluding the exciting current component, and the magnetomotive force of the low-voltage winding 22 cancels each other. A magnetic flux Φ is generated in 11, and the magnetic flux Φ is divided into both sides, and Φ is applied to the yokes 14A and 15A and the return legs 12 and 13, respectively.
The point where the / 2 splits is the same as that in FIG.

【0015】このように、三次巻線23を単位三次巻線
23A,23Bの2つを帰路脚12,13にそれぞれ設
けこれらを直列接続する構成を採用することによって、
図4の励磁巻線24を設けなくても単位三次巻線23
A,23Bが互いに起磁力を打ち消し合って中央脚鉄心
1Aに異常な磁束が発生することはない。単位三次巻線
23A,23Bの一つ一つの容量は従来の三次巻線23
の2分の1であり、実際には、三次巻線23の巻数を図
6に示すように2N3 にすると、図3に示すように単位
三次巻線23A,23Bの巻数はそれぞれN3 になり、
2つの単位三次巻線23A,23Bで構成される実施例
における三次巻線の導体重量は従来の三次巻線23のそ
れと実質的に同じになる。すなわち、従来の単相変圧器
に比べて図1の励磁巻線24の巻線容量分を節約するこ
とができる。前述の容量換算で言えば、従来の単相変圧
器の等価容量が130MVAであるのに対して図1〜図
3の単相変圧器では115MVAとなる。勿論、これに
関連して単相変圧器の重量低減、コスト低減及び効率の
向上という効果が得られる。
As described above, by adopting the construction in which the tertiary winding 23 is provided with two unit tertiary windings 23A and 23B on the return legs 12 and 13, respectively, and these are connected in series,
Even if the excitation winding 24 of FIG. 4 is not provided, the unit tertiary winding 23
A and 23B do not cancel each other's magnetomotive force to generate an abnormal magnetic flux in the central leg iron core 1A. The capacity of each of the unit tertiary windings 23A and 23B is equal to that of the conventional tertiary winding 23.
In practice, if the number of turns of the tertiary winding 23 is set to 2N 3 as shown in FIG. 6, the number of turns of each of the unit tertiary windings 23A and 23B becomes N 3 as shown in FIG. Becomes
The conductor weight of the tertiary winding in the embodiment including the two unit tertiary windings 23A and 23B is substantially the same as that of the conventional tertiary winding 23. That is, the winding capacity of the excitation winding 24 shown in FIG. 1 can be saved as compared with the conventional single-phase transformer. In terms of the above-mentioned capacity conversion, the equivalent capacity of the conventional single-phase transformer is 130 MVA, whereas the equivalent capacity of the single-phase transformers of FIGS. 1 to 3 is 115 MVA. Of course, in this connection, the effects of reducing the weight of the single-phase transformer, reducing the cost, and improving the efficiency can be obtained.

【0016】[0016]

【発明の効果】この発明は前述のように、三次巻線を2
つの単位三次巻線で構成し、2本の帰路脚にそれぞれ単
位三次巻線を設け、これら2つの単位三次巻線が生成す
る磁束が互いに打ち消すように直列接続することによっ
て、三次巻線に流れる負荷電流成分はこれら単位三次巻
線によって互いに打ち消されるので従来のように励磁巻
線は不要になり、したがって、単相変圧器の等価容量は
励磁巻線の分だけ小さくなり、これにともなって重量の
低減、コストダウン及び効率の向上という効果が得られ
る。
As described above, according to the present invention, the tertiary winding is made up of two windings.
It consists of two unit tertiary windings, and each of the two return legs is provided with a unit tertiary winding, and the magnetic fluxes generated by these two unit tertiary windings are connected in series so as to cancel each other. Since the load current components cancel each other out by these unitary tertiary windings, the excitation winding is no longer required as in the past, so the equivalent capacity of the single-phase transformer is reduced by the amount of the excitation winding, and the weight is reduced accordingly. It is possible to obtain the effects of reduction of cost, cost reduction and efficiency improvement.

【0017】また、2つの単位三次巻線を巻き方向を含
めて同じ構造にし、一方の単位三次巻線の下部と他方の
単位三次巻線の上部とを接続して直列接続しても、2つ
の単位三次巻線を構造は同じで巻き方向は逆にして、そ
れぞれの単位三次巻線の下部又は上部を接続して直列接
続しても、前述と同じように起磁力は互いに打ち消し合
って、前述と同様の効果を得ることができる。
Even if the two unit tertiary windings have the same structure including the winding direction and the lower part of one unit tertiary winding and the upper part of the other unit tertiary winding are connected in series, Even if the unit tertiary windings have the same structure but the winding directions are reversed and the lower or upper portions of the respective unit tertiary windings are connected in series, the magnetomotive forces cancel each other out as described above, The same effect as described above can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す単相変圧器の中央脚鉄
心と巻線の配置図
FIG. 1 is a layout diagram of a center leg core and a winding of a single-phase transformer showing an embodiment of the present invention.

【図2】図1の巻線の接続図2 is a connection diagram of the winding of FIG.

【図3】図1の鉄心の励磁系を示す磁気回路図FIG. 3 is a magnetic circuit diagram showing an excitation system of the iron core shown in FIG.

【図4】従来の単相変圧器の鉄心と巻線の配置図[Fig. 4] Layout of iron core and winding of a conventional single-phase transformer

【図5】図4の巻線の接続図5 is a connection diagram of the winding of FIG.

【図6】図4の鉄心の励磁系を示す磁気回路図FIG. 6 is a magnetic circuit diagram showing an excitation system of the iron core of FIG.

【符号の説明】[Explanation of symbols]

1,1A…中央脚鉄心、11…中央脚、12,13…帰
路脚、14,14A,15,15A…継鉄、21…高圧
巻線、22…低圧巻線、23…三次巻線、23A,23
B…単位三次巻線
1, 1A ... Central leg core, 11 ... Central leg, 12, 13 ... Return leg, 14, 14A, 15, 15A ... Yoke, 21 ... High voltage winding, 22 ... Low voltage winding, 23 ... Tertiary winding, 23A , 23
B ... Unit tertiary winding

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】中央脚鉄心とこの中央脚鉄心の中央脚に巻
線が設けられてなる単相変圧器において、中央脚の両側
に配置された2本の帰路脚にそれぞれ単位三次巻線が設
けられ、これら2つの単位三次巻線が直列接続されると
ともに、起磁力の方向が同じ方向であることを特徴とす
る中央脚鉄心を備えた単相変圧器。
1. A single-phase transformer comprising a central leg iron core and a winding provided on the central leg of the central leg iron core, wherein a unitary tertiary winding is provided on each of two return legs arranged on both sides of the central leg. A single-phase transformer provided with a central leg iron core, wherein these two unit tertiary windings are connected in series and the directions of magnetomotive forces are the same.
【請求項2】2つの単位三次巻線が巻き方向を含めて同
じ構造を持ち、一方の単位三次巻線の下部と他方の単位
三次巻線の上部とが接続され、接続されない2つの端子
が外部に引き出される端子となることを特徴とする請求
項1記載の中央脚鉄心を備えた単相変圧器。
2. Two unit tertiary windings have the same structure including the winding direction, one unit tertiary winding lower part and the other unit tertiary winding upper part are connected, and two terminals not connected are The single-phase transformer with a central leg iron core according to claim 1, wherein the single-phase transformer serves as a terminal that is drawn out to the outside.
【請求項3】2つの単位三次巻線の巻き方向が互いに逆
以外は同じ構造を持ち、それぞれの単位三次巻線の下部
又は上部を接続し、接続されない2つの端子が外部に引
き出される端子となることを特徴とする請求項1記載の
中央脚鉄心を備えた単相変圧器。
3. A unit tertiary winding having the same structure except that the winding directions are opposite to each other, connecting the lower or upper part of each unit tertiary winding, and two terminals that are not connected to each other being a terminal to be drawn to the outside. A single-phase transformer having a central leg iron core according to claim 1.
JP7114164A 1995-05-12 1995-05-12 Single phase transformer with central leg core Pending JPH08316053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7114164A JPH08316053A (en) 1995-05-12 1995-05-12 Single phase transformer with central leg core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7114164A JPH08316053A (en) 1995-05-12 1995-05-12 Single phase transformer with central leg core

Publications (1)

Publication Number Publication Date
JPH08316053A true JPH08316053A (en) 1996-11-29

Family

ID=14630773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7114164A Pending JPH08316053A (en) 1995-05-12 1995-05-12 Single phase transformer with central leg core

Country Status (1)

Country Link
JP (1) JPH08316053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652441A (en) * 2020-12-31 2021-04-13 河南铜牛变压器有限公司 Maintenance-free high-efficiency energy-saving dry-type electric furnace transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652441A (en) * 2020-12-31 2021-04-13 河南铜牛变压器有限公司 Maintenance-free high-efficiency energy-saving dry-type electric furnace transformer
CN112652441B (en) * 2020-12-31 2023-11-28 河南铜牛变压器有限公司 Maintenance-free high-efficiency energy-saving dry type electric furnace transformer

Similar Documents

Publication Publication Date Title
US3878495A (en) Magnetic core for electrical inductive apparatus
JP2010520636A (en) Transformer structure
US2283711A (en) Electrical winding
JPH0487570A (en) High-frequency inverter
JPH09289125A (en) Inside-core single-phase autotransformer
JPH08316053A (en) Single phase transformer with central leg core
JPH0543734U (en) Series voltage fluctuation countermeasure device
US2121592A (en) Constant regulation transformer
JP2581687B2 (en) Rectifier transformer
JP4867053B2 (en) Reactor
US1814557A (en) Electric transformer
US1979699A (en) Balance coil
JPH09186025A (en) Shunt transformer unit and single phase three wire power supply system
US1504691A (en) Safety system for electric networks
JPH0341455Y2 (en)
JPH0212007B2 (en)
JPH11186070A (en) Single-phase autotransformer
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JPH06310350A (en) Heterocapacitance load three-phase scott connection transformer
JPS61228608A (en) Shunt reactor
JP2003068539A (en) Electromagnetic equipment
JPH10201097A (en) Single-phase three-wire type low voltage distribution system
JPH0122972B2 (en)
JPH05159948A (en) On-load tap changing single-phase autotransformer
JP3532050B2 (en) Linear variable reactor