JPS61213625A - Generator for measurement signal - Google Patents

Generator for measurement signal

Info

Publication number
JPS61213625A
JPS61213625A JP5508885A JP5508885A JPS61213625A JP S61213625 A JPS61213625 A JP S61213625A JP 5508885 A JP5508885 A JP 5508885A JP 5508885 A JP5508885 A JP 5508885A JP S61213625 A JPS61213625 A JP S61213625A
Authority
JP
Japan
Prior art keywords
probe
measuring
measurement
signal generator
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5508885A
Other languages
Japanese (ja)
Inventor
Kenji Ono
憲次 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP5508885A priority Critical patent/JPS61213625A/en
Publication of JPS61213625A publication Critical patent/JPS61213625A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To speed up a measuring operation and to enlarge the object of measurement by providing a detection unit which generates a signal according to a change in the attitude of a measuring element, a probe body, and a position changing mechanism. CONSTITUTION:A prove 10 consists of the probe body 15, the position changing mechanism 16 for the measuring element 16, the detection unit 17, and the measuring element 18. The probe 10 is a measurement signal generator having a function which obtains the quantity of inclination of the measuring element 18 or the quantities of inclination at the moment and after the measuring element 18 abuts on the object of measurement, and when the measuring element 18 slants, the detection unit 17 outputs continuously an analog signal corresponding to the quantity of inclination. Then, the position changing mechanism 16 for the measuring element 18 which constitutes a measuring element attitude adjusting device is provided to the side of the probe 10 and the driving means 30 which operates the mechanism 16 is provided at another place separately; while some measurement signal generator is in measuring operation, the position of the measuring element 18 of another measurement signal generator is adjustable, and consequently the measuring operation is speeded up and the object of measurement is enlarged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば三次元測定機の、プローブとして使用
される測定信号発生器に係り、特にプローブ本体に対し
測定子の位置が変更可能な測定信号発生器に関し、測定
作業効率の向上等に利用できるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a measurement signal generator used as a probe in, for example, a three-dimensional measuring machine, and particularly relates to a measurement signal generator that is used as a probe in a three-dimensional measuring machine, and in particular, a measurement signal generator in which the position of a probe with respect to the probe body can be changed. Regarding the measurement signal generator, it can be used to improve the efficiency of measurement work.

〔背景技術とその問題点〕[Background technology and its problems]

載物台に載置された測定対象物と測定機本体に支持され
たプローブとを移動機構によって一次元、二次元、或い
は三次元的に相対移動させ、測定対象物の測定面とプロ
ーブの測定子との相対移動変位量を検出し、この検出変
位量をデータ処理装置で所定処理して測定対象物の寸法
等を計測する測定機が知られている。この測定機、例え
ば三次元測定機は、前記移動機構による測定子と測定対
象物との相対移動を検出するための変位検出器を前記プ
ローブと別に備え、測定子が測定対象物の測定面に当接
した瞬間を捉らえてこのときの変位検出器の検出変位量
をラッチし、順次これを繰返して得た複数の座標値を所
定処理することによって測定対象物の寸法等を計測する
構造になっているのが一般的である。
The object to be measured placed on the stage and the probe supported by the measuring machine body are moved relative to each other in one, two, or three dimensions by a moving mechanism, and the measurement surface of the object to be measured and the probe are measured. Measuring machines are known that measure the dimensions of an object to be measured by detecting the amount of displacement relative to the object and processing the detected amount of displacement in a predetermined manner using a data processing device. This measuring machine, for example, a three-dimensional measuring machine, is equipped with a displacement detector separate from the probe for detecting the relative movement between the measuring stylus and the object to be measured by the moving mechanism, and the measuring stylus is placed on the measurement surface of the object to be measured. It has a structure that measures the dimensions of the object to be measured by capturing the moment of contact, latching the amount of displacement detected by the displacement detector at that time, and processing the multiple coordinate values obtained by sequentially repeating this process. It is common that

そして測定子と測定面との当接を捉えるものとしていわ
ゆるタッチ信号プローブが採用されている。このタッチ
信号プローブは、測定子がプローブ本体に傾斜可能且つ
原姿勢位置に復帰可能に支持され、測定子が測定対象物
に当接して傾動するとタッチ信号を発するように構成さ
れている。またプローブの他の種類には例えば真円度を
測定するために用いられ、測定子が測定対象物に当接し
た後の測定子傾動量、或いは当接した瞬間とその後の測
定子傾動量を捉えてアナログ信号を発するように形成さ
れたものもある。ここに両方のプローブを含めて測定信
号発生器と称する。
A so-called touch signal probe is used to detect the contact between the probe and the measurement surface. This touch signal probe is configured such that a measuring stylus is supported by the probe body so as to be tiltable and returnable to its original position, and to emit a touch signal when the measuring stylus touches an object to be measured and tilts. Other types of probes are used, for example, to measure roundness, and measure the amount of tilting of the measuring tip after it contacts the object to be measured, or the amount of tilting of the measuring tip at the moment of contact and thereafter. Some are designed to capture and emit an analog signal. Both probes are collectively referred to as a measurement signal generator.

前述の三次元測定機の場合、前記移動機構をコンピュー
タによる予め決められたプログラムによって自動的に作
動させて自動測定を行うためには、プローブ本体に対す
る測定子の姿勢を固定的なものとすると測定可能な測定
対象物の形状は極限られたものとなり、測定機の利用性
が狭小化する。
In the case of the above-mentioned three-dimensional measuring machine, in order to perform automatic measurements by automatically operating the moving mechanism according to a predetermined program by a computer, it is necessary to maintain a fixed attitude of the measuring point with respect to the probe body. The possible shapes of the object to be measured are extremely limited, and the usability of the measuring device is narrowed.

そこでプローブ本体に対し測定子の姿勢を変えることが
できるようにプローブ本体に姿勢調整装置を設けたもの
が市販されている。これによれば、測定面に応じて測定
子の姿勢を調整できるため自動測定を行う測定機には便
利である。
Therefore, there are commercially available probes in which the probe body is provided with an attitude adjustment device so that the attitude of the probe with respect to the probe body can be changed. According to this, the attitude of the probe can be adjusted according to the measurement surface, which is convenient for a measuring machine that performs automatic measurements.

しかしながら、この姿勢調整装置を内蔵した測定信号発
生器は自動化に貢献するものの測定機の構造、測定能率
、測定機の適用性等に不利、不便を誘発してしまう問題
を内包していた。即ち、■測定面毎に測定子の姿勢を調
整する必要があるため測定作業時間が長くなり、作業効
率が低下する。
However, although this measurement signal generator with a built-in attitude adjustment device contributes to automation, it has problems that cause disadvantages and inconveniences in the structure of the measuring device, measurement efficiency, applicability of the measuring device, etc. That is, (1) it is necessary to adjust the posture of the probe for each measurement surface, which increases the time required for measurement work and reduces work efficiency;

■姿勢調整装置の駆動手段によっては発熱し、或いは振
動を生じさせ、測定精度の上で不都合を生じさせる。
(2) Depending on the driving means of the posture adjustment device, heat may be generated or vibrations may be generated, which may cause problems in terms of measurement accuracy.

■測定信号発生器は姿勢調整装置のために大型化し、測
定有効スペースや測定対象物の測定可能形状等に制限が
生じてしまい、更に測定信号発生器の高重量化による撓
み等の弊害を防止するため測定機の構造を強靭としなけ
ればならない。
■The measurement signal generator has become larger due to the attitude adjustment device, which limits the effective space for measurement and the measurable shape of the object to be measured, and also prevents problems such as deflection due to the increased weight of the measurement signal generator. Therefore, the structure of the measuring device must be strong.

■測定子の姿勢を調整できるといっても測定子の長さ、
大きさ、形状等は一定であるため、完全自動化の達成の
ため、複雑形状の測定対象物の測定のためには測定機本
体に多くの測定信号発生器を取付け、これらを切換えて
測定作業を行わなければならず、このことは前記■の問
題を発生させることにもなる。
■Even though the posture of the measuring head can be adjusted, the length of the measuring head
Since the size, shape, etc. are constant, in order to achieve complete automation, when measuring objects with complex shapes, many measurement signal generators are attached to the main body of the measuring machine, and these can be switched to perform the measurement work. This also causes the problem (2) above.

■前記Φは1個の測定信号発生器における測定子姿勢調
整範囲を小さなものとしなければならない原因となるた
め、同種形状の測定面についても測定信号発生器の数を
複数用意しなければならず、経済的にも不利である。
■Since the above-mentioned Φ causes the measurement head attitude adjustment range for one measurement signal generator to be small, it is necessary to prepare multiple measurement signal generators even for measurement surfaces of the same shape. , it is also economically disadvantageous.

■更に、測定対象物の形状によっては目視困難な位置で
測定子の姿勢調整が行われる場合があり、その確認がで
きないことがある。
(2) Furthermore, depending on the shape of the object to be measured, the attitude of the probe may be adjusted at a position that is difficult to see visually, and it may not be possible to confirm this.

〔発明の目的〕[Purpose of the invention]

本発明は従来の姿勢調整装置付き測定信号発生器が測定
工程中において測定子の姿勢調整を行う測定機全体の技
術思想からその駆動手段を含んで構成されていることが
問題の発生原因であると認定してなされたものである。
The problem of the present invention is that the conventional measurement signal generator with an attitude adjustment device is configured to include its driving means from the technical concept of the entire measuring machine that adjusts the attitude of the probe during the measurement process. This was done by recognizing that.

本発明の目的は、測定子姿勢調整装置を構成する測定子
の位置変更機構とこれを作動させる駆動手段とを分離独
立したものとし、これによりある測定信号発生器で測定
している間に他の測定信号発生器の測定子を位置調整す
ることができ、測定機全体として測定作業の迅速化が実
現され、また測定可能な測定対象物を拡大することも可
能であって適用範囲を広げることができる測定信号発生
器を提供するところにある。
An object of the present invention is to make the measuring head position changing mechanism constituting the measuring head attitude adjustment device and the driving means for operating the same separate and independent. The position of the measurement head of the measurement signal generator can be adjusted, speeding up the measurement work for the entire measuring device, and it is also possible to expand the range of measurement objects that can be measured, expanding the range of application. The purpose of the present invention is to provide a measurement signal generator that can perform

〔101題点を解決するための手段および作用〕このた
め本発明は、測定信号発生器を測定対象物の測定面に当
接される測定子と、この測定子を測定対象物の反力によ
り姿勢変化可能且つこの反力が除かれたときに原姿勢に
復帰可能に支持するとともに、前記測定子の姿勢変化が
生じたときに出力信号を発生する検出部を含んで形成さ
れた検出ユニットと、測定機本体に取付けるためのシャ
ンク部を有するプローブ本体と、このプローブ本体に対
する前記測定子の位置を強制的に変更するためのもので
あって、プローブ本体外の他の静止体に設けられた駆動
手段によって駆動される位置変更機構とを備えて構成し
たところに特徴を有する。
[Means and effects for solving problem 101] For this reason, the present invention provides a measurement signal generator that includes a measuring tip that is brought into contact with the measuring surface of the object to be measured, and a measuring tip that is moved by the reaction force of the object to be measured. A detection unit configured to include a detection unit capable of changing its posture and capable of returning to its original posture when the reaction force is removed, and generating an output signal when the posture of the measuring head changes. , a probe body having a shank portion for attaching to the measuring instrument body, and a probe body for forcibly changing the position of the measuring point with respect to the probe body, which is provided on another stationary body outside the probe body. It is characterized in that it includes a position change mechanism driven by a drive means.

〔実施例〕〔Example〕

第1図は本実施例にかかる測定信号発生器が使用される
三次元測定機の全体斜視図である。先ずこの三次元測定
機の構造を説明する。
FIG. 1 is an overall perspective view of a coordinate measuring machine in which a measurement signal generator according to this embodiment is used. First, the structure of this coordinate measuring machine will be explained.

基台lの上部には左右2個の腟壁部材2の間に位置して
載物台3が配置され、上面に測定対象物4が載置される
この載物台3は基台1に対しY軸方向へ移動自在になっ
ている。基台lに固定された左右2本の支柱5の上部に
は梁部材6が横断架設され、この梁部材6にはスライダ
7がX軸方向へ摺動自在に取付けられている。スライダ
7と一体化されているスピンドルケース8には四角柱状
のスピンドル9が垂直方向即ちZ軸方向に移動自在に設
けられ、スピンドル9の下端に測定信号発生器であるプ
ローブlOが連結支持される0以上の支柱5、梁部材6
、スライダ7、スピンドル9等により測定機本体11が
構成され、この測定機本体11にプローブIOが取付け
られている。
At the top of the base l, a stage 3 is arranged between the two left and right vaginal wall members 2, and this stage 3, on which the object to be measured 4 is placed, is attached to the base 1. On the other hand, it is movable in the Y-axis direction. A beam member 6 is installed across the upper portions of the two left and right columns 5 fixed to the base l, and a slider 7 is attached to the beam member 6 so as to be slidable in the X-axis direction. A spindle case 8 integrated with the slider 7 is provided with a rectangular columnar spindle 9 movable in the vertical direction, that is, in the Z-axis direction, and a probe lO, which is a measurement signal generator, is connected and supported at the lower end of the spindle 9. 0 or more pillars 5, beam members 6
, the slider 7, the spindle 9, etc., constitute a measuring machine main body 11, and a probe IO is attached to this measuring machine main body 11.

前記基台lに対する載物台3のY軸方向移動は蛇腹カバ
ー12の内部に配置されているモーフやボールねし等に
よる駆動装置によって自動的に行われ、スライダ7のX
軸方向移動及びスピンドル9の2軸方向移動も梁部材6
、スピンドルケース8に組込まれている駆動装置によっ
て行われる。
The movement of the workpiece table 3 in the Y-axis direction with respect to the base l is automatically performed by a drive device such as a morph or a ball screw disposed inside the bellows cover 12, and
Axial movement and biaxial movement of the spindle 9 are also carried out by the beam member 6.
, by a drive device built into the spindle case 8.

これらの駆動装置等によって前記測定対象物4とプロー
ブ10とに三次元の移動変位を生じさせる移動機構が構
成され、載物台3はこの移動機構のY軸方向における可
動側部材となっており、測定機本体11は静止側部材と
なっている。また、スライダ7、スピンドル9はX軸方
向、Z軸方向の可動側部材で、梁部材6、スピンドルケ
ース8は静止側部材になっている。
These driving devices and the like constitute a moving mechanism that causes a three-dimensional displacement of the measurement object 4 and the probe 10, and the stage 3 is a movable member of this moving mechanism in the Y-axis direction. , the measuring instrument main body 11 is a stationary member. Further, the slider 7 and the spindle 9 are movable side members in the X-axis direction and the Z-axis direction, and the beam member 6 and the spindle case 8 are stationary side members.

載物台3の後端部にはプローブストッカ13が取付けら
れている。第2図はこのプローブストッカ13を示す、
プローブストッカ13は載物台3の上面に固定された底
部13Aと、底部13Aから垂直に起立した脚部13B
と、脚部13Bに載物台3の上面から間隔を開けて水平
に設けられた頂部]、 3 Cとからなり、側面コ字型
になっている。
A probe stocker 13 is attached to the rear end of the stage 3. FIG. 2 shows this probe stocker 13.
The probe stocker 13 has a bottom portion 13A fixed to the top surface of the stage 3, and leg portions 13B standing vertically from the bottom portion 13A.
, a top section horizontally provided on the leg section 13B with an interval from the top surface of the stage 3], and a top section 3C, which has a U-shape on the side.

頂部13Cには前方へ開口した平面U字状の溝14が形
成され、この溝14に前記プローブ10が挿入係合され
てプローブストッカ13に支持されるようになっている
。この溝14はプローブストッカ13に複数個のプロー
ブ10を支持できるように複数個形成されている。
A planar U-shaped groove 14 that opens forward is formed in the top portion 13C, and the probe 10 is inserted into this groove 14 and is supported by the probe stocker 13. A plurality of grooves 14 are formed in the probe stocker 13 so that a plurality of probes 10 can be supported.

プローブ10はプローブ本体15と、測定子の位置変更
機構16と、検出ユニット17と、測定子18とを備え
て構成され、第2図で示されたこのプローブ10は内径
または外径の真円度または円筒度の測定用プローブであ
るため、測定対象物4の測定面に当接する測定子18は
検出ユニット17に測定面からの反力により姿勢変化可
能、具体的には傾動可能に且つこの反力が除かれたとき
に原姿勢に一復帰可能に支持されているとともに、検出
ユニット17は測定子1日が傾動したときこの傾動量に
応じたアナログ信号を連続的に出力する検出部を含んで
構成されている。このようにプローブ10は測定子18
の傾動量、或いは測定子18が測定対象物4に当接した
瞬間とその後の傾動量を捉える機能を有している測定信
号発生器になっている。
The probe 10 includes a probe body 15, a probe position changing mechanism 16, a detection unit 17, and a probe 18. The probe 10 shown in FIG. Since this is a probe for measuring degree or cylindricity, the measuring stylus 18 that comes into contact with the measuring surface of the object to be measured 4 can change its posture by the reaction force from the measuring surface on the detection unit 17, specifically, it can tilt and tilt. The detection unit 17 is supported so as to be able to return to its original position once the reaction force is removed, and the detection unit 17 has a detection section that continuously outputs an analog signal corresponding to the amount of tilting of the probe when the probe is tilted. It is composed of: In this way, the probe 10
This is a measurement signal generator that has a function of capturing the amount of tilting of the probe 18 or the amount of tilting at the moment when the probe 18 contacts the object 4 to be measured and thereafter.

前記プローブ本体15は前記測定機本体11を構成する
スピンドル9にプローブlOを取付けるタメのシャンク
部15Aと、このシャンク部15Aの下部に設けられた
テーパー突部15B及びフランジ部15Cとを有し、フ
ランジ部15Cが前記溝14の周辺に係止される。プロ
ーブ本体15の下面には水平方向への長さを有する支持
部材19が取付けられ、この支持部材19の両端部に設
けられた軸受部材20でボールねしであるねじ軸21が
回転自在に支持される。水平方向を軸線方向とするこの
ねじ軸21に螺合するナツト部材22は保持部材23の
内部に保持され、この保持部材23に前記検出ユニット
17が連結支持される。
The probe main body 15 has a shank part 15A for attaching the probe IO to the spindle 9 constituting the measuring machine main body 11, and a tapered protrusion 15B and a flange part 15C provided at the lower part of the shank part 15A, A flange portion 15C is locked around the groove 14. A support member 19 having a horizontal length is attached to the lower surface of the probe body 15, and a screw shaft 21, which is a ball screw, is rotatably supported by bearing members 20 provided at both ends of the support member 19. be done. A nut member 22 screwed onto this screw shaft 21 whose axial direction is the horizontal direction is held inside a holding member 23, and the detection unit 17 is connected and supported by this holding member 23.

保持部材23の上面は支持部材19の下面に摺動自在に
接触して保持部材23の回転が阻止され、ねじ軸21が
回転するとねじ軸21のねし送り作用により保持部材2
3は水平方向に移動し、測定子18の位置が変更される
。以上の支持部材19、ねじ軸21、ナンド部材22等
で測定子18の位置を強制的に変更させる位置変更機構
16が構成される。
The upper surface of the holding member 23 slidably contacts the lower surface of the supporting member 19 to prevent rotation of the holding member 23, and when the screw shaft 21 rotates, the screw feeding action of the screw shaft 21 causes the holding member 2 to slide.
3 moves in the horizontal direction, and the position of the probe 18 is changed. The above supporting member 19, screw shaft 21, NAND member 22, etc. constitute a position changing mechanism 16 that forcibly changes the position of the probe 18.

ねじ軸21の一端部は一方の軸受部材20から突出し、
この突出した端部に第1クラッチ部材24が取付けられ
る。プローブ10をプローブストッカ13に支持させた
際、この第1クラッチ部材24は前記脚部13Bに形成
された孔25を貫通し、プローブストッカ13の後方へ
突出する。
One end of the screw shaft 21 protrudes from one bearing member 20,
The first clutch member 24 is attached to this protruding end. When the probe 10 is supported by the probe stocker 13, the first clutch member 24 passes through the hole 25 formed in the leg portion 13B and projects to the rear of the probe stocker 13.

プローブストッカ13にはブラケット26を介してモー
ター27が取付けられ、プローブストッカ13側に配置
されたこのモーター27の出力軸には前記第1クラッチ
部材24と対をなす第2クラッチ部材2日が設けられる
。これらの第1クラッチ部材24及び第2クラッチ部材
28で断接自在な1を磁クラッチ29が構成される。ま
たモーター27は前記位置変更機構16を作動させるた
めの駆動手段30を構成し、これらの位置変更機構16
及び駆動手段30により測定子の姿勢調整装置が構成さ
れる。
A motor 27 is attached to the probe stocker 13 via a bracket 26, and a second clutch member 27, which is paired with the first clutch member 24, is provided on the output shaft of the motor 27, which is disposed on the probe stocker 13 side. It will be done. The first clutch member 24 and the second clutch member 28 constitute a magnetic clutch 29 that can be freely connected and disconnected. Further, the motor 27 constitutes a driving means 30 for operating the position changing mechanisms 16, and these position changing mechanisms 16
and the driving means 30 constitute a measuring head attitude adjustment device.

以上のように本発明では位置変更機構16と駆動手段3
0とは分離独立した状態で配置されており、駆動手段3
0はプローブ本体15外の静止体であるプローブストッ
カ13に設けられている。
As described above, in the present invention, the position changing mechanism 16 and the driving means 3
0 and is arranged in a separate and independent state from the drive means 3
0 is provided in the probe stocker 13 which is a stationary body outside the probe main body 15.

前記モーター27にはロータリーエンコーダ31が連結
され、このロータリーエンコーダ31によりモーター2
7の回転量即ち電磁クラッチ29が接続したときのねじ
軸21の回転量が検出される。
A rotary encoder 31 is connected to the motor 27, and the rotary encoder 31 controls the motor 2.
7, that is, the amount of rotation of the screw shaft 21 when the electromagnetic clutch 29 is connected is detected.

前記測定機本体11を構成するスピンドル9の内部には
プローブ10をスピンドル9に装着し且つ取外すための
プローブ着脱装置と、装着されたプローブ10を真円度
等の測定のため垂直軸回りに回転させる装置とが配置さ
れている。
Inside the spindle 9 constituting the measuring machine body 11, there is a probe attaching/detaching device for attaching and detaching the probe 10 from the spindle 9, and a device for rotating the attached probe 10 around a vertical axis for measuring roundness, etc. A device is installed to

第1図において、コンピュータで制御される前記移動機
構により前記載物台3に取付けられた測定対象物4と測
定機本体11のスピンドル9に装着されたプローブ10
とが三次元的に移動変位せしめられる。コンピュータの
プログラムによる次の計測工程が第2図で示された真円
度等の測定用プローブIOを用いて行う場合には、前の
計測工程を行っているときに前記測定子姿勢調整装置に
より測定子18の位置を所定のところまで変更調整して
お(。
In FIG. 1, an object to be measured 4 is attached to the object table 3 by the moving mechanism controlled by a computer, and a probe 10 is attached to the spindle 9 of the measuring machine main body 11.
are moved and displaced three-dimensionally. When the next measurement process according to a computer program is performed using the probe IO for measuring roundness, etc. shown in FIG. Change and adjust the position of the probe 18 to the specified position (.

即ち第2図において、次の計測工程が真円度等の測定で
あるとの信号が三次元測定機の制御装置から出力される
と、前記電磁クラッチ29が接続され駆動手段30とし
てのモーター27が回転駆動する。これにより前記位置
変更機構16が作動せしめられ、回転する前記ねじ軸2
1のねじ送り作用により検出ユニット17、測定子18
がプローブ本体15の径方向に直線的に強制移動せしめ
られる。この移動量は前記ロータリーエンコーダ31で
検出され、測定子18等の直線移動量が真円度等が測定
される測定対象物4の穴の口径等に適合したものになる
と、前記制御l装置からの信号によりモーター27の回
転駆動は停止し、且つ電磁クラッチ29の接続状態は断
たれる。
That is, in FIG. 2, when a signal indicating that the next measurement step is to measure roundness, etc. is output from the control device of the coordinate measuring machine, the electromagnetic clutch 29 is connected and the motor 27 as the drive means 30 is connected. drives the rotation. As a result, the position change mechanism 16 is activated, and the screw shaft 2 rotates.
The detection unit 17 and the probe 18 are
is forced to move linearly in the radial direction of the probe body 15. This amount of movement is detected by the rotary encoder 31, and when the amount of linear movement of the contact point 18, etc. matches the diameter of the hole in the object 4 to be measured for roundness, etc., the controller 31 detects the amount of linear movement. The rotational drive of the motor 27 is stopped by this signal, and the electromagnetic clutch 29 is disconnected.

このように測定子18はプローブ10がプローブストッ
カ13に待機している間に位置変更され、測定子18の
位置変更工程は前の計測工程が行われている間に実施さ
れてこれらの工程を並行して同時に行えるため測定作業
時間を短縮化できる。
In this way, the position of the measuring stylus 18 is changed while the probe 10 is waiting in the probe stocker 13, and the step of changing the position of the measuring stylus 18 is carried out while the previous measurement process is being performed, and these steps are Measurement work time can be shortened because measurements can be performed simultaneously in parallel.

前の計測工程が終了すると前記載物台3がY軸方向へ移
動してスピンドル9の下方位置まで前記プローブストッ
カ13が移動せしめられる。また前記スライダ7がX軸
方向へ移動してスピンドル9も下降し、前記プローブ着
脱装置の作動でプローブ10がスピンドル9から取外さ
れてプローブストッカ13の位置づけられた所定位置に
収納支持される。この後スピンドル9は上昇し、またス
ライダ7はX軸方向へ移動し、スピンドル9の位置が測
定子18の位置変更が終了している前記真円度等の測定
用プローブ10の真上に達すると、スピンドル9は下降
してプローブ着脱装置によりこのプローブ10がスピン
ドル9に装着支持される。
When the previous measurement step is completed, the document table 3 is moved in the Y-axis direction, and the probe stocker 13 is moved to a position below the spindle 9. Further, the slider 7 moves in the X-axis direction and the spindle 9 also descends, and the probe 10 is removed from the spindle 9 by the operation of the probe attachment/detachment device and is stored and supported at a predetermined position in the probe stocker 13. After this, the spindle 9 rises, and the slider 7 moves in the X-axis direction, and the position of the spindle 9 reaches directly above the probe 10 for measuring roundness, etc., where the change in the position of the measuring stylus 18 has been completed. Then, the spindle 9 is lowered and the probe 10 is mounted and supported on the spindle 9 by the probe mounting/detaching device.

次いで前記移動機構の作動により真円度等が測定される
測定対象物4の穴等の中心軸線とスピンドル9の中心軸
線とが一致するまでプローブ10は移動変位し、測定子
18が測定対象物4の測定面に接触した後に真円度等の
測定のための前記回転装置51が駆動される。この結果
、プローブ10は垂直な軸線を中心に回転し、測定子1
8の傾動量に応じてアナログ信号を出力する前記検出ユ
ニソ)17により真円度等が計測される。
Next, by the operation of the moving mechanism, the probe 10 is moved and displaced until the center axis of the hole, etc. of the object to be measured 4 whose roundness etc. is to be measured coincides with the center axis of the spindle 9, and the probe 18 moves toward the object to be measured. After contacting the measuring surface 4, the rotating device 51 for measuring roundness, etc. is driven. As a result, the probe 10 rotates around the vertical axis, and the probe 10 rotates around the vertical axis.
The roundness etc. are measured by the detection unit 17 which outputs an analog signal according to the amount of tilting of the sensor 8.

なお、この真円度等の測定はスピンドル9の内部に回転
装置を設けず載物台3に測定対象物4を載せるターンテ
ーブルを設けることにより行ってもよい。
Note that the measurement of roundness and the like may be performed by not providing a rotation device inside the spindle 9 but by providing a turntable on which the object to be measured 4 is placed on the stage 3.

真円度等の測定が終了すると、プローブ10はプローブ
ストフカ13の対応位置づけられた所定位置に前記移動
機構の作動により収納支持される。
When the measurement of roundness and the like is completed, the probe 10 is housed and supported in a corresponding predetermined position of the probe stiffener 13 by the operation of the moving mechanism.

以上において、三次元測定機のスピンドル9に真円度等
の測定用プローブ10を装着できるようにすると、三次
元測定機は従来の真円度等測定機と同じ機能を有すると
ともに、複数の座標位置を検出してこれを演算処理し真
円度等を測定する方式に比べ、測定時間を大幅に短縮で
き、かつ連続したアナログ信号を得られるという利点が
ある。
In the above, if the probe 10 for measuring roundness, etc. can be attached to the spindle 9 of the coordinate measuring machine, the coordinate measuring machine has the same functions as the conventional measuring machine for roundness, etc., and can also handle multiple coordinates. Compared to a method that detects the position and processes it to measure roundness, etc., this method has the advantage of significantly shortening the measurement time and obtaining a continuous analog signal.

また、真円度等の測定用プローブ10には長さの長い前
記ねじ軸21を取付けることができ、測定子18に大き
な直線移動量を与えることができるため、径が小さな穴
等から径が大きな穴等まで1つのプローブ10で真円度
等を測定でき、プローブ10の適用範囲が拡大されプロ
ーブ数を削減できる。このため、三次元測定機で測定可
能な測定対象物4の範囲が拡大されるとともに、スピン
ドル9に装着するプローブの数を従来のように複数とす
ることは不要になり、スピンドル9に作用するプローブ
の重量の減少により三次元測定機の構造の強度を高める
必要性をなくすことができる。
In addition, the long screw shaft 21 can be attached to the probe 10 for measuring roundness, etc., and a large linear movement amount can be given to the probe 18. The roundness etc. of even large holes can be measured with one probe 10, the range of application of the probe 10 is expanded, and the number of probes can be reduced. For this reason, the range of the measurement object 4 that can be measured by the coordinate measuring machine is expanded, and it is no longer necessary to attach a plurality of probes to the spindle 9 as in the past, and the number of probes that act on the spindle 9 is reduced. The reduction in the weight of the probe eliminates the need to increase the strength of the structure of the coordinate measuring machine.

更に、プローブIOの前記位置変更機構16を作動させ
る前記駆動手段30は前記プローブストッカ13に取付
けられ、プローブ10には設けられていないため、その
分スピンドル9に作用するプローブ10の重量を減少さ
せることができるとともにプローブ10を小型化できる
ようになり、このため測定対象物4の形状等が制限され
なくなってこの点においてもプローブ10の適用範囲が
拡大され、更にプローブ10が小型化された分だけ位置
変更機構16を大型化することも可能になり、この場合
にも測定対象物4の範囲を拡大できるようになる。また
プローブ10による測定作業が行われているときはプロ
ーブ10と駆動手段30とは分離した状態になっている
ため、駆動手段30の発熱等の悪影響が測定作業中のプ
ローブIOに及ぶのを防止できる。
Further, since the driving means 30 for operating the position changing mechanism 16 of the probe IO is attached to the probe stocker 13 and is not provided on the probe 10, the weight of the probe 10 acting on the spindle 9 is reduced accordingly. At the same time, the probe 10 can be miniaturized, and the shape of the object to be measured 4 is no longer restricted, which expands the scope of application of the probe 10. It is also possible to increase the size of the position changing mechanism 16, and in this case also, the range of the measurement target 4 can be expanded. In addition, since the probe 10 and the drive means 30 are separated when the probe 10 is performing measurement work, it is possible to prevent adverse effects such as heat generation from the drive means 30 from reaching the probe IO during the measurement work. can.

また、測定子18は常にプローブスト7カ13において
位置変更されるため、測定作業者は目視により測定子1
8の位置変更を確認できるよ・)になる。
In addition, since the measuring head 18 is constantly changing its position in the probe station 7 13, the measuring worker can visually check the measuring head 18.
You can confirm the change in the position of 8.).

前記プローブスト7カ13に収納支持されるプローブは
測定子の位置が変更されるものとされないものの両方で
あってもよく、また測定子の位置が変更されるプローブ
のみを収納支持してもよい。
The probes housed and supported in the probe stop 7 13 may be both those whose measuring points are changed in position and those whose measuring points are not changed, or only probes whose measuring points are changed in position may be housed and supported. .

測定子の位置の調整は、本実施例のようにプローブ本体
の径方向に直線移動させるものに限らず、例えば測定子
をプローブ本体に対し水平軸を中心に首振りさせるもの
、垂直軸を中心に回動させるもの、垂直軸に沿って上下
動させるもの、或いはこれらの動きを複合的に行わせる
ものであうでもよい、プローブストッカ13に測定子の
位置が変更される複数のプローブを支持させる場合には
、測定子の位置変更機構を作動させるモーター等による
前記駆動手段30をそれぞれのプローブ毎に設けてもよ
いが、1個の駆動手段30を複数のプローブに併用する
ようにしてもよい。
Adjustment of the position of the probe is not limited to linear movement in the radial direction of the probe body as in this example; for example, adjustment of the probe body by swinging the probe about a horizontal axis, or about a vertical axis. In the case where the probe stocker 13 supports a plurality of probes whose measuring points are changed in position, the probe stocker 13 may be configured to rotate the probe vertically, move up and down along the vertical axis, or perform a combination of these movements. In this case, the driving means 30 such as a motor for operating the position change mechanism of the probe may be provided for each probe, but one driving means 30 may be used for a plurality of probes.

本実施例におけるプローブは真円度等の測定用のもので
あったため、前記検出ユニット17は連続したアナログ
信号を出力する検出部を有するものであったが、この検
出ユニットは測定子が測定対象物に接触し姿勢変化が生
じたときにタッチ信号を出力する検出部を含むものであ
ってもよい。
Since the probe in this embodiment was for measuring roundness, etc., the detection unit 17 had a detection section that outputs continuous analog signals. The device may include a detection unit that outputs a touch signal when a posture change occurs due to contact with an object.

即ち、プローブは三次元測定機に取付けられる例えば光
学的スケールによる変位検出器により測定対象物の座標
位置や長さ寸法等を測定するためのタッチ信号プローブ
であってもよく、要すれば測定子が測定対象物に接触し
て姿勢変化が生じたときに出力信号を発生する検出部を
含んで形成される検出ユニットを備えた測定信号発生器
であればよい、また前記位置変更機構16を構成する前
記保持部材23に検出ユニット17を固定的に取付ける
のではなく、着脱自在に取付ける構造とすることにより
、アナログ信号発生用の検出ユニットとタッチ信号発生
用の検出ユニットとを交換できるようにしてもよい。
That is, the probe may be a touch signal probe for measuring the coordinate position, length, etc. of the object to be measured using a displacement detector using, for example, an optical scale attached to a coordinate measuring machine, and if necessary, a measuring point. Any measurement signal generator may be used as long as it is equipped with a detection unit that includes a detection unit that generates an output signal when the object comes into contact with the object to be measured and changes its posture, and the position change mechanism 16 is configured. The detection unit 17 is not fixedly attached to the holding member 23, but is detachably attached, so that the detection unit for analog signal generation and the detection unit for touch signal generation can be replaced. Good too.

本実施例では駆動手段30を設ける静止体としてのプロ
ーブストッカ13は前記載物台3に設けられでいたが、
これを他の三次元測定l1ti成部材に設けてもよく或
いは三次元測定機以外の場所に設けてもよく、要すれば
駆動手段をプローブ本体外の静止体に設ければよい。
In this embodiment, the probe stocker 13 as a stationary body provided with the driving means 30 was not provided on the document table 3;
This may be provided on another three-dimensional measuring member or may be provided at a location other than the three-dimensional measuring machine, and if necessary, the driving means may be provided on a stationary body outside the probe main body.

更に本発明に係る測定信号発生器は測定信号発生器を自
動交換するタイプの三次元測定機のみならず手動で交換
するタイプの三次元測定機にも適用でき、また三次元測
定機は本実施例のように自動送り型に限らず手動送り型
であってもよい。
Furthermore, the measurement signal generator according to the present invention can be applied not only to a type of coordinate measuring machine in which the measurement signal generator is replaced automatically, but also to a type of coordinate measuring machine in which the measuring signal generator is manually replaced. It is not limited to the automatic feeding type as in the example, but may be a manual feeding type.

更にまた本発明に係る測定信号発生器は測定対象物に対
し測定信号発生器が移動する三次元測定機、測定信号発
生器に対し測定対象物が移動する三次元測定機、及びこ
れらの両方が移動する三次元測定機に適用でき、要すれ
ば三次元測定機は載物台に載1された測定物と測定機本
体に支持された測定信号発生器とが相対移動するもので
あればよい。
Furthermore, the measurement signal generator according to the present invention can be used in a three-dimensional measuring machine in which the measurement signal generator moves relative to the object to be measured, a three-dimensional measuring machine in which the object to be measured moves relative to the measurement signal generator, or both of these. It can be applied to a moving three-dimensional measuring machine, and if necessary, the three-dimensional measuring machine may be one in which the object to be measured placed on the stage and the measurement signal generator supported by the measuring machine body move relative to each other. .

以上に加えて本発明に係る測定信号発生器は三次元測定
機のみならず、二次元や一次元の測定機にも適用可能で
ある。
In addition to the above, the measurement signal generator according to the present invention is applicable not only to three-dimensional measuring machines but also to two-dimensional and one-dimensional measuring machines.

〔発明の効果〕 本発明によれば、測定子姿勢調整装置を構成する位置変
更機構と駆動手段等を分離独立して配置したため、前の
計測工程を行っているときに次の計測工程に使用する測
定信号発生器の測定子を位置変更でき、このため測定作
業時間が短縮されて作業の迅速化が達成され、また、1
つの測定信号発生器で測定できる測定対象物を拡大でき
、測定信号発生器の適用範囲を広げることができる。
[Effects of the Invention] According to the present invention, since the position changing mechanism and the drive means, etc. that constitute the probe attitude adjustment device are arranged separately and independently, they can be used for the next measurement process while the previous measurement process is being performed. It is possible to change the position of the probe of the measurement signal generator, which shortens the measurement work time and speeds up the work.
The number of measurement objects that can be measured with one measurement signal generator can be expanded, and the range of application of the measurement signal generator can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例に係る測定信号発生器が使用される三
次元測定機の全体斜視図、第2図は測定信号発生器を示
す一部断面図であって、第1図の三次元測定機に設けら
れたプローブストフカに測定信号発生器が支持されてい
る状態を示す図である。 4・・・測定対象物、10・・・測定信号発生器である
プローブ、11・・・測定機本体、13・・・静止体で
あるプローブストッカ、15・・・プローブ本体、15
A・・・シャンク部、16・・・位置変更機構、17川
検出ユニツト、18・・・測定子、29・・・電磁クラ
ッチ、30・・・駆動手段、31・・・ロータリーエン
コーダ。
FIG. 1 is an overall perspective view of a three-dimensional measuring machine in which a measurement signal generator according to the present embodiment is used, and FIG. 2 is a partial cross-sectional view showing the measurement signal generator. FIG. 3 is a diagram showing a state in which a measurement signal generator is supported by a probe stiffener provided in a measuring machine. 4...Measurement object, 10...Probe which is a measurement signal generator, 11... Measuring machine main body, 13... Probe stocker which is a stationary body, 15... Probe main body, 15
A...Shank portion, 16...Position changing mechanism, 17 River detection unit, 18...Measuring point, 29...Electromagnetic clutch, 30...Driving means, 31...Rotary encoder.

Claims (1)

【特許請求の範囲】[Claims] (1、)測定対象物の測定面に当接される測定子と、こ
の測定子を測定対象物の反力により姿勢変化可能且つこ
の反力が除かれたときに原姿勢に復帰可能に支持すると
ともに、前記測定子の姿勢変化が生じたときに出力信号
を発生する検出部を含んで形成された検出ユニットと、
測定機本体に取付けるためのシャンク部を有するプロー
ブ本体と、このプローブ本体に対する前記測定子の位置
を強制的に変更するためのものであって、プローブ本体
外の他の静止体に設けられた駆動手段によって駆動され
る位置変更機構とを備えていることを特徴とする測定信
号発生器。
(1) A probe that comes into contact with the measurement surface of the object to be measured, and a support that allows the probe to change its posture due to the reaction force of the object to be measured, and to return to its original posture when the reaction force is removed. and a detection unit formed including a detection section that generates an output signal when a change in attitude of the measuring head occurs;
A probe body having a shank portion for attachment to the measuring instrument body, and a drive provided on another stationary body outside the probe body for forcibly changing the position of the probe with respect to the probe body. and a position change mechanism driven by means.
JP5508885A 1985-03-19 1985-03-19 Generator for measurement signal Pending JPS61213625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5508885A JPS61213625A (en) 1985-03-19 1985-03-19 Generator for measurement signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5508885A JPS61213625A (en) 1985-03-19 1985-03-19 Generator for measurement signal

Publications (1)

Publication Number Publication Date
JPS61213625A true JPS61213625A (en) 1986-09-22

Family

ID=12988970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5508885A Pending JPS61213625A (en) 1985-03-19 1985-03-19 Generator for measurement signal

Country Status (1)

Country Link
JP (1) JPS61213625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597854A (en) * 2016-12-28 2017-04-26 爱德森(厦门)电子有限公司 Adaptive adjustment servo control device and method for object attitude

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597854A (en) * 2016-12-28 2017-04-26 爱德森(厦门)电子有限公司 Adaptive adjustment servo control device and method for object attitude

Similar Documents

Publication Publication Date Title
US6973738B2 (en) Measuring method and device, machine tool having such device, and work processing method
CN108733096B (en) Method for controlling drive stage device and method for controlling shape measuring device
JP2011127952A (en) Apparatus for measuring surface texture
EP3382327A1 (en) Compact coordinate measurement machine configuration with large working volume relative to size
KR20080088365A (en) Detection method for a fiducial point of a workpiece on machine and machining apparatus using the same
JP2007198791A (en) Surface property measuring instrument
JP2001183128A (en) Coordinate measuring instrument
JP3524385B2 (en) 3D shape measuring device
JP2000266534A (en) Surface profile measuring apparatus, inclination adjuster therefor and method for adjusting attitude of object
JPH091443A (en) Measuring device
JP2005037353A (en) Width measuring method and surface property measuring equipment
JPS61213625A (en) Generator for measurement signal
JP6752066B2 (en) Part program selection device, industrial machinery, and part program selection method
JP6800421B1 (en) Measuring device and measuring method
JP3776526B2 (en) Measuring method
JP4686125B2 (en) Width measuring method and surface texture measuring machine
CN114061502A (en) Control method of shape measuring apparatus and storage medium
JP5064725B2 (en) Shape measurement method
JPS62265520A (en) Three-dimensional measuring machine equipped with two detecting elements
JPS63289410A (en) Three-dimensional measuring instrument
JP2021168043A (en) Method of machining
US20190056210A1 (en) Measuring device
JPS61213624A (en) Three-dimensional measuring machine
JPS61213623A (en) Three-dimensional machine
CN115427190B (en) Machine tool