JPH01167584A - Carbon fiber series heat insulating material - Google Patents

Carbon fiber series heat insulating material

Info

Publication number
JPH01167584A
JPH01167584A JP32333187A JP32333187A JPH01167584A JP H01167584 A JPH01167584 A JP H01167584A JP 32333187 A JP32333187 A JP 32333187A JP 32333187 A JP32333187 A JP 32333187A JP H01167584 A JPH01167584 A JP H01167584A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
carbon fiber
carbon
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32333187A
Other languages
Japanese (ja)
Inventor
Akio Yoshida
吉田 昭男
Yukihiro Shibuya
渋谷 幸廣
Ikuo Seo
瀬尾 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP32333187A priority Critical patent/JPH01167584A/en
Publication of JPH01167584A publication Critical patent/JPH01167584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To prevent the deterioration of a heat insulating material surface because of generation gas and to prevent lowering of purity of a substance to be treated due to the dispersion of powdery dust from a heat insulating material, by a method wherein, in a carbon fiber series heat insulating material for a high temperature electric furnace, a carbonaceous sheet is laminated on a surface on the core side. CONSTITUTION:A bulky carbon fiber molded product wherein a felt formed by needle- punching carbon fiber is used as a base material and impregnated with resin having high carbonization factor and cured and carbonized is used as a heat insulating material for a high temperature electric furnace. A carbonaceous sheet is formed by a carbonized sheetform support and a carbonaceous matrix, showing anisotropy under a polarization microscope and fine mosaicform or isotropic optical structure with particle size of 10mum or less and having a carbon content of 95wt.% or more, a gas permeability of 10<-5>-10<-7>cm<2>/S, bulk density of 1.4-1.9g/cm<3>, and a thickness of 0.1-1mm. The carbonaceous sheet is securely laminated on the surface on the core side of the carbon fiber series heat insulating material. This constitution enables the prevention of deterioration of a heat insulating material surface and lowering of purity of a substance to be treated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維系断熱材、更に詳しくは、炉心側表
面に炭素質薄板をfi層した高温電気炉炭素lli維系
断熱材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a carbon fiber-based heat insulating material, and more particularly, to a high-temperature electric furnace carbon fiber-based heat insulating material having a fi layer of carbon thin plates on the surface of the reactor core.

(従来の技術と発明が解決しようとする問題点)焼結炉
、焼入炉、ろう付炉、炭化炉、熱処理炉、蒸着炉、結晶
成長炉、HIP炉等の高温電気炉(使用条件は一般に1
000〜3000℃)においては、炉心部は芸人材料、
ルツボ、発熱体等を囲繞する断熱材からなることは既に
知られている。
(Problems to be solved by the prior art and the invention) High-temperature electric furnaces such as sintering furnaces, quenching furnaces, brazing furnaces, carbonization furnaces, heat treatment furnaces, vapor deposition furnaces, crystal growth furnaces, HIP furnaces (use conditions are Generally 1
000-3000℃), the reactor core is made of entertainer material,
It is already known that it consists of a heat insulating material surrounding a crucible, a heating element, etc.

そして、断熱材として考慮すべき点は、(1)炉内の加
熱効果をあげるため輻射熱を完全に反射させる材料であ
ること、■水分の吸湿性が少ないこと、■熱容量が小さ
いこと、(4)軽量で安価であること、などが挙げられ
ている(杉山他「金属材料」、Ul[8] 、p、81
 (昭47))。
The following points should be taken into account as a heat insulating material: (1) It must be a material that completely reflects radiant heat to increase the heating effect inside the furnace, ■ It must have low moisture absorption, ■ It must have a small heat capacity, (4) ) being lightweight and inexpensive (Sugiyama et al. “Metal materials”, Ul[8], p. 81)
(Showa 47)).

ところで、そのような要求を゛満足すべき断熱材として
炭素繊維系断熱材が最近おしもおされもせぬ高温炉断熱
材としての地位を築きつつある(野崎他「工業加熱」銭
、[3] 、33 (昭61))。因みに、炭素繊維系
断熱材には、炭素繊維をニードルパンチして作られたフ
ェルト、このフェルトを基材とし、これに炭化率の高い
レジンを用いて任意の形状に含浸成形し、硬化させたの
ち、その成形体を炭化処理して作られた、かさ高な炭素
m維成形体などがある。この炭素繊維成形体は、黒鉛質
バインダーで圧縮成形されているので、平滑な表面と十
分な強度をもち、しかも自立性があるので、炉内ガスの
排気、導入などの際、ガスが高速度で流出、流入しても
粉じんやフェルト単糸の飛散が少なく、また、自立性が
あるため断熱材を炉に装填、交換する際、組立てるだけ
でよく、フェルトのような巻きつけも不要であり作業性
及び作業環境の改善に適した材料といえる(前掲誌p、
35及びそこに引用の特公昭5O−35930)。その
他成形断熱材にはフェルト単糸の飛散を一層よく防止し
あるいは表面強化のために、この成形体表面に黒鉛シー
トを積層したものおよび炭素繊維フェルトと黒鉛シート
とが交互にWi層された構造を有するもの(前掲誌p、
36及びそこに引用の実開昭54−92471)または
特殊なカーボンセメントをコーティングしたちのく前掲
誌9.38)などがある。
By the way, carbon fiber-based insulation materials have recently established themselves as insulation materials for high-temperature furnaces that can satisfy such requirements (Nozaki et al., ``Industrial Heating,'' Sen, [3]). ], 33 (Sho 61)). Incidentally, carbon fiber-based insulation materials include felt made by needle-punching carbon fibers, which is used as a base material, and is impregnated into any shape using resin with a high carbonization rate, and then cured. Later, a bulky carbon m-fiber molded body was produced by carbonizing the molded body. This carbon fiber molded body is compression molded with a graphite binder, so it has a smooth surface and sufficient strength, and it is also self-supporting, so when gas is exhausted or introduced into the furnace, the gas can flow at high speed. There is little scattering of dust or single felt threads even when the material flows out or flows in. Also, since it is self-supporting, it is only necessary to assemble it when loading or replacing the insulation material in the furnace, and there is no need to wrap it around it like felt. It can be said that it is a material suitable for improving workability and working environment (p.
35 and Japanese Patent Publication No. 5O-35930 cited therein). Other molded heat insulating materials have a structure in which graphite sheets are laminated on the surface of the molded body, and carbon fiber felt and graphite sheets are alternately layered in order to better prevent scattering of single felt fibers or to strengthen the surface. Those with (cited above, p.
36 and Utility Model Application Publication No. 54-92471 cited therein), or coated with a special carbon cement, cited above, 9.38).

しかしながら、このような炭素41維系断熱材であって
も、これをそのま−高温電気炉断熱材として用いたので
はなお断熱材としての性能が十分であるとは云い難り、
例えば、セラミックス焼結炉、シリコン単結晶生成炉で
は気化した金属や5iO7などの発生ガスのため断熱材
表面が劣化し寿命が短かくなり、断熱材からの粉じん飛
散により処理物の純度が低下する。また、断熱材表面に
黒鉛シートを貼ったもの(実開昭54−92471)は
黒鉛シートが剥離し易く、高純度化処理が出来ず製品純
度が悪化し易いので、特に高純度が要求される場合は不
適である、などの欠点があり、炭素繊維系断熱材につい
てこれらの点に関するさらなる改良が望まれている。
However, even if such a carbon-41 fiber-based insulation material is used as a high-temperature electric furnace insulation material, it cannot be said that its performance as an insulation material is sufficient.
For example, in ceramic sintering furnaces and silicon single crystal production furnaces, the surface of the insulation material deteriorates due to gases such as vaporized metals and 5iO7, shortening its life, and the purity of the processed material decreases due to dust scattering from the insulation material. . In addition, when a graphite sheet is pasted on the surface of a heat insulating material (Utility Model Application Publication No. 54-92471), the graphite sheet easily peels off, making it impossible to perform high-purity treatment and resulting in poor product purity, so a particularly high level of purity is required. However, carbon fiber-based heat insulating materials are desired to be further improved in these respects.

(問題点を解決するための手段と作用)本発明者は、高
温電気炉炭素繊維系断熱材についての上記欠点がこのよ
うな断熱材の炉心側表面に炭素質薄板を積層することに
より解消できることを見出し、この知見に基いて本発明
を完成した。
(Means and effects for solving the problems) The present inventor has proposed that the above-mentioned drawbacks of carbon fiber-based heat insulating materials for high-temperature electric furnaces can be overcome by laminating carbon thin plates on the core side surface of such heat insulating materials. The present invention was completed based on this finding.

このような欠点の解消は、炭素質薄板が緻密で、耐食性
を有していること、などによる。本発明によれば、また
炭素質薄板を交換することで断熱材の寿命を大巾に延長
することも可能である。なお、積層される炭素質薄板は
、薄いのでその熱容量が小さく、炉の冷却、加熱にはな
んらの支障もなく、また、黒鉛シートに較べて自立性に
優れ、任意の形状に取付けることができる。
Elimination of these drawbacks is due to the fact that the carbonaceous thin plate is dense and has corrosion resistance. According to the present invention, it is also possible to greatly extend the life of the heat insulating material by replacing the carbon thin plate. The laminated carbon thin plates are thin and have a small heat capacity, so there is no problem in cooling or heating the furnace, and they are more self-supporting than graphite sheets, so they can be installed in any shape. .

ここに、炭素質薄板としては、例えば、特開昭60−2
39358に係る方法によって製造できる基材として使
用された実質的に炭素化された薄い紙状支持体と、偏光
顕微鏡下に異方性を示す粒子の大きさが10μs以下の
微細なモザイク状または等方性の光学的構造を示す炭素
質マトリックスとの複合体よりなる炭素質薄板であって
、炭素含有量が95重量%以上で、嵩密度が1.4〜1
.9g/cdの物性を有する炭素質薄板や特開昭62−
46909に係る方法によって製造できる加熱により軟
化した後炭化固化する炭素原料を加熱プレスにより加圧
しながら炭化させ更に焼成する炭素質薄板の製造に当り
、炭素原料と加熱プレスの加圧面との間に溶融すること
なく炭化する紙状物質を配し、加圧しながら炭化させる
ことにより製造された炭素質薄板を挙げることができる
Here, as the carbonaceous thin plate, for example, JP-A-60-2
Substantially carbonized thin paper-like support used as a base material that can be produced by the method according to No. 39358, and fine mosaic-like or etc. particles with a particle size of 10 μs or less that exhibit anisotropy under a polarizing microscope. A carbonaceous thin plate made of a composite with a carbonaceous matrix exhibiting a tropic optical structure, with a carbon content of 95% by weight or more and a bulk density of 1.4 to 1.
.. Carbon thin plate with physical properties of 9g/cd and JP-A-62-
46909, in which a carbon raw material that is softened by heating and then carbonized and solidified is carbonized while being pressurized by a hot press, and then fired, in which melting occurs between the carbon raw material and the pressing surface of the hot press. One example is a carbonaceous thin plate manufactured by disposing a paper-like material that carbonizes without carbonizing and carbonizing it under pressure.

炭素質薄板は、高温電気炉炭素41維質断熱材表面の全
面に積層してもよく、また激しく腐食される部分を被覆
するように局部的に積層してもよい。
The carbonaceous thin plate may be laminated over the entire surface of the high-temperature electric furnace carbon 41 fibrous insulation material, or may be laminated locally so as to cover severely corroded areas.

積層固定は、例えば、通常のポルト/ナツト固定、即ち
炭素質薄板及び断熱材層の両者を貫通する孔に炭素質ボ
ルトを炉心側より通し、これを断熱材層の外側でナツト
締めすることで行なえる。
Lamination fixing can be achieved, for example, by using normal port/nut fixing, that is, passing carbon bolts from the core side through holes that penetrate both the carbon thin plate and the insulation layer, and tightening them with nuts on the outside of the insulation layer. I can do it.

炭素質薄板の板厚は、製造上の制約、強度、2次加工性
などの観点から下限は約0.1順であり、穴明は加工性
、熱容量、経済性などの観点から上限は約1Mであり、
これらの観点を総合して好ましくは約0.5〜約0.7
IR#lの範囲にある。薄板の断熱材表面へのW4層は
薄板1枚でもよく、必要に応じて数枚を重ねて用いても
よい。
The lower limit of the thickness of a carbon thin plate is approximately 0.1 from the viewpoint of manufacturing constraints, strength, secondary workability, etc., and the upper limit of the thickness of a carbon thin plate is approximately 0.1 from the viewpoint of workability, heat capacity, economic efficiency, etc. 1M,
Taking all these aspects into consideration, preferably about 0.5 to about 0.7
It is in the range of IR#l. The W4 layer on the surface of the thin plate heat insulating material may be one thin plate, or several layers may be stacked as necessary.

(実 施 例) フェルトを基材としてかさ高な構造の炭素lli維系断
熱材を使用し、100111#lの厚さで囲繞して形成
した650g1 x 1000rR1(底面積) x 
1000s (高さ)の体積の炉心部を有し発熱体が黒
鉛である角形高温電気炉によりセラミックスの焼結処理
を行なった。原料を炉心内ルツボに装入し2300℃ま
で加熱し、焼結を完了後室温まで冷却して製品を炉から
取出した。
(Example) 650g1 x 1000rR1 (base area) x 650g1 x 1000rR1 (base area) x 100111#l thick carbon fiber insulation material with bulky structure is used with felt as the base material.
Ceramics were sintered using a square high-temperature electric furnace having a core with a volume of 1000 s (height) and using graphite as a heating element. The raw material was charged into an in-core crucible and heated to 2300°C, and after completion of sintering, it was cooled to room temperature and the product was taken out from the furnace.

この昇降温を30回繰返したところ、炉内温度を230
0℃としたときに断熱材の外側の温度が300°C以上
となり、満足な操作条件が保てない異常な断熱特性とな
っていた。
After repeating this temperature rise and fall 30 times, the temperature inside the furnace reached 230.
When the temperature was set to 0°C, the temperature on the outside of the insulation material was 300°C or higher, resulting in abnormal insulation properties that made it impossible to maintain satisfactory operating conditions.

これは目視によっても明らかな断熱材表面の侵蝕による
断熱材表面の劣化によるものであった。
This was due to deterioration of the surface of the heat insulating material due to erosion of the surface of the heat insulating material, which was obvious even by visual inspection.

また、後の実験になるほど製品セラミックスは、断熱材
表面からの粉じん飛散による汚染の度合いが大きくなっ
ていた。
Furthermore, as the experiments progressed, the degree of contamination of the product ceramics due to dust scattering from the surface of the insulation material increased.

一方、炉心側表面全面に厚さ0.61+1#lの炭素質
薄板(特開昭60−239358号公報実施例2により
製造したもの)を炭素質ボルト/ナツト締めで積層した
以外は全く同じ条件で上記実験を繰返したところ、30
回の昇降温によってもなお炉内温度2300℃のときの
断熱材の外側の温度が300℃以下の操作条件が満足さ
れ、断熱特性になんら異常が認められなかった。また、
製品セラミックスはいずれも不純物の混入のない、高純
度のものであった。
On the other hand, the conditions were exactly the same except that carbon thin plates (manufactured according to Example 2 of JP-A-60-239358) with a thickness of 0.61+1#l were laminated on the entire surface of the core side using carbon bolts/nuts. When the above experiment was repeated, 30
Even though the temperature was raised and lowered several times, the operating condition of 300°C or less outside the heat insulating material when the furnace temperature was 2300°C was still satisfied, and no abnormality was observed in the heat insulating properties. Also,
All of the product ceramics were of high purity and free of impurities.

手続ネFti jE書 特許庁長官 古 1)文 毅 殿 1、事イ1の表示   昭和62年特許願第32333
1号2、発明の名称   炭素繊維系断熱材3、補iE
をする者 本件との関係  特許出願人 名 称    (110)呉羽化学工業株式会社4、代
 理 人   東京都新宿区新宿1丁目1番14号 山
田ビル8、補正の内容 (1)  明細書中、特許請求の範囲を別紙2の通り補
正する。
Procedure Ne Fti JE Director General of the Patent Office 1) Moon Takeshi 1, Indication of matter 1 1985 Patent Application No. 32333
No. 1 No. 2, Title of the invention Carbon fiber-based insulation material 3, Supplementary iE
Relationship to this case Patent applicant name (110) Kureha Chemical Industry Co., Ltd. 4, Agent Yamada Building 8, 1-1-14 Shinjuku, Shinjuku-ku, Tokyo Contents of amendment (1) Patent in the specification The scope of claims is amended as shown in Attachment 2.

■ 同書第2頁第3行の「水分の」を削除し、「少ない
」を「小さい」と補正する。
■ In the third line of page 2 of the same book, ``moisture'' is deleted and ``little'' is corrected to ``small''.

■ 同書第5頁下から第2行の「重量%以上で、」の侵
に「ガス透過係数が10−5〜1O−7ci/S、」を
加入する。
■ Add "gas permeability coefficient of 10-5 to 1 O-7 ci/S" to "at least % by weight" in the second line from the bottom of page 5 of the same book.

C) 同m第7頁及び第8頁を別紙1と差換える。C) Replace pages 7 and 8 with Attachment 1.

別楕1 穴明は加工性、熱容量、経済性などの観点から上限は約
1mであり、これらの観点を総合して好ましくは0,5
〜0.7mの範囲にある。薄板の断熱材表面への積層は
薄板1枚でもよく、必要に応じて数枚を重ねて用いても
よい。
Separate ellipse 1 The upper limit of hole drilling is approximately 1 m from the viewpoint of workability, heat capacity, economic efficiency, etc., and from these viewpoints, it is preferably 0.5 m.
~0.7m. A single thin plate may be laminated on the surface of the heat insulating material, or several thin plates may be stacked as necessary.

以下、本発明を実施例及び比較例により更に具体的に説
明するが、本発明は、その要旨を越えない限り、以下の
実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1 軟化点285℃、900℃焼成での炭化収率が72市Φ
%で、粒径10ミクロン以下が90重渋%以上である微
粉ピッチ12重a部、粒径10ミクロン以下のグラハイ
ド粉8重量部、メチルセルロース0.5田舟部、水80
重間部を均一に混合して得られたスラリーをピッチ系低
弾性率炭素1維を抄造して製造した目付30g/−のカ
ーボンペーパーに均一に塗布した侵乾燥して目付230
9/−のグリーンシートを製造した。このグリーンシー
ト4枚を積層して金型に充填し、300℃/hrの速度
で370℃まで昇温し、次いで15Kg/cλの圧力で
30分間プレスし、その模圧力をINg/ crlとし
、50℃/hrの速度で600℃まで昇温し、得られた
薄板を不活性ガス雰囲気中2000℃で焼成して厚さ0
.611111の炭素質薄板とした。
Example 1 Softening point: 285°C, carbonization yield at 900°C firing: 72mm
%, 12 parts by weight of fine powder pitch whose particle size is 10 microns or less is 90 parts by weight or more, 8 parts by weight of grahyde powder with a particle size of 10 microns or less, 0.5 parts by weight of methyl cellulose, 80 parts by weight of water.
The slurry obtained by uniformly mixing the heavy spaces was uniformly applied to carbon paper with a basis weight of 30 g/- manufactured by making pitch-based low elastic modulus carbon 1 fiber, and dried to obtain a basis weight of 230.
A green sheet of 9/- was produced. These four green sheets were stacked and filled into a mold, heated to 370°C at a rate of 300°C/hr, and then pressed at a pressure of 15 kg/cλ for 30 minutes, with a simulated pressure of INg/crl. The temperature was raised to 600°C at a rate of 50°C/hr, and the obtained thin plate was fired at 2000°C in an inert gas atmosphere to a thickness of 0.
.. 611111 carbon thin plate.

この炭素質薄板を、フェルトを基材として嵩高な構造の
炭素繊維系断熱材を使用し、100順の厚さで囲繞して
形成した650a15Ix 11000a+ (底面積
)X1000#III+(高さ)の体積の炉心部を有し
発熱体が黒鉛である角形高温電気炉の炉心側表面全面に
、炭素質ボルト及びナツトで積層固定した。
A volume of 650a15Ix 11000a+ (base area) x 1000#III+ (height) was formed by surrounding this carbon thin plate with a thickness of 100 using bulky carbon fiber insulation material with felt as the base material. The reactor was laminated and fixed with carbonaceous bolts and nuts on the entire surface of the core side of a rectangular high-temperature electric furnace having a core of 300 mL and a graphite heating element.

該角形高温電気炉を用いてセラミックスの焼結処理を行
った。
Ceramics were sintered using the square high-temperature electric furnace.

原料を炉心内ルツボに装入し、2300℃まで加熱し、
焼結を完了後高温まで冷却して製品を炉からとりだした
The raw materials are charged into a crucible in the core, heated to 2300℃,
After sintering was completed, the product was cooled to a high temperature and taken out from the furnace.

この昇降温を30回繰返しても炉内温度2300℃のと
きの断熱材の外側の温度が300℃以下の操作条件が満
足され、断熱特性になんら異常が認められなかった。
Even after repeating this temperature increase/decrease 30 times, the operating condition of 300° C. or less outside the heat insulating material when the temperature inside the furnace was 2300° C. was satisfied, and no abnormality was observed in the heat insulating properties.

また、製品セラミックスはいずれも不純物の混入のない
、高純度のものであった。
In addition, all of the product ceramics were of high purity and free of impurities.

比較例1 炉心側表面全面に炭素質薄板を積層しなかった以外は実
施例1と同一条件下でのセラミックスの焼結処理を行っ
たところ、この昇降温を30回繰返したところで断熱材
の外側の温度が300℃以上となり、満足な操作条件が
保てない異常な断熱特性となっていた。
Comparative Example 1 Ceramics were sintered under the same conditions as in Example 1 except that carbon thin plates were not laminated on the entire surface of the core side. After repeating this temperature rise and fall 30 times, the outside of the insulation material The temperature exceeded 300°C, resulting in abnormal heat insulation properties that made it impossible to maintain satisfactory operating conditions.

炉心側断熱材を観察したところ、断熱材表面゛の侵食劣
化が認められた。また、実験を繰返すほど、製品セラミ
ックスは断熱材表面からの粉塵飛散による汚染の度合い
が大きくなっていた。
When the core side insulation material was observed, erosion and deterioration of the insulation material surface was observed. Additionally, the more the experiment was repeated, the more the product ceramic became contaminated by dust particles flying from the surface of the insulation material.

比較例2 炭素質薄板の代わりに0.6m、のグラフオイル(米国
ユニオンカーバイド社製黒鉛シート)を積層した以外は
実施例1と同一条件下でのセラミックスの焼結処理を行
ったところ、この昇降温を15回繰返したところでグラ
フオイルの一部が欠落し、断熱効果が失われるとともに
製品セラミックスに汚染が生じ満足な結果が得られなか
った。
Comparative Example 2 Ceramics were sintered under the same conditions as in Example 1, except that 0.6 m of Graphoil (graphite sheet manufactured by Union Carbide, USA) was laminated instead of the carbon thin plate. After repeating the temperature rise and fall 15 times, part of the graph oil was missing, the heat insulating effect was lost, and the product ceramic was contaminated, resulting in unsatisfactory results.

■沃姦2 、特許請求の範囲 (1)  炭素化された紙状支持体と偏光顕微鏡下に異
方性を示ず粒子の大きさが10−以下の微細なモザイク
状または等方性の光学的構造を示す炭素質マトリックス
とからなる炭素含有量が95重量%以上で、ガス透過係
数が10−5〜10−7.J/s、嵩密度が1.4〜1
.9’j/c!である厚さ0.1〜1#1I11の炭素
質薄板を炉心側表面に積層した高温電気炉炭素繊維系断
熱材。
■Iokan 2, Claims (1) A carbonized paper-like support and a fine mosaic or isotropic optical structure that shows no anisotropy under a polarizing microscope and has a particle size of 10- or less. The carbon content is 95% by weight or more, and the gas permeability coefficient is 10-5 to 10-7. J/s, bulk density is 1.4-1
.. 9'j/c! A high-temperature electric furnace carbon fiber-based heat insulating material in which carbon thin plates having a thickness of 0.1 to 1#1I11 are laminated on the surface of the reactor core.

Claims (1)

【特許請求の範囲】[Claims] 炉心側表面に炭素質薄板を積層した高温電気炉炭素繊維
系断熱材。
A high-temperature electric furnace carbon fiber insulation material with carbon thin plates laminated on the surface of the reactor core.
JP32333187A 1987-12-21 1987-12-21 Carbon fiber series heat insulating material Pending JPH01167584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32333187A JPH01167584A (en) 1987-12-21 1987-12-21 Carbon fiber series heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32333187A JPH01167584A (en) 1987-12-21 1987-12-21 Carbon fiber series heat insulating material

Publications (1)

Publication Number Publication Date
JPH01167584A true JPH01167584A (en) 1989-07-03

Family

ID=18153601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32333187A Pending JPH01167584A (en) 1987-12-21 1987-12-21 Carbon fiber series heat insulating material

Country Status (1)

Country Link
JP (1) JPH01167584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013651A1 (en) * 2004-08-04 2006-02-09 Ibiden Co., Ltd. Firing kiln and process for producing porous ceramic member therewith
WO2006013652A1 (en) * 2004-08-04 2006-02-09 Ibiden Co., Ltd. Continuous firing kiln and process for producing porous ceramic member therewith
WO2006016430A1 (en) * 2004-08-10 2006-02-16 Ibiden Co., Ltd. Firing kiln and process for producing ceramic member therewith

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213486A (en) * 1985-03-20 1986-09-22 東邦レーヨン株式会社 High-temperature treatment furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213486A (en) * 1985-03-20 1986-09-22 東邦レーヨン株式会社 High-temperature treatment furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013651A1 (en) * 2004-08-04 2006-02-09 Ibiden Co., Ltd. Firing kiln and process for producing porous ceramic member therewith
WO2006013652A1 (en) * 2004-08-04 2006-02-09 Ibiden Co., Ltd. Continuous firing kiln and process for producing porous ceramic member therewith
US7284980B2 (en) 2004-08-04 2007-10-23 Ibiden Co., Ltd. Continuous firing furnace, manufacturing method of porous ceramic member using the same, porous ceramic member, and ceramic honeycomb filter
KR100844250B1 (en) * 2004-08-04 2008-07-07 이비덴 가부시키가이샤 Firing kiln and process for producing porous ceramic member therewith
WO2006016430A1 (en) * 2004-08-10 2006-02-16 Ibiden Co., Ltd. Firing kiln and process for producing ceramic member therewith
JPWO2006016430A1 (en) * 2004-08-10 2008-05-01 イビデン株式会社 Firing furnace and method for producing ceramic member using the firing furnace
US7491057B2 (en) 2004-08-10 2009-02-17 Ibiden Co., Ltd. Firing furnace, manufacturing method of a ceramic member using the firing furnace, ceramic member, and ceramic honeycomb filter

Similar Documents

Publication Publication Date Title
CA1102673A (en) Multilayer insulating material and process for production thereof
KR101472850B1 (en) High-temperature-resistant composite
US3174895A (en) Graphite cloth laminates
US7754332B2 (en) Thermal insulation structures comprising layers of expanded graphite particles compressed to different densities and thermal insulation elements made from these structures
TW539612B (en) Composite carbonaceous heat insulator
US4396669A (en) Composite carbonaceous articles and process for making same
JP4696279B2 (en) High purity nuclear graphite
WO1999019273A1 (en) Fibrous composite material and process for producing the same
JPH01167584A (en) Carbon fiber series heat insulating material
US20100263187A1 (en) Exhaust Gas Deflector and Shield
JP2005536420A (en) Carbon honeycomb body
JP2001519319A (en) High thermal conductivity carbon / carbon honeycomb structure
CN113398662B (en) Laminated filter medium for high-temperature gas filtering and dust removing device and preparation method thereof
RU2427530C1 (en) Method of producing multilayer carbonaceous heat-insulating material and multilayer material
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
JPS59102880A (en) High temperature heat resistant material
JP3029534B2 (en) Insulation for high temperature furnace
JPH01167586A (en) Heat insulating material for high temperature electric furnace
JPH0440631B2 (en)
JPS63149142A (en) Multilayer molded heat insulator and manufacture thereof
JPH0520386B2 (en)
JPH0225686A (en) Heat insulating material for heating furnace
JPH01167585A (en) Nozzle part surface protecting method for high temperature electric furnace heat insulating material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
WO2024117030A1 (en) Heat insulating material, and method for producing heat insulating material