JPS61213486A - High-temperature treatment furnace - Google Patents

High-temperature treatment furnace

Info

Publication number
JPS61213486A
JPS61213486A JP60054148A JP5414885A JPS61213486A JP S61213486 A JPS61213486 A JP S61213486A JP 60054148 A JP60054148 A JP 60054148A JP 5414885 A JP5414885 A JP 5414885A JP S61213486 A JPS61213486 A JP S61213486A
Authority
JP
Japan
Prior art keywords
treatment furnace
composite material
temperature treatment
internal structural
furnace according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60054148A
Other languages
Japanese (ja)
Other versions
JPS6356471B2 (en
Inventor
新島 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP60054148A priority Critical patent/JPS61213486A/en
Publication of JPS61213486A publication Critical patent/JPS61213486A/en
Publication of JPS6356471B2 publication Critical patent/JPS6356471B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Inorganic Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温処理炉に関するものである。更に詳しくは
、炭素繊維で強化した実質的に炭素質から成る複合材料
(以下C/Cと略記する)が内部構造部材として使用さ
れているところの有機物を炭素化あるいは黒1))化す
る際、あるいはセラミックの製造の際に好適に使用され
る高温処理炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high temperature processing furnace. More specifically, when a composite material made essentially of carbonaceous material reinforced with carbon fibers (hereinafter abbreviated as C/C) is used as an internal structural member, organic matter is carbonized or blackened1)). Alternatively, the present invention relates to a high-temperature treatment furnace suitably used in the production of ceramics.

(従来技術〕 従来、アクリロニトリル系繊維、レーヨン繊維、ピッチ
繊維などの有機繊維を加熱処理炉で炭素化あるいは黒鉛
化することにより炭素#A瞳あるいは黒鉛繊維を得るこ
とは知られている。
(Prior Art) It has been known to obtain carbon #A pupils or graphite fibers by carbonizing or graphitizing organic fibers such as acrylonitrile fibers, rayon fibers, and pitch fibers in a heat treatment furnace.

このような加熱処理炉は主として被処理繊維の処理室と
なる中央空洞を有する炉芯筒部と断熱材等を介して配設
された外壁部とより構成されている。
Such a heat treatment furnace is mainly composed of a core tube portion having a central cavity that serves as a treatment chamber for the fibers to be treated, and an outer wall portion disposed through a heat insulating material or the like.

このような加熱処理炉において断熱材は断熱金属、セラ
ミックあるいは通常の炭素材で支持されている。
In such heat treatment furnaces, the insulation is supported by insulating metal, ceramic, or conventional carbon material.

耐熱金属は、その使用温度範囲が狭く、またセラミック
及び通常の炭素材はその機械的特性、特に1ili1強
さ、曲げ強さ等が小さく取扱いに困難をきたした。
Heat-resistant metals have a narrow operating temperature range, and ceramics and ordinary carbon materials have low mechanical properties, particularly low strength and bending strength, making them difficult to handle.

本発明者は、このような問題について鋭意検討の結果、
構造部材としてC70を使用することによりこれらの問
題を解決し得ることを見出し本発明に至った。
As a result of intensive study on such problems, the inventor of the present invention found that
The inventors have discovered that these problems can be solved by using C70 as a structural member, leading to the present invention.

〔発明の構成〕[Structure of the invention]

すなわち本発明は、炭素繊維で強化した実質的に炭素質
から成る複合材料を内部構造部材としたIj4温処理炉
である。
That is, the present invention is an Ij4 temperature treatment furnace whose internal structural members are made of a carbon fiber-reinforced, substantially carbonaceous composite material.

具体的には、断熱支持材、炉芯筒支持材、ワーク支持□
材などの内部構造部材が炭素質あるいは黒鉛質wagで
強化した実質的に炭素質あるいは黒鉛質から成る複合材
料で構成されている高温加熱処理炉である。
Specifically, heat insulation support material, furnace core cylinder support material, work support material □
This is a high-temperature heat treatment furnace in which internal structural members such as materials are made of a composite material substantially made of carbonaceous or graphite reinforced with carbonaceous or graphite wag.

このような内部構造部材を使用した高温加熱処理炉は長
期間安定的に運転でき、該炉によると、品質の安定した
製品の製造が可能となる。
A high-temperature heat treatment furnace using such internal structural members can operate stably for a long period of time, and it is possible to manufacture products with stable quality.

本発明において、C70の強化材とした炭素繊維は、ア
クリロニトリル系炭素IJAM、ピッチ系炭素繊維、レ
ーヨン系炭素繊維、黒鉛tlAH等である。C70にお
ける強化材の形態は織物、ランダムマット、紙およびこ
れらの積層物であり、繊維自体は連続繊維、非連続繊維
を使用できるが、熱伝導性を低下させる意味から非連続
繊維を使用することが好ましい。特にスパンヤーンクロ
ス積層物はC70の低熱伝導性、切削加工性の面で好ま
しい。
In the present invention, carbon fibers used as reinforcing materials for C70 include acrylonitrile carbon IJAM, pitch carbon fiber, rayon carbon fiber, graphite tlAH, and the like. The form of the reinforcing material in C70 is woven fabric, random mat, paper, and laminates thereof, and the fibers themselves can be continuous fibers or discontinuous fibers, but discontinuous fibers should be used in order to reduce thermal conductivity. is preferred. In particular, spun yarn cloth laminates are preferred in terms of C70's low thermal conductivity and machinability.

C70における強化材IIIの1m体積含有率(容量)
は10〜65%が好ましい。含有率が10%より低いと
曲げ強さ等の機械的特性が低下し、逆に65%より高く
なるとC70の製造工程において層間での剥離等破損す
る頻′度が高くなる。
1m volume content (capacity) of reinforcement III in C70
is preferably 10 to 65%. If the content is lower than 10%, mechanical properties such as bending strength will deteriorate, and if it is higher than 65%, damage such as interlayer peeling will occur more frequently in the C70 manufacturing process.

特に好ましくは20〜55%である。Particularly preferably 20 to 55%.

本発明におけるC70のtJmは、炭素繊維あるいは黒
鉛mmにフェノール、フランあるいはエポキシ等の熱硬
化性樹脂を含浸し所望の形状に成形硬化後、不活性雰囲
気中で炭素化あるいは黒鉛化し複合材料とする。次に必
要とされる機械的特性を得られるまで、熱硬化性樹脂あ
るいはピッチ等を該複合材料に含浸、更に炭素化あるい
は黒鉛化を行ない緻密化する。この緻密化工程はIKm
に保持した該複合材料あるいは所望の形状に保持した炭
素繊維または黒鉛mMに炭化水素ガスを加熱分解して炭
素を蒸着する、いわゆるケミカル・ペーパー・ディポジ
ション(CvD)法によって行なってもよい。
The tJm of C70 in the present invention is determined by impregnating carbon fiber or graphite mm with a thermosetting resin such as phenol, furan, or epoxy, molding it into a desired shape, curing it, and then carbonizing or graphitizing it in an inert atmosphere to make a composite material. . Next, the composite material is impregnated with a thermosetting resin, pitch, etc., and then carbonized or graphitized to make it denser until the required mechanical properties are obtained. This densification process is IKm
This may be carried out by a so-called chemical paper deposition (CvD) method in which carbon is vapor deposited by thermally decomposing a hydrocarbon gas onto the composite material held in a desired shape or carbon fibers or graphite mm maintained in a desired shape.

緻密化はC70のrA密度が0.8〜1.7(+ /C
11となるまで行なうのが好ましい。  1.70 I
Km”より^くなるとC70の熱伝導が過大になり、得
られたC70は高温処理炉の内部構造部材としては不適
当となる。逆に嵩密度が0.8g/Cl1Kより低いと
機械的特性が不十分となる。
Densification occurs when the rA density of C70 is 0.8 to 1.7 (+ /C
It is preferable to continue until the number reaches 11. 1.70 I
If the bulk density is lower than 0.8g/Cl1K, the thermal conductivity of C70 will be excessive, making the obtained C70 unsuitable as an internal structural member of a high-temperature treatment furnace.On the other hand, if the bulk density is lower than 0.8g/Cl1K, the mechanical properties will deteriorate. becomes insufficient.

また、本発明において使用されるC70は製造工程にお
いて、800〜2400℃の熱処理を受けているものが
よい。熱処理温度が低いと、C70に揮発分が残存し高
温処理炉の雰囲気純度を低下させる。一方2400℃超
の熱処理を受けると、C70の黒鉛化が進み、強度劣化
あるいは熱伝導の上昇等を生じ内部構造部材として不適
となる。
Further, the C70 used in the present invention is preferably heat-treated at 800 to 2400°C during the manufacturing process. If the heat treatment temperature is low, volatile matter remains in C70, reducing the purity of the atmosphere in the high temperature treatment furnace. On the other hand, if C70 is subjected to heat treatment at temperatures exceeding 2400° C., graphitization of C70 progresses, resulting in deterioration in strength and increase in thermal conductivity, making it unsuitable as an internal structural member.

高温処理炉における内部構造部材の内、本発明のC70
を特に好適に利用できる部材としては、誘導加熱炉のサ
セプターあるいは通常の炉芯管、抵抗加熱用のヒーター
エレメント、ワークサポートあるいはルツボ、断熱材支
持材等がある。
Among the internal structural members in the high temperature treatment furnace, C70 of the present invention
Particularly suitable members include a susceptor for an induction heating furnace or a normal furnace core tube, a heater element for resistance heating, a work support or crucible, a heat insulating support material, and the like.

これらの部材は通常高部雰囲気で使用されるため、不活
性ガス等の非酸化性雰囲気でシールされている。
Since these members are normally used in a high atmosphere, they are sealed in a non-oxidizing atmosphere such as an inert gas.

断熱材支持材は、通常その一端のみを外壁で支持固定す
るため、いわゆる片持ばりとなる。この片持ばりは断熱
材を支持することにより通常等分布荷重を受け、従って
、先端(自由端)より固定端に移るに従ってより大きな
応力を受けるため、形状を変化させて先端部に比し固定
部をより厚くあるいは広くすること、または下側に補強
材をT定形に配置することが行なわれている。支持材の
先端部の断面積を小さくすることは断熱効率の点からは
好ましいが、断熱材の支持の点からは不安定になる傾向
がある。これらの点を考慮して断熱材支持構造部材の先
端の密度を小さくし固定端部にかけ密度勾配を付けるこ
とにより断熱効果と断熱材の安定な支持とを両立させる
ことが可能となる。
Usually, only one end of the heat insulating support material is supported and fixed by the outer wall, so it becomes a so-called cantilever beam. This cantilever beam usually receives an evenly distributed load by supporting the insulation material, and therefore receives greater stress as it moves from the tip (free end) to the fixed end, so it changes its shape and is fixed compared to the tip. It has been attempted to make the section thicker or wider, or to place reinforcing material on the underside in a T-shape. Although it is preferable to reduce the cross-sectional area of the tip of the support material from the viewpoint of heat insulation efficiency, it tends to become unstable from the viewpoint of supporting the heat insulation material. Taking these points into consideration, it is possible to achieve both a heat insulating effect and stable support of the heat insulating material by reducing the density at the tip of the heat insulating material supporting structural member and creating a density gradient toward the fixed end.

(実施例) 実施例1 直径7μの炭素繊維ストランド〔東邦ベスロン(株)製
ベスファイトHTA −12K)にフ”ラン樹脂を含浸
して繊維体積含有率55%になるように内径12aa+
のセラミックパイプ中に挿入し、加熱硬化後、窒素雰囲
気中1000℃にて炭素化して一方向炭素繊維強化炭素
複合材を得た。該複合材の周囲に、3000フイラメン
トの炭素11AH平織クロス〔東邦ベスロン(株)製ベ
スファイトクロスW−3101)にフェノール樹脂をレ
ジンコンテント36%含浸したプリプレグを外径20m
+aになるまで巻き付けた後、170℃で加熱硬化後窒
素雰囲気中1000℃で炭素化して、更にコールタール
ピッチを含浸及び炭素化を30行なって、中央部一方向
強化、外層部二方向強化で嵩密度1.6g /am” 
、繊維体積含有率53%の丸棒状複合材を得た。
(Example) Example 1 A carbon fiber strand with a diameter of 7 μm (Besphite HTA-12K manufactured by Toho Bethlon Co., Ltd.) was impregnated with furan resin to obtain an inner diameter of 12 aa+ so that the fiber volume content was 55%.
The material was inserted into a ceramic pipe, heated and cured, and then carbonized at 1000° C. in a nitrogen atmosphere to obtain a unidirectional carbon fiber reinforced carbon composite material. Around the composite material, a prepreg made of 3000 filament carbon 11AH plain weave cloth (Besphite cloth W-3101 manufactured by Toho Bethlon Co., Ltd.) impregnated with 36% resin content of phenolic resin was placed with an outer diameter of 20 m.
After wrapping it until it reaches +a, it is heated and cured at 170℃, carbonized at 1000℃ in a nitrogen atmosphere, and further impregnated with coal tar pitch and carbonized for 30 times to strengthen the center part in one direction and the outer layer in two directions. Bulk density 1.6g/am”
A round rod-shaped composite material with a fiber volume content of 53% was obtained.

炭素繊維マット(目付250Q/■鵞)にフェノール樹
脂をレジンコンテント38%含浸したプリプレグを@I
lv&、170℃で加熱硬化して繊維体積含有率45%
、密度1.20 /ca+’の複合材を得た。この複合
材を窒素雰囲気中1000℃で炭素化後、ピッチの含浸
及び炭素化を3回行なって厚さ10mmの平板状複合材
料を得た。
Pre-preg made by impregnating 38% resin content with phenol resin in carbon fiber mat (fabric weight 250Q/■) @I
lv&, heated and cured at 170℃, fiber volume content 45%
, a composite material with a density of 1.20 /ca+' was obtained. This composite material was carbonized at 1000° C. in a nitrogen atmosphere, and then impregnated with pitch and carbonized three times to obtain a flat composite material with a thickness of 10 mm.

3000フイラメントの炭素m雑平織クロス(目付20
0g/w ’ )にフェノールamをレジンコンテント
35%含浸したプリプレグを積層後加熱硬化して厚さ2
0gvSIIINt体積含有率50%、密度1.3g 
/cl”の硬化物を得た。この硬化物を窒素雰囲気中で
炭素化後、ピッチの含浸及び炭素化を5回繰返して厚さ
2〇−転嵩密度1.6g/CI”の複合材料を得た。
3000 filament carbon m plain weave cloth (basis weight 20
After laminating prepregs impregnated with 35% resin content of phenol am to
0gvSIIINT volume content 50%, density 1.3g
After carbonizing this cured product in a nitrogen atmosphere, pitch impregnation and carbonization were repeated five times to obtain a composite material with a thickness of 20-1.6 g/Cl" and a bulk density of 1.6 g/Cl". I got it.

厚さ10+gmの該平板状複合材の一端を高温熱処理炉
の外壁に固定し、この平板に直径22mg+の穴をあけ
て、該丸棒状複合材を貫通往しめ、この丸棒状複合材の
両端部に雄ネジを切り、前記の厚さ20avの複合材に
、これに合うように雌ネジを切って、ナツト形状とし、
前記の丸棒を固定した。この丸棒にて平板状フェルト断
熱材を貫通して固定し、高温処理炉の断熱材の固定支持
材とした。
One end of the flat composite material with a thickness of 10+gm is fixed to the outer wall of a high-temperature heat treatment furnace, a hole with a diameter of 22 mg+ is made in this flat plate, and the round bar-shaped composite material is passed through it, and both ends of this round bar-shaped composite material are A male thread was cut into the composite material with a thickness of 20 av, and a female thread was cut to match this into the composite material with a thickness of 20 av to form a nut shape.
The round bar described above was fixed. This round rod penetrated and fixed the flat felt insulation material to serve as a fixed support material for the insulation material of a high-temperature treatment furnace.

この高温熱処理炉において断熱材に囲まれた炉芯部を熱
処理室とし、窒素雰囲気にて1600℃にて6か月間保
持したが断熱材のずれ等、高温熱処理炉の安定な運転に
支障をきたす様な現象は認められなかった。
In this high-temperature heat treatment furnace, the furnace core surrounded by heat-insulating material was used as a heat-treating chamber, and the temperature was maintained at 1,600°C in a nitrogen atmosphere for 6 months. No similar phenomenon was observed.

特許出願人  東Xヘスロシ林式会社 代理人弁理士  土 居 三 部 手続補正圓 昭和60年7月22日Patent applicant: Tox Heslosi Hayashiki Company Representative Patent Attorney, Third Department procedural correction circle July 22, 1985

Claims (9)

【特許請求の範囲】[Claims] (1)炭素繊維で強化した実質的に炭素質から成る複合
材料を内部構造部材とした高温処理炉。
(1) A high-temperature treatment furnace whose internal structural members are made of a composite material made essentially of carbonaceous material reinforced with carbon fibers.
(2)複合材料を断熱材支持材とした特許請求の範囲(
1)の高温処理炉。
(2) Claims in which a composite material is used as a heat insulating support material (
1) High temperature processing furnace.
(3)複合材料を片持ばり状の断熱材支持材とした特許
請求の範囲(1)の高温処理炉。
(3) The high-temperature treatment furnace according to claim (1), in which a composite material is used as a cantilever-shaped heat insulating support material.
(4)800〜2400℃で熱処理した複合材料を内部
構造部材とした特許請求の範囲(1)の高温処理炉。
(4) The high-temperature treatment furnace according to claim (1), in which the internal structural member is made of a composite material heat-treated at 800 to 2400°C.
(5)密度が0.8〜1.7g/cm^3である複合材
料を内部構造部材とした特許請求の範囲(1)の高温処
理炉。
(5) A high-temperature treatment furnace according to claim (1), in which the internal structural member is made of a composite material having a density of 0.8 to 1.7 g/cm^3.
(6)繊維体積含有率が20〜55%である複合材料を
内部構造部材とした特許請求の範囲(1)の高温処理炉
(6) The high-temperature treatment furnace according to claim (1), in which the internal structural member is made of a composite material having a fiber volume content of 20 to 55%.
(7)炭素繊維が非連続繊維である複合材料を内部構造
部材とした特許請求の範囲(1)の高温処理炉。
(7) The high-temperature treatment furnace according to claim (1), in which the internal structural member is made of a composite material in which the carbon fibers are discontinuous fibers.
(8)炭素繊維織物の積層物である複合材料を内部構造
部材とした特許請求の範囲(1)の高温処理炉。
(8) The high-temperature treatment furnace according to claim (1), wherein the internal structural member is a composite material that is a laminate of carbon fiber fabrics.
(9)炭素繊維織物がスパンヤーンクロスである特許請
求の範囲(8)の高温処理炉。
(9) The high temperature treatment furnace according to claim (8), wherein the carbon fiber fabric is a spun yarn cloth.
JP60054148A 1985-03-20 1985-03-20 High-temperature treatment furnace Granted JPS61213486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054148A JPS61213486A (en) 1985-03-20 1985-03-20 High-temperature treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054148A JPS61213486A (en) 1985-03-20 1985-03-20 High-temperature treatment furnace

Publications (2)

Publication Number Publication Date
JPS61213486A true JPS61213486A (en) 1986-09-22
JPS6356471B2 JPS6356471B2 (en) 1988-11-08

Family

ID=12962464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054148A Granted JPS61213486A (en) 1985-03-20 1985-03-20 High-temperature treatment furnace

Country Status (1)

Country Link
JP (1) JPS61213486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167584A (en) * 1987-12-21 1989-07-03 Kureha Chem Ind Co Ltd Carbon fiber series heat insulating material
JPH0250079A (en) * 1988-08-09 1990-02-20 Kanto Yakin Kogyo Kk High-temperature heating furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295559A (en) * 1962-09-17 1967-01-03 Union Carbide Corp Induction heating susceptor and method for producing same
JPS5035930A (en) * 1973-07-12 1975-04-04
JPS5186709U (en) * 1974-12-29 1976-07-12
JPS5616575A (en) * 1979-07-18 1981-02-17 Toho Rayon Co Ltd Friction material and its preparation
JPS5734085A (en) * 1980-08-06 1982-02-24 Toho Beslon Co Manufacture of carbon fiber reinforced carbon composite material
JPS57209883A (en) * 1981-06-16 1982-12-23 Tokai Carbon Kk Manufacture of carbon fiber reinforced carbon material
JPS59102880A (en) * 1982-12-02 1984-06-14 東レ株式会社 High temperature heat resistant material
US4581263A (en) * 1984-08-27 1986-04-08 Fiber Materials, Inc. Graphite fiber mold

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295559A (en) * 1962-09-17 1967-01-03 Union Carbide Corp Induction heating susceptor and method for producing same
JPS5035930A (en) * 1973-07-12 1975-04-04
JPS5186709U (en) * 1974-12-29 1976-07-12
JPS5616575A (en) * 1979-07-18 1981-02-17 Toho Rayon Co Ltd Friction material and its preparation
JPS5734085A (en) * 1980-08-06 1982-02-24 Toho Beslon Co Manufacture of carbon fiber reinforced carbon composite material
JPS57209883A (en) * 1981-06-16 1982-12-23 Tokai Carbon Kk Manufacture of carbon fiber reinforced carbon material
JPS59102880A (en) * 1982-12-02 1984-06-14 東レ株式会社 High temperature heat resistant material
US4581263A (en) * 1984-08-27 1986-04-08 Fiber Materials, Inc. Graphite fiber mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167584A (en) * 1987-12-21 1989-07-03 Kureha Chem Ind Co Ltd Carbon fiber series heat insulating material
JPH0250079A (en) * 1988-08-09 1990-02-20 Kanto Yakin Kogyo Kk High-temperature heating furnace
JPH0434068B2 (en) * 1988-08-09 1992-06-04 Kanto Yakin Kogyo

Also Published As

Publication number Publication date
JPS6356471B2 (en) 1988-11-08

Similar Documents

Publication Publication Date Title
US6372192B1 (en) Carbon fiber manufacturing via plasma technology
US5750058A (en) Method for the preparation of high modulus carbon and graphite articles
EP1908740B1 (en) CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER
JPS6118951B2 (en)
WO1999019273A1 (en) Fibrous composite material and process for producing the same
EP0280233B1 (en) Method for producing carbon-carbon composite materials
JP2664047B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPS61213486A (en) High-temperature treatment furnace
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
JP3829964B2 (en) Method for producing carbon fiber reinforced carbon composite
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JPH07276549A (en) Heat insulation material
JPH10167879A (en) Crucible for pulling up single crystal
JPS6252422A (en) Sleeve for measuring temperature of high temperature treatment furnace and it use
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPH0255393B2 (en)
JPH10121371A (en) Fiber structure for fiber-reinforced composite material and production of fiber reinforced composite material
JPH0426547A (en) Production of carbon reinforced carbon composite material
JP2669090B2 (en) Method for producing C / C composite material using C / C composite rod
JPH01145372A (en) Production of carbon fiber-reinforced carbonaceous composite
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JPH04238865A (en) Tubular combined structural material
JP2529148B2 (en) Method for manufacturing carbon / carbon composite material
JP2000169250A (en) Production of carbon fiber reinforced carbon composite material
JPH07291750A (en) Production of formed body for carbon/carbon composite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees