JPS61214359A - Thin lithium battery - Google Patents

Thin lithium battery

Info

Publication number
JPS61214359A
JPS61214359A JP60055184A JP5518485A JPS61214359A JP S61214359 A JPS61214359 A JP S61214359A JP 60055184 A JP60055184 A JP 60055184A JP 5518485 A JP5518485 A JP 5518485A JP S61214359 A JPS61214359 A JP S61214359A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
thickness
thin
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60055184A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Kazunobu Matsumoto
和伸 松本
Kozo Kajita
梶田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60055184A priority Critical patent/JPS61214359A/en
Publication of JPS61214359A publication Critical patent/JPS61214359A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make the thickness of a unit cell thin by forming a negative electrode by evapolating ammonium from ammonium solution of lithium on a negative current collecting plate. CONSTITUTION:A negative electrode 9 is formed by evapolating ammonium from ammonium solution 5 of lithium on a negative current collecting plate 1. Lithium easily and uniformly dissolves in liquid ammonium, and the ammonium solution of lithium forms flat surface on the plate. By evapolation of ammonium, a uniform lithium film having smooth surface is formed on the negative current collecting plate 1. Since the thickness of the lithium film depends on the concentration of lithium dissolved, the thickness of the negative electrode 9 can be controlled. Therefore, a thin battery having a thickness of 1mm or less, preferably 0.5mm or less can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリチウムまたはリチウム合金を負極とした薄
型のリチウム電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin lithium battery using lithium or a lithium alloy as a negative electrode.

〔従来の技術〕[Conventional technology]

一般にリチウム電池は、正極としてTiS2、MoB2
、v、、ol 3、VSe5、VSe2、vs2 など
の正極活物質とテフロン粉末などの結合剤と必要に応じ
て電子伝導助剤を含む成形体を、負極としてリチウムま
たはリチウム合金を、電解質としてリチウム塩を非水系
溶媒に溶解したものを、それぞれ使用したものであり、
筒形、ボタン型、コイン型、カード型などの用途に応じ
た種々の形状のものが知られている。
Generally, lithium batteries use TiS2, MoB2 as the positive electrode.
A molded body containing a positive electrode active material such as ,v,,ol3, VSe5, VSe2, vs2, a binder such as Teflon powder, and an electron conduction aid if necessary, lithium or a lithium alloy as a negative electrode, and lithium as an electrolyte. Each uses a salt dissolved in a non-aqueous solvent,
Various shapes are known depending on the purpose, such as a cylinder shape, a button shape, a coin shape, and a card shape.

このようなリチウム電池における上記負極は、一般にフ
ォイル状のリチウムを所要の大きさに打ち抜いたもめを
ステンレス製などの金網に圧着したものや、リチウム合
金粉末を金型で成形したペレットなどからなり、負極集
電板に対する導電性の向上のために通常では該集電板に
たたき付けて密着させている(文献不詳)。
The negative electrode in such a lithium battery is generally made of foil-shaped lithium punched out to the required size and pressed onto a wire mesh made of stainless steel, or pellets made of lithium alloy powder molded with a mold. In order to improve the electrical conductivity of the negative electrode current collector plate, it is usually hammered into close contact with the current collector plate (unspecified literature).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、近年における各種電子機器類の小型化、
軽量化、薄型化などに伴って、リチウム電池としても総
厚が0.5 #ff以下となるような超薄型のものが要
望されている。このような超薄型の電池になるとこれに
適合する負極も薄くなり、上述したリチウムのフォイル
を利用する場合、金網を使用せずに単独で用いる必要が
あるが、リチウムが柔かいことから、薄くなると打ち抜
きや取扱い時に周縁などに曲がりを生じやすく、良好な
平面度が得られないという問題がある。また上述した合
金粉末のベレットの場合、薄くなると成形が困難になっ
たり、成形体の強度が極端に弱くなシ、特性、面で満足
なものを得ることが困難である。さ、らに上記フォイル
やベレットでは薄くなると負極集電板に密着させるのに
たたき付は手段を採用できないという問題もsb、これ
らの点から従来では負極の厚みが0.1fl程度、つま
シミ池総厚として1.OH程度が薄型化の実用的限界で
あった。
However, in recent years, the miniaturization of various electronic devices,
As lithium batteries become lighter and thinner, there is a demand for ultra-thin lithium batteries with a total thickness of 0.5 #ff or less. When batteries become ultra-thin like this, the negative electrodes that go with them also become thinner, so when using the lithium foil mentioned above, it is necessary to use it alone without using a wire mesh, but since lithium is soft, In this case, there is a problem in that the peripheral edges are likely to bend during punching or handling, and good flatness cannot be obtained. In addition, in the case of the above-mentioned alloy powder pellets, when the pellets become thin, it becomes difficult to mold them, and the strength of the molded product is extremely low, making it difficult to obtain satisfactory properties. Furthermore, when the foils and pellets mentioned above become thin, there is the problem that pounding cannot be used to make them adhere tightly to the negative electrode current collector plate.From these points of view, conventionally, the thickness of the negative electrode is about 0.1fl, and the thickness of the negative electrode is about 0.1fl, and the thickness of the negative electrode is about 0.1fl. Total thickness: 1. OH level was the practical limit for thinning.

一方、0.1ff厚以下の負極を形成する手段としてリ
チウムを蒸着する方法が考えられるが、この方法ではコ
ストが高く付くと共に、生産性の面でも問題がある。
On the other hand, a method of vapor depositing lithium may be considered as a means of forming a negative electrode with a thickness of 0.1 ff or less, but this method is expensive and has problems in terms of productivity.

したがってこの発明は上記問題点を解決し、もって総厚
が単電池として1.Off以下の、好適には0.5ff
以下の薄型でしかも高性能でるり、かつコストおよび生
産性の面でも有利なリチウム電池を提供することを目的
としている。
Therefore, the present invention solves the above problems and allows the total thickness of a unit cell to be reduced to 1. Off, preferably 0.5ff
The purpose of the present invention is to provide a lithium battery that is thin, has high performance, and is advantageous in terms of cost and productivity.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記目的において鋭意検討を重ねる過
程でリチウムが液体アンモニアに溶けやすいことに着目
し、リチウムのアンモニア溶液からアンモニアを揮散さ
せることにより非常に薄くかつ均一厚みで表面が平滑な
リチウム被膜を形成でき、この被膜形成を負極集電板上
で行うことにより密着性に優れて薄型電池用として好適
な負極が低コストで容易に得られることを見い出し、こ
の発明をなすに至った。
In the process of intensive research for the above purpose, the inventors noticed that lithium dissolves easily in liquid ammonia, and by volatilizing ammonia from a lithium ammonia solution, they could produce lithium with a very thin and uniform thickness and a smooth surface. The present inventors have discovered that a film can be formed, and that by forming this film on a negative electrode current collector plate, a negative electrode with excellent adhesion and suitable for use in thin batteries can be easily obtained at low cost, and this invention has been accomplished.

すなわちこの発明は、負極集電板上に存在させたリチウ
ムのアンモニア溶液よりアンモニア成分を揮散して形成
されたリチウムまたはリチウム合金からなる負極を有し
、単一の電池総厚が1.Off以下、好適には0.5 
fi以下である薄型リチウム電池に係る。
That is, the present invention has a negative electrode made of lithium or a lithium alloy formed by volatilizing the ammonia component from a lithium ammonia solution present on a negative electrode current collector plate, and the total thickness of a single battery is 1. Off, preferably 0.5
The present invention relates to a thin lithium battery that is less than or equal to fi.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明の薄型リチウム電池は、上述のように負極が負
極電板上に存在させたリチウムのアンモニア溶液よりア
ンモニア成分を揮散して形成されたものからなる。すな
わち、リチウムは液体アンモニアに溶解し易く上記溶液
中で均一に溶存した状態に力っておシ、かつアンモニア
成分の揮散前の液面は自ずと理想的な平担面となるから
、アンモニア成分の揮散によって極めて均一な厚みで非
常に優れた表面平滑性を有するリチウム被膜が負極集電
板上に形成される。そして使用するアンモニア溶液量と
これに溶存するリチウムの濃度によって上記リチウム被
膜の厚みが定まるから、この厚みを広範に調整でき、総
厚1.OH以下の、好態として0.5 iff以下の薄
型電池用として好適な薄い厚みの負極が形成可能となる
In the thin lithium battery of the present invention, as described above, the negative electrode is formed by volatilizing the ammonia component from the ammonia solution of lithium present on the negative electrode plate. In other words, lithium is easily dissolved in liquid ammonia and is forced to be uniformly dissolved in the solution, and the liquid level before the ammonia component is volatilized naturally becomes an ideal flat surface, so the ammonia component is By volatilization, a lithium film having an extremely uniform thickness and excellent surface smoothness is formed on the negative electrode current collector plate. Since the thickness of the lithium coating is determined by the amount of ammonia solution used and the concentration of lithium dissolved therein, this thickness can be adjusted over a wide range, and the total thickness is 1. It is possible to form a negative electrode with a thickness of OH or less, preferably 0.5 iff or less, which is suitable for thin batteries.

このような負極を形成するには、負極がリチウム単独で
ある場合、まず第1図で示すように平板状の負極集電板
1の周縁部上にセラミックなどからなるスペーサ2を固
着して内側に凹部8を構成し、この凹部3上にリチウム
片4を載置したのち、゛液体アンモニアを注入してリチ
ウム片4を溶解させるか、もしくは予めリチウムを溶解
したアンモニア溶液を凹部3に注入することにより、第
1図の)の如くリチウムを含むアンモニア溶液層5とす
る。次にこの溶液層Sのアンモニア成分を昇温により蒸
発揮散させれば、第1図(C)の如く均一厚みで表面が
非常に平滑なリチウム被膜層6が形成される。
To form such a negative electrode, when the negative electrode is made of lithium alone, first, as shown in FIG. After forming a recess 8 and placing a lithium piece 4 on this recess 3, either ``liquid ammonia is injected to dissolve the lithium piece 4, or an ammonia solution in which lithium has been dissolved in advance is injected into the recess 3. As a result, an ammonia solution layer 5 containing lithium as shown in FIG. 1 is formed. Next, when the ammonia component of this solution layer S is evaporated and diffused by raising the temperature, a lithium coating layer 6 having a uniform thickness and a very smooth surface is formed as shown in FIG. 1(C).

なお、上述の例では凹部8を構成する手段としてスペー
サ2を用いているが、たとえば第2図で示すように周辺
部7aを折曲して内側に凹部3を構成した皿形の負極集
電板7を使用することにより、スペーサ2を省略しても
差し支えない。
In the above example, the spacer 2 is used as a means for forming the recess 8, but for example, as shown in FIG. By using the plate 7, the spacer 2 may be omitted.

一方、負極がアルミニウムなどとの合金からなる場合は
、第3図(4)のようにアルミニウムなどの薄い被膜層
8を予め真空蒸着やメッキなどで凹部3上に形成してお
き、この被膜層8上に上述同様の手段、すなわちリチウ
ムを溶解したアンモニア溶液からアンモニア成分を蒸発
揮散させることにより、第3図の)で示すようにリチウ
ム被膜層6を形成すればよい。この場合、電池組立て前
の負極はアルミニウムなどの被膜層8とリチウム被膜層
6との二層からなっているが、電解質を注入して組立て
たのちの電池内では電解質の作用にて自然に合金化が行
われる結果、元のリチウム被膜層6より継承された非常
に平滑な表面を有した均一なリチウム合金からなる負極
となる。このような合金からなる負極はリチウム単独の
ものに比較して長期間の保存中に電解質と反応する可能
性が低減されたり、二次電池用負極としての可逆性が向
上するという電池特性面で優れる利点がある。
On the other hand, when the negative electrode is made of an alloy with aluminum or the like, a thin coating layer 8 of aluminum or the like is previously formed on the recess 3 by vacuum deposition or plating, as shown in FIG. A lithium coating layer 6 may be formed on the lithium oxide film 8 by the same means as described above, that is, by evaporating and evaporating the ammonia component from an ammonia solution in which lithium is dissolved, as shown in ) in FIG. In this case, the negative electrode before battery assembly is made up of two layers: a coating layer 8 made of aluminum or the like and a lithium coating layer 6, but after the electrolyte is injected and assembled, an alloy naturally forms within the battery due to the action of the electrolyte. The result is a negative electrode made of a uniform lithium alloy with a very smooth surface inherited from the original lithium coating layer 6. A negative electrode made of such an alloy has battery characteristics such as a reduced possibility of reacting with the electrolyte during long-term storage and improved reversibility as a negative electrode for secondary batteries compared to lithium alone. It has great advantages.

なお、液体アンモニアは沸点が一34°Cであるため、
上述のようにリチウムを溶解させる場合ならびに溶液と
して取扱いの際、上記沸点以下、通常は一40’C程度
に冷却すべきことは言うまでもない。そして上記溶液よ
りアンモニア成分を揮散除去するには、格別な加熱を行
う必要はなく、冷却を徐々に解除し、必要に応じて真空
引きを行えばよい。
In addition, since liquid ammonia has a boiling point of 134°C,
Needless to say, when dissolving lithium as described above and when handling it as a solution, it should be cooled to below the above-mentioned boiling point, usually to about -40'C. In order to volatilize and remove the ammonia component from the solution, there is no need to perform special heating, and cooling can be gradually stopped and vacuuming can be performed as necessary.

かくして形成されるリチウム金属mr4Pz夛り4から
なる負極は、上記アンモニア溶液の使用量およびリチウ
ム濃度の選択によって厚みを任意に設定できるが、総厚
1. o m以下の、好適には095n以下の薄型電池
用として100μm以下の、特に70μm以下の薄層と
することが望ましい。また負極をリチウム合金にて構成
する場合は、リチウム被膜層とアルミニウムなどの他の
金属層との厚み比をi:o、a〜1.2程度とするのが
よい。
The thickness of the thus formed negative electrode made of lithium metal mr4Pz can be arbitrarily set by selecting the amount of ammonia solution used and the lithium concentration, but the total thickness is 1. A thin layer of less than 100 μm, especially less than 70 μm is desirable for thin batteries of less than 0.0 m, preferably less than 0.95 nm. When the negative electrode is made of a lithium alloy, the thickness ratio between the lithium coating layer and the other metal layer such as aluminum is preferably about i:o, about a to 1.2.

一方、液体アンモニアに対するリチウムの溶解量は、液
体アンモニア100重量部に対して2〜10.7重量部
程度とするのがよい。
On the other hand, the amount of lithium dissolved in liquid ammonia is preferably about 2 to 10.7 parts by weight per 100 parts by weight of liquid ammonia.

なお、このようにリチウムのアンモニア溶液を用いて形
成される負極は表面が極めて平滑であると共に活性が非
常に高いという特徴がある。すなわち、従来のリチウム
フォイルは通常、表面に酸化物、水酸化物、炭酸化物な
どの皮膜が形成されており、これが抵抗層となるのに対
し、この発明における負極ではアンモニア成分が蒸発揮
散して現われる表面が上記皮膜のない活性なリチウム金
属面であるため、高い表面平滑性と相まって電池の充放
電−回当たシの放電容量や二次電池としてのサイクル特
性などの電池性能が良好となる。
Note that the negative electrode formed using a lithium ammonia solution is characterized by an extremely smooth surface and extremely high activity. In other words, conventional lithium foil usually has a film of oxide, hydroxide, carbonate, etc. formed on its surface, which acts as a resistance layer, whereas in the negative electrode of this invention, the ammonia component evaporates and transpires. Since the surface that appears is an active lithium metal surface without the above-mentioned film, combined with high surface smoothness, battery performance such as discharge capacity during charging and discharging of the battery and cycle characteristics as a secondary battery is improved. .

次にこの発明に係る薄型電池の構成を第4図に基づいて
説明する。図において、1は既述したステンレス鋼から
なる方形平板状の負極集電板、2は既述したセラミック
などからなる方形環状のスペーサ、9は既述したように
リチウムのアンモニア溶液よりアンモニア成分を蒸発揮
散して形成されたリチウムまたはリチウム合金からなる
負極、10は負極集電板1と同様のステンレス鋼からな
る方形平板状の正極集電板、11は正極活物質を含む正
極、12は負極9と正極11との間に介在させた微孔性
ポリプロピレンフィルムなどからなルセパレータ、13
はスペーサ2の両面と両極集電極1.lOの周辺部内面
との間を封止する封止材料層でおる。なお電池内にはリ
チウム塩とこれを溶解する非水系溶媒とを含む電解質が
添加されている。
Next, the structure of the thin battery according to the present invention will be explained based on FIG. 4. In the figure, 1 is a rectangular flat negative electrode current collector plate made of stainless steel as described above, 2 is a rectangular annular spacer made of ceramic or the like as described above, and 9 is a rectangular annular spacer made of ammonia solution of lithium as described above. A negative electrode made of lithium or a lithium alloy formed by evaporation and diffusion, 10 a rectangular flat positive electrode current collector plate made of stainless steel similar to the negative electrode current collector plate 1, 11 a positive electrode containing a positive electrode active material, 12 a negative electrode 9 and the positive electrode 11; a luciferator 13 made of a microporous polypropylene film, etc.
are both sides of the spacer 2 and the bipolar collector electrode 1. A sealing material layer seals between the inner surface of the periphery of the lO. Note that an electrolyte containing a lithium salt and a non-aqueous solvent that dissolves the lithium salt is added to the battery.

ここで正極11としては、一般にT ’182 、MO
82、V2O5、V2O38、vse2、vs2などノ
正極活物質とテフロン粉末などの結合剤と必要に応じて
カルボニルニッケルやカーボン粉などの電子伝導助剤を
含む成形体が使用されるが、上記結合剤の代わりに高分
子材料などでゲル化した電解質を用いて混練した粘性混
練物を使用し、これを正極集電板10上に塗布してもよ
い。
Here, the positive electrode 11 is generally T'182, MO
A molded body containing positive electrode active materials such as 82, V2O5, V2O38, vse2, and vs2, a binder such as Teflon powder, and, if necessary, an electron conduction aid such as carbonyl nickel or carbon powder, is used, but the above-mentioned binder Instead, a viscous kneaded product prepared by kneading an electrolyte gelled with a polymeric material or the like may be used, and this may be applied onto the positive electrode current collector plate 10.

また封止材料層13としては、種々の接着剤が使用され
、一般的な塗料溶液型の接着剤も使用可能であるが、取
・扱い性がよく電解質との混じり合いを回避できる成形
シートとなしうる熱融着性材料の使用が推奨される。こ
のような熱融性材料としては、たとえばホットメルト接
着剤、ハーメチックシール可能なセラミックなどがある
Various adhesives can be used for the sealing material layer 13, and although general paint solution type adhesives can also be used, molded sheets and molded sheets that are easy to handle and can avoid mixing with the electrolyte are also suitable. The use of heat-sealable materials is recommended. Such thermofusible materials include, for example, hot melt adhesives and hermetically sealable ceramics.

さらに電解質としては、一般にはリチウム塩を非水系溶
媒に溶解した液体が使用されるが、この液体にゲル化剤
などを加えて粘性化したものを用いてもよい。すなわち
後者の粘性化した電解質は塗布手段にて添加できる利点
がある。なお、リチウム塩および非水系溶媒としては従
来よりリチウム電池用として知られる種々のものを使用
でき、たとえばリチウム塩の代表例としてはLiBφ4
(φはフェニル基を意味する) 、rjPF6、LiC
F3SO3、IjASF6  などが挙げられ、非水系
溶媒としてはプロピレンカーボネート、γ−ブチロラク
トン、ジメトキシエタン、ジオキソランなどが挙げられ
る。また上記ゲル化剤としてはポリメタクリル酸アルキ
ルエステルなどが好適に使用される。
Furthermore, as the electrolyte, a liquid in which a lithium salt is dissolved in a non-aqueous solvent is generally used, but a gelling agent or the like may be added to this liquid to make it viscous. That is, there is an advantage that the latter viscous electrolyte can be added by coating means. Note that as the lithium salt and non-aqueous solvent, various substances conventionally known for use in lithium batteries can be used. For example, a typical example of the lithium salt is LiBφ4.
(φ means phenyl group), rjPF6, LiC
Examples of the nonaqueous solvent include F3SO3 and IjASF6, and examples of the nonaqueous solvent include propylene carbonate, γ-butyrolactone, dimethoxyethane, and dioxolane. Moreover, polymethacrylic acid alkyl ester and the like are preferably used as the gelling agent.

以上のように構成されるこの発明の薄型リチウム電池は
、負極を、リチウム単独およびリチウム合金のいずれか
らなる場合においても非常に薄くかつ極めて平滑な表面
を有す、るものとなしうるから、カード型やフレキシブ
ル型などに対応する電池総厚0.5n以下の薄型電池と
して有用である。
The thin lithium battery of the present invention constructed as described above can have a negative electrode that is extremely thin and has an extremely smooth surface, whether it is made of lithium alone or a lithium alloy. It is useful as a thin battery with a total thickness of 0.5 nm or less, which corresponds to a type or flexible type.

なお、第4図の構成例では両極集電板1,10を平板状
としているが、その一方もしくは両方を第2図で示すよ
うな皿形とすることにより、スペーサを省略した構成と
してもよい。
In the configuration example shown in FIG. 4, the bipolar current collector plates 1 and 10 have a flat plate shape, but the spacer may be omitted by making one or both of them plate-shaped as shown in FIG. .

〔発明の効果〕〔Effect of the invention〕

この発明に係る薄型リチウム電池は、負極が負極集電板
上に存在させたリチウムのアンモニア溶液よりアンモニ
ア成分を揮散して形成されたリチウムまたはリチウム合
金からなるものであるから、電池総厚1. Off以下
、好態として0.5n以下という薄型電池であるにもか
かわらず、これに対応する薄い負極が均一な厚みで非常
に平滑な表面を有してしかも負極集電板との密着性が良
好でsb、充放電−回当たシの放電容量が高く、かつ二
次電池としてのサイクル寿命が長いという優れた性能を
有している。しかも負極の厚みは電池総厚、用途、必要
特性などに応じて広範にかつ容易に調整できる。またこ
の発明の電池は、負極の形成にたたき付けなどのばら付
きの多い手段を要さず、−律条件で一定品質のものが得
られ、生産性に優れている。
In the thin lithium battery according to the present invention, since the negative electrode is made of lithium or a lithium alloy formed by volatilizing the ammonia component from a lithium ammonia solution present on the negative electrode current collector plate, the total battery thickness is 1. Although it is a thin battery, preferably 0.5n or less, the corresponding thin negative electrode has a uniform thickness and a very smooth surface, and has good adhesion to the negative electrode current collector plate. It has excellent performance in that it has a high discharge capacity and a long cycle life as a secondary battery. Moreover, the thickness of the negative electrode can be easily adjusted over a wide range depending on the total battery thickness, application, required characteristics, etc. Further, the battery of the present invention does not require a highly variable method such as pounding to form the negative electrode, and a constant quality product can be obtained under certain conditions, resulting in excellent productivity.

〔実施例〕〔Example〕

以下、この発明の実施例を比較例と対比して具体的に説
明する。なお以下において部とあるのは重量部を意味す
る。
Examples of the present invention will be specifically described below in comparison with comparative examples. Note that in the following, parts mean parts by weight.

実施例1 1辺15flの正方形で厚さ0.05Mのステンレス製
負極集電板上に幅2闘、厚さ0.4 tmの方形環状の
セラミック製スペーサを第1図で示すようにホットメル
ト接着剤にて加熱融着したのち、中央部に5.4〜のリ
チウム片を載置し、全体を一40°Cに冷却し、液体ア
ンモニア(−40’C)50■を滴下した。この状態で
10分放置したところ、リチウム片が完全に溶解し、負
極集電板のスペーサで囲まれる全面に溶液面が展開した
。次に冷却度合を徐々に緩めて室温まで昇温させ、さら
に真空引きを行ってアンモニア成分を完全に揮散させた
ところ、厚さ約100μmで極めて平滑な表面を有する
リチウム被膜層が形成された。
Example 1 A rectangular annular ceramic spacer with a width of 2 cm and a thickness of 0.4 tm was hot-melted on a stainless steel negative electrode current collector plate with a square size of 15 fl on each side and a thickness of 0.05 m as shown in Fig. 1. After heat-sealing with an adhesive, a 5.4~ lithium piece was placed in the center, the whole was cooled to -40°C, and 50 cm of liquid ammonia (-40'C) was dropped. When this state was left for 10 minutes, the lithium pieces were completely dissolved, and a solution surface was spread over the entire surface surrounded by the spacers of the negative electrode current collector plate. Next, the degree of cooling was gradually loosened to raise the temperature to room temperature, and vacuum was applied to completely volatilize the ammonia component, resulting in the formation of a lithium coating layer with a thickness of about 100 μm and an extremely smooth surface.

この被膜層を負極とし、セパレータとして厚さ25μm
の微孔性ポリプロピレンフィルム(ポリプラスチックス
社製の商品名ジュラガード)を、電解質としてLiBφ
4のジメトキシエタン付加物(LiBφ4;ジメトキシ
エタンのモル比1:3)11.2部とプロピレンカーボ
ネート23.8部とポリメチルメタクリレート5.2部
とからなる粘性体を、正極としてTi527部と上記粘
性体3部との粘性混練物を負極集電板と同様の正極集電
板に塗布して厚さ100μmとしたものを、それぞれ使
用し、第4図で示す構造で総厚約0.5 ff1llの
薄型リチウム電池を作製した。
This film layer is used as a negative electrode and has a thickness of 25 μm as a separator.
A microporous polypropylene film (product name: Duraguard, manufactured by Polyplastics) was used as an electrolyte in LiBφ.
A viscous body consisting of 11.2 parts of the dimethoxyethane adduct of No. 4 (LiBφ4; molar ratio of dimethoxyethane 1:3), 23.8 parts of propylene carbonate, and 5.2 parts of polymethyl methacrylate was used as a positive electrode, and 527 parts of Ti and the above were used. A viscous kneaded product with 3 parts of viscous material was applied to a positive electrode current collector plate similar to the negative electrode current collector plate to a thickness of 100 μm, and the total thickness was approximately 0.5 μm with the structure shown in FIG. 4. A ff1ll thin lithium battery was manufactured.

実施例2 正極集電板上でリチウム片を溶解する代わりに、予め一
40°Cの液体アンモニア100部にリチウム11.8
部を溶解した溶液53■を、実施例1と同様のスペーサ
を固着した負極集電板上に滴下し、以下実施例1と同様
にして負極が約100μm厚のリチウム被膜層からなる
薄型リチウム電池を作製した。
Example 2 Instead of dissolving lithium pieces on the positive electrode current collector plate, 11.8 parts of lithium was added to 100 parts of liquid ammonia at -40°C in advance.
A thin lithium battery in which the negative electrode consists of a lithium coating layer approximately 100 μm thick was prepared by dropping a solution of 53 μm in which 53 μm was dissolved onto a negative electrode current collector plate to which a spacer similar to that in Example 1 was fixed. was created.

実施例3 実施例1と同様のスペーサを固着した負極集電板の表面
に真空蒸着法によ930μm厚のアルミニウム被膜層を
形成したのち、実施例2と同様にしてリチウム被膜層を
形成し、以下、実施例1と同様にして負極が約130μ
mのリチウム合金からなる薄型リチウム電池を作製した
Example 3 After forming an aluminum coating layer with a thickness of 930 μm by vacuum evaporation on the surface of a negative electrode current collector plate to which a spacer similar to that in Example 1 was fixed, a lithium coating layer was formed in the same manner as in Example 2, Hereinafter, in the same manner as in Example 1, the negative electrode was
A thin lithium battery made of a lithium alloy of m was fabricated.

比較例 100μm厚のリチウムフォイルを一辺10朋の正方形
に切り取り、これを実施例1と同様のスペーサを固着し
た負極集電板上に載置し、上から塩化ビニリデン製の押
し棒で圧着して負極とし、以下実施例1と同様にして薄
型リチウム電池を作製した。
Comparative Example A lithium foil with a thickness of 100 μm was cut into a square with 10 mm on each side, and this was placed on a negative electrode current collector plate to which a spacer similar to that in Example 1 was fixed, and the sheet was crimped from above with a push rod made of vinylidene chloride. Using this as a negative electrode, a thin lithium battery was produced in the same manner as in Example 1.

以上の実施例および比較例にて得られた電池について、
充電終止電圧2.7V、放電終止電圧1.5V、充放電
電流100μAにてサイクル特性を調べた。その結果を
第5図で示す。なお、図中の曲線A1は実施例1、A2
は実施例2、A3は実施例3、Bは比較例のそれぞれの
電池の特性でるる。
Regarding the batteries obtained in the above examples and comparative examples,
The cycle characteristics were investigated at a charging end voltage of 2.7 V, a discharging end voltage of 1.5 V, and a charging/discharging current of 100 μA. The results are shown in FIG. Note that the curve A1 in the figure corresponds to Example 1, A2
shows the characteristics of the batteries of Example 2, A3 of Example 3, and B of Comparative Example.

第5図から明らかなように、リチウムのアンモニア溶液
から形成したリチウム単独からなる負極を有する電池(
実施例1,2)はリチウムフォイルから形成した負極を
有する電池(比較例)に比べ、充放電−回当たシの放電
容量ならびにサイクル寿命が大幅に優れていることが判
る。また、予めアルミニウム層を形成した上にリチウム
被膜層を上記アンモニア溶液を用いて形成したリチウム
合金の負極を有する電池(実施例3)ではさらにサイク
ル特性が向上することも判る。
As is clear from FIG. 5, a battery (
It can be seen that Examples 1 and 2) are significantly superior in discharge capacity and cycle life during charging and discharging, compared to a battery (comparative example) having a negative electrode formed from lithium foil. It is also seen that the cycle characteristics of the battery (Example 3) having a lithium alloy negative electrode in which a lithium film layer was formed using the above ammonia solution on a pre-formed aluminum layer further improved in cycle characteristics.

なお、前記実施例および比較例では性能対比のために負
極厚みを100μm程度としているが、この発明では言
うまでもなく際限なく薄い負極を形成できる。これに対
してリチウムフォイルを使用する場合の負極厚みは約1
00μm程度が限界である。
Note that in the above Examples and Comparative Examples, the thickness of the negative electrode was set to about 100 μm for performance comparison, but needless to say, in the present invention, an infinitely thin negative electrode can be formed. On the other hand, when using lithium foil, the negative electrode thickness is approximately 1
The limit is approximately 00 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(4)〜(C)はこの発明に係る薄型リチウム電
池のリチウム単独からなる負極形成例を工程順に示す縦
断面図、第2図は同電池における負極集電板の他の態様
を示す縦断面図、第3図(4)、(B)はリチウム合金
からなる負極形成例を工程順に示す縦断面図、第4図は
この発明に係る薄型リチウム電池の構成例を示す要部縦
断面図、第5図はこの発明の実施例および比較例で得ら
れた電池の充放電サイクル特性図である。 1・・・負極集電板、5・・・リチウムのアンモニア溶
液、7・・・負極集電板、9・・・負極。 特許出願人  日立マクセル株式会社 り 第3図 第4図      9;i掻 第5図 寸イ2ル枚
Figures 1 (4) to (C) are longitudinal cross-sectional views showing in order of steps an example of forming a negative electrode made of lithium alone in a thin lithium battery according to the present invention, and Figure 2 shows another embodiment of the negative electrode current collector plate in the same battery. 3(4) and (B) are longitudinal sectional views showing an example of forming a negative electrode made of a lithium alloy in the order of steps, and FIG. The plan view and FIG. 5 are charge/discharge cycle characteristic diagrams of batteries obtained in Examples and Comparative Examples of the present invention. DESCRIPTION OF SYMBOLS 1... Negative electrode current collector plate, 5... Lithium ammonia solution, 7... Negative electrode current collector plate, 9... Negative electrode. Patent applicant Hitachi Maxell Ltd. Figure 3 Figure 4 9; Figure 5 Dimensions 2 sheets

Claims (1)

【特許請求の範囲】[Claims] (1)負極集電板上に存在させたリチウムのアンモニア
溶液よりアンモニア成分を揮散して形成されたリチウム
またはリチウム合金からなる負極を有する薄型リチウム
電池。
(1) A thin lithium battery having a negative electrode made of lithium or a lithium alloy formed by volatilizing the ammonia component from a lithium ammonia solution present on a negative electrode current collector plate.
JP60055184A 1985-03-19 1985-03-19 Thin lithium battery Pending JPS61214359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055184A JPS61214359A (en) 1985-03-19 1985-03-19 Thin lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055184A JPS61214359A (en) 1985-03-19 1985-03-19 Thin lithium battery

Publications (1)

Publication Number Publication Date
JPS61214359A true JPS61214359A (en) 1986-09-24

Family

ID=12991625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055184A Pending JPS61214359A (en) 1985-03-19 1985-03-19 Thin lithium battery

Country Status (1)

Country Link
JP (1) JPS61214359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033474A (en) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd Power storage device and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033474A (en) * 2010-06-30 2012-02-16 Semiconductor Energy Lab Co Ltd Power storage device and method of producing the same
US9112224B2 (en) 2010-06-30 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
US10283765B2 (en) 2010-06-30 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US10593952B2 (en) Mechanical systems and methods for providing edge support and protection in semi-solid electrodes
JP3664252B2 (en) Negative electrode and battery using the same
JP4367311B2 (en) battery
JP4845244B2 (en) Lithium battery
JP3670926B2 (en) Lithium secondary battery
CN101207191A (en) Anode and battery
JP2004171877A (en) Cell
JP2000311710A (en) Solid electrolyte battery and its manufacture
WO2020105439A1 (en) Lithium secondary battery and manufacturing method thereof
JPH10255850A (en) Stacked lithium ion cell and manufacture therefor
JP4144335B2 (en) Negative electrode and secondary battery using the same
CN113555525A (en) Positive electrode, secondary battery including the same, and method of preparing the same
JP2000331684A (en) Laminated solid secondary battery
JPS61214359A (en) Thin lithium battery
JP4232735B2 (en) Secondary battery
TWI246791B (en) Anode and battery using the same
JP2000311708A (en) Manufacture of battery formed entirely of solid lithium
JPS63121272A (en) Chargeable electrochemical device
JPS63289768A (en) Solid electrolyte battery
JP2989230B2 (en) Non-aqueous battery
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JP2001093535A (en) Solid electrolyte cell
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPS62274568A (en) Rechargeable electro chemical device