JPS61213336A - Al-sn bearing alloy - Google Patents

Al-sn bearing alloy

Info

Publication number
JPS61213336A
JPS61213336A JP5303085A JP5303085A JPS61213336A JP S61213336 A JPS61213336 A JP S61213336A JP 5303085 A JP5303085 A JP 5303085A JP 5303085 A JP5303085 A JP 5303085A JP S61213336 A JPS61213336 A JP S61213336A
Authority
JP
Japan
Prior art keywords
alloy
particles
bearing
matrix
ppt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5303085A
Other languages
Japanese (ja)
Other versions
JPH0121858B2 (en
Inventor
Masahito Fujita
正仁 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP5303085A priority Critical patent/JPS61213336A/en
Publication of JPS61213336A publication Critical patent/JPS61213336A/en
Publication of JPH0121858B2 publication Critical patent/JPH0121858B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To provide resistances for baking and wear at high load, by adding Si, Sr and small quantities of Cu, Ni, Mn to Al-Sn alloy, to ppt. Si particles spherically into Al matrix and to ppt. Al compds. in rod state. CONSTITUTION:Bearing alloy is composed of 3-35wt% Sn, 0.1-10% Pb, 0.1-6% Si, <=3% Sr, 0.1-5% total of >= one kind among Cu, Ni, Mn, and the balance Al substantially. Alloy of the compsn. is cast, ingot is cold worked, then heat treated, to ppt. Si particles spherically, spheroidally or shape approached thereto into Al matrix. Further, compds. of Cu, Ni, Mn with Al are pptd. in rod or fiber state. The bearing alloy is superior in lubricative property, has good mechanical property at high temp. of about 100-250 deg.C and is sufficiently durable for severe using condition under high load operation.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明はAl−3n系軸受合金に係り、詳しくは、マト
リックス中にSi粒子が球状若しくはそれに近い形状に
析出されかつCu、 Ni、 MnとAlとの化合物を
棒状若しくは繊維状に析出させ、高速・高負荷運転時に
すぐれ、しかも、高温領域において耐焼付性、耐摩耗性
ならびに耐疲労性を有するAl −8n系軸受合金に係
る。
[Detailed Description of the Invention] <Object of the Invention> Industrial Application Field The present invention relates to an Al-3n bearing alloy, and more specifically, Si particles are precipitated in a matrix in a spherical or nearly spherical shape, and Cu, Ni , relating to an Al-8n bearing alloy in which a compound of Mn and Al is precipitated in the form of rods or fibers, which is excellent during high-speed/high-load operation, and has seizure resistance, wear resistance, and fatigue resistance in high-temperature ranges. .

従来の技術 最近の自動車用エンジンは、小型化、省燃費、高出力の
ものとなり、これにともなって軸受にかかる荷重が増加
すると共に、潤滑油の温度が上昇し、軸受の使用条件は
苛酷化の一途をたどっている。このため、従来例の多元
系、Al系軸受合金の表面にオーバーレイメッキ等によ
りpb−3n系等の表面層が形成されたものでは、潤滑
面の高温化により疲労や焼付現象にみまわれ、使用に耐
えられなくなっており、最近はオーバーレイメッキ等の
表面層を有しない軸受台金が求められている。しかし、
この種の軸受台金であっても、上記の如き苛酷な条件で
あるため、必ずしも、安定した性能を発揮できないのが
現状である。
Conventional technology Recently, automobile engines have become smaller, more fuel efficient, and have higher output.As a result, the load on the bearings has increased, the temperature of the lubricating oil has also increased, and the operating conditions for the bearings have become more severe. I am following the path of For this reason, conventional multi-component or Al-based bearing alloys in which a surface layer of PB-3N or the like is formed by overlay plating, etc., suffer from fatigue and seizure phenomena due to the high temperature of the lubricated surface. Recently, there has been a demand for bearing base metals that do not have surface layers such as overlay plating. but,
Even with this type of bearing base metal, it is not always possible to exhibit stable performance under the above-mentioned severe conditions.

まず、表面にオーバーレイメッキ岡を必要とする軸受は
JIS H5402、AJ−1(10%Sn、 0.7
5%Cu、0.5%Ni、AlBajりや、JIS H
5402、AJ−2(6%Sn、2.5%Cu、 1.
0%N1、Aj!Bad)等のJIS規格、SAE 7
80(6%Sn、 2%Si、 1%Cu、0.5%N
i。
First, bearings that require overlay plating on the surface are JIS H5402, AJ-1 (10% Sn, 0.7
5% Cu, 0.5% Ni, AlBaj Riya, JIS H
5402, AJ-2 (6% Sn, 2.5% Cu, 1.
0%N1, Aj! JIS standards such as Bad), SAE 7
80 (6%Sn, 2%Si, 1%Cu, 0.5%N
i.

0.1%Ti、AlBa/)等のSAE規格に示される
如く、低5n−Al合金から成るものである。これら軸
受の軸受面は何れもpb−sn系合金のオーバーレイメ
ッキ層を必要とする。しかし、これら軸受は、近年の高
負荷、高温の使用条件下ではメッキ層が摩滅して焼付き
に至り、使用に耐えられなくなっている。これに対し、
オーバーレイメッキ層を必要としない軸受は、SAE 
783(20%Sn。
It is made of a low 5n-Al alloy as shown in SAE standards such as 0.1% Ti, AlBa/). The bearing surfaces of these bearings all require an overlay plating layer of pb-sn alloy. However, in recent years, these bearings have become unusable due to wear and tear of the plating layer under high-load, high-temperature operating conditions. On the other hand,
Bearings that do not require an overlay plating layer are SAE
783 (20% Sn.

0.5%Si、 1.0%Cu、0.1%Ti、AJB
aj>に示す如く、高5n−AJ合金から成るものであ
る。しかし、この様にsnが20%程度の如く多く含ま
れる合金は硬度が低(Alマトリックスが弱くなること
から、高負荷に耐えられないのが現状である。
0.5%Si, 1.0%Cu, 0.1%Ti, AJB
aj>, it is made of a high 5n-AJ alloy. However, alloys containing a large amount of sn, such as about 20%, have low hardness (the Al matrix becomes weak), so the current situation is that they cannot withstand high loads.

また、以前から、Sn含有量の多少に拘らず、Al−3
n系合金中にpbを添加して潤滑性を増進させ、耐焼付
性をもたせることが行なわれ、例えば、水野昂−著昭和
29年日刊工業新聞社発行r軸受台金」第139頁には
、10%Sn、1.5%Cu。
In addition, it has been known for some time that Al-3
PB has been added to n-based alloys to improve lubricity and provide seizure resistance. , 10% Sn, 1.5% Cu.

0.5%S1を含むAi!−8n系合金中に3%pbを
添加することが記載されている。
Ai! containing 0.5% S1! It is described that 3% PB is added to the -8n alloy.

また、pbとAlはほとんど固溶しないため、pbの分
散性を向上させるために、pbのほかにsbを添加した
Al−8n系合金が特公昭52−12131号に記載さ
れ、更に、Alマトリックス強化のためにOrを添加し
たAl −8n系合金が特公昭58−18985号に記
載されている。しかし、これらのAl −3n系合金は
通常運転時の潤滑性の向上を目的として開発されたもの
で、高負荷運転条件では十分な耐疲労性を示さない欠点
がある。この理由は、通常の運転下に較べると、高負荷
運転下の軸と軸受との潤滑機構は根本的に相違するから
である。
In addition, since pb and Al hardly form a solid solution, in order to improve the dispersibility of pb, an Al-8n alloy in which sb is added in addition to pb is described in Japanese Patent Publication No. 52-12131, and furthermore, an aluminum matrix An Al-8n alloy to which Or is added for reinforcement is described in Japanese Patent Publication No. 18985/1985. However, these Al-3n alloys were developed for the purpose of improving lubricity during normal operation, and have the drawback of not exhibiting sufficient fatigue resistance under high-load operating conditions. The reason for this is that the lubrication mechanism between the shaft and bearing under high load operation is fundamentally different from that under normal operation.

そこで、高負荷運転下の潤滑機構につき、基本的な検討
が行なわれ、その一つとしてAl−Si系合金中に粗大
なSiを分散析出させたものが特開昭58−6433G
号によって提案されている。
Therefore, basic studies were conducted on the lubrication mechanism under high load operation, and one of them was published in JP-A-58-6433G, in which coarse Si was dispersed and precipitated in an Al-Si alloy.
It is proposed by No.

この軸受は硬いSi析出物により切削力を持たせたもの
であって、切削力を持つが故に、相手軸の表面凹凸部が
削られて平坦化し、軸受性能を向上させるものである。
This bearing has a cutting force made of hard Si precipitates, and because it has the cutting force, the unevenness on the surface of the mating shaft is shaved off and flattened, improving the bearing performance.

すなわち、相手軸が球状若しくは片状の黒鉛鋳鉄から成
ることを前提とする場合、相手軸の表面には、研摩加工
時に脱落した黒鉛粒子のあとに凹部が残り、この凹部周
囲の硬く加工硬化したパリやエツジ等の凸部が生成し、
これら凹凸部により高負荷運転時には異常摩耗が発生す
る。しかしながら、上記の軸受では硬いSiの析出物に
より切削力が付与されているために、相手軸の凹凸部分
は機械的に切削されて平坦化され、これ故に、異常摩耗
や焼付きが起らない。
In other words, when the mating shaft is made of spherical or flaky graphite cast iron, a recess is left on the surface of the mating shaft after the graphite particles that fell off during polishing, and the hard work-hardened material around this recess remains. Protrusions such as paris and edges are generated,
These uneven parts cause abnormal wear during high load operation. However, in the above bearing, since the cutting force is applied by hard Si precipitates, the uneven parts of the mating shaft are mechanically cut and flattened, and therefore abnormal wear and seizure do not occur. .

しかしながら、相手軸が黒鉛鋳鉄以外の場合には、高負
荷運転のときに、かえって粗大なS1析出物によって軸
表面が不規則にけずられ、焼付きが発生し、大きな障害
がある。
However, if the mating shaft is made of a material other than graphite cast iron, during high-load operation, the shaft surface will be irregularly scratched by coarse S1 precipitates, causing seizure and causing a major problem.

発明が解決しようとする問題点 本発明は上記欠点の解決を目的とし、具体的には、従来
例のAt−3n軸受合金では潤滑性向上のためにSn量
を高めたり、pbを添加したり、更に、sbを添加して
pbの分散性を高めても、高負荷運転時には焼付きや異
常摩耗等が発生し、はとんど高温下(100〜250℃
)での耐疲労性を示さないという、問題点を解決した軸
受台金を提案する。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks. Specifically, in the conventional At-3n bearing alloy, the amount of Sn is increased or PB is added to improve lubricity. Furthermore, even if sb is added to improve the dispersibility of PB, seizure and abnormal wear will occur during high-load operation, and most cases will occur at high temperatures (100-250℃)
) We propose a bearing base metal that solves the problem of not exhibiting fatigue resistance.

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 すなわち、本発明に係る軸受台金は、型理%で3〜35
%Sn、 0.1〜10%Pb、 0.1〜G%Si、
3%以下SrならびにCu、Ni%Mnのうちの少なく
とも1種若しくは2種以上を合計で0.1〜5%含有し
、残余が実質的にAlからなって、しかも、このマトリ
ックス中にSi粒子を球状、だ円状若しくはそれに近い
形状に析出させ、かつ、Cu、Ni、MnとAlとの化
合物を棒状若しくは繊維状に析出させてなることを特徴
とする。
<Structure of the invention> Means for solving the problem and its operation, that is, the bearing base metal according to the present invention has a moldability of 3 to 35%.
%Sn, 0.1~10%Pb, 0.1~G%Si,
Contains 3% or less Sr and at least one or more of Cu, Ni%Mn in a total of 0.1 to 5%, the remainder substantially consists of Al, and furthermore, this matrix contains Si particles. is precipitated in a spherical, elliptical, or similar shape, and a compound of Cu, Ni, Mn, and Al is precipitated in a rod-like or fibrous shape.

そこで、この手段たる構成ならびにその作用について説
明すると、次の通りである。
Therefore, the structure of this means and its operation will be explained as follows.

まず、本発明に係るAl −3n系合金は主成分として
Sn、 Pb、 SiならびにCu、Ni、Mnのうち
1種若しくは2種以上を含む。この際、Sn、 Pb等
の添加理由は主として潤滑性、なじみ性の向上にあるが
、主たる特徴とするところは、Si粒子をAlマトリッ
クス中に球状、だ円状、更には、少なくとも一部が丸味
をおびた形状に析出させ、その81粒子附近に5n−P
b合金粒子を凝集させて、高温、高荷重下の潤滑性を大
巾に向上させ、また、Cu、 Ni、 MnとAtとの
金属間化合物を棒状若しくはlll状状析出させること
によって高温(100〜250℃)での強度を改善する
ことにある。
First, the Al-3n alloy according to the present invention contains one or more of Sn, Pb, Si, and Cu, Ni, and Mn as main components. At this time, the reason for adding Sn, Pb, etc. is mainly to improve lubricity and conformability, but the main feature is that Si particles are formed in an Al matrix in a spherical, elliptical, or even at least partially 5n-P is precipitated in a rounded shape, and 5n-P is deposited near the 81 particles.
By agglomerating alloy particles, the lubricity under high temperatures and high loads is greatly improved, and intermetallic compounds of Cu, Ni, Mn and At are precipitated in a rod-like or lll-like shape. The objective is to improve the strength at temperatures up to 250°C.

一般に、焼付現象はそれに達する過程が複雑で多くの条
件が相乗的に作用して達するため、一義的に把握するこ
とは困難である。
In general, the process by which the image sticking phenomenon is achieved is complex and is achieved through the synergistic action of many conditions, so it is difficult to understand it unambiguously.

しかしながら、表面にPb −Sn合金のオーバーレイ
メッキを形成したCu −Pb系軸受合金は高荷重運転
下ではメッキ層が摩滅し焼付きに至るのに対し、Al−
3n−pb−si−Cu系合金軸受は表面にオーバーレ
イメッキ層が形成されていないのにも拘らず、焼付きに
至らない現象が存在することに着目し、両軸受の構造を
比較検討した。
However, in Cu-Pb bearing alloys with Pb-Sn alloy overlay plating formed on the surface, the plating layer wears out and seizes under high load operation, whereas Al-
We focused on the fact that 3n-pb-si-Cu alloy bearings have a phenomenon in which seizure does not occur even though no overlay plating layer is formed on the surface, and we compared the structures of both bearings.

すなわち、第8図は表面にオーバーレイメッキ■を有す
る軸受の一部の拡大断面図であり、第9図はAj −3
n−Pb−3i−Cu合金軸受の一部の拡大断面図であ
る。第8図から明らかな如く、この軸受は表面のオーバ
ーレイメッキ層5、軸受台金6ならびに裏金7から成っ
て、このオーバーレイメッキ層5の全表面によって荷重
が支持される。
That is, FIG. 8 is an enlarged cross-sectional view of a part of the bearing having overlay plating ■ on the surface, and FIG.
FIG. 3 is an enlarged cross-sectional view of a portion of an n-Pb-3i-Cu alloy bearing. As is clear from FIG. 8, this bearing consists of an overlay plating layer 5 on the front surface, a bearing base metal 6, and a back metal 7, and the load is supported by the entire surface of the overlay plating layer 5.

これに対し、第9図に示す如く、^l−8n−Pb−3
i−Cu系合金から成る軸受は合金層6と裏金7とから
成って、この合金層6とマトリックス中に棒状ヤ片状の
Si粒子2が析出している。従って、この軸受では荷重
は硬いSi粒子で支えられ、しかも、Si粒子が上記の
如く切削力を持っている。
On the other hand, as shown in Fig. 9, ^l-8n-Pb-3
A bearing made of an i-Cu alloy consists of an alloy layer 6 and a back metal 7, and rod-like flake-shaped Si particles 2 are precipitated in the alloy layer 6 and the matrix. Therefore, in this bearing, the load is supported by the hard Si particles, and moreover, the Si particles have the cutting force as described above.

要するに、両者の差は面接触と点接触であり、この差に
よって潤滑、摩擦面の温度上昇において決定的な相違と
なり、とくに、第8図に如き面接触では、高速、高負荷
条件下で摩擦面の温度は急速に上昇するのに対し、第9
図の如き点接触では、合金層6の表面と相手軸表面との
間に間隙が形成され、この間隙の油膜にはあまり大ぎな
荷重がかからないため、十分な潤滑が保持され、摩擦面
の温度上昇はおさえられる。
In short, the difference between the two is surface contact and point contact, and this difference results in a decisive difference in lubrication and temperature rise on the friction surface.Especially in surface contact as shown in Figure 8, friction occurs under high speed and high load conditions. The temperature of the surface increases rapidly, while the temperature of the 9th
In point contact as shown in the figure, a gap is formed between the surface of the alloy layer 6 and the surface of the mating shaft, and since no large load is applied to the oil film in this gap, sufficient lubrication is maintained and the temperature of the friction surface is The rise can be suppressed.

そこで、本発明者等はこれによる軸荷重の支持が高荷重
下の潤滑にきわめて有効であるという基本的見地に立っ
て、その効果を最大限に生かすための組成ならびに構造
について研究しい本発明に係る軸受台金を完成するに至
ったのである。具体的に示すと、本発明者等はAl −
8n−Pb−3i−Cu系軸受合金におけるSiの析出
形態に着目し、その形態の潤滑面におよぼす効果につい
て調査研究を進めたところ、第1に、Siは融点が高い
安定物質であり、かつ、非金属的性質が強く、相手軸の
主成分のFeに20℃〜500℃程度の状態で接触して
も、全く拡散若しくは溶解を起さないことから、軸荷重
の点支持手段はSiがきわめて好適であることがわかっ
た。
Therefore, based on the basic viewpoint that supporting the shaft load by this is extremely effective for lubrication under high loads, the present inventors have developed the present invention by researching the composition and structure to make the most of the effect. This led to the completion of such a bearing base metal. Specifically, the present inventors have discovered that Al −
Focusing on the precipitation form of Si in 8n-Pb-3i-Cu bearing alloys, we conducted research on the effect of this form on the lubricating surface. First, we found that Si is a stable substance with a high melting point, and Si has strong non-metallic properties and does not diffuse or dissolve at all even if it comes into contact with Fe, the main component of the mating shaft, at a temperature of about 20°C to 500°C. It was found to be extremely suitable.

第2に、相手軸を油膜を介し点支持する場合、考え方に
おいて、Si粒子はそのビッカース硬さが599にも達
するほど硬く、しかも、化合物でないためもろさがなく
、弾性に富み、急激な変動荷重に耐えられることがわか
った。
Second, when point-supporting the mating shaft through an oil film, Si particles are hard enough to reach a Vickers hardness of 599, and since they are not a compound, they are not brittle and have high elasticity, so they cannot handle sudden fluctuations in load. It was found that it can withstand

しかしながら、Siは上記の如き性質を持っているのに
も拘らず、結晶性が強く、Alとの共晶析出形態でも、
板状若しくは棒状を呈し、軸受の製造過程で圧延や熱処
理を経ても、その形状はわずか変化する程度である。こ
のため、Si粒子の析出形態の制御を行なわない場合は
第10、図に示す如く、マトリックス1中のSi粒子2
は板状若しくは棒状化し、Si粒子2から離れてSn 
−pb合金粒子3が存在している。この状態であると、
硬いSi粒子のエツジによって相手軸が削られてきずつ
けられ易く、かえって、潤滑性が低下し、焼付き゛が起
こる。
However, although Si has the above properties, it has strong crystallinity, and even in the form of eutectic precipitation with Al,
It has a plate-like or rod-like shape, and its shape changes only slightly even if it undergoes rolling or heat treatment during the bearing manufacturing process. Therefore, if the precipitation form of the Si particles is not controlled, the Si particles 2 in the matrix 1
becomes plate-shaped or rod-shaped and separates from the Si particles 2.
-pb alloy particles 3 are present. In this state,
The edges of the hard Si particles tend to scrape and damage the mating shaft, which in turn reduces lubricity and causes seizure.

この点から、本発明者等は潤滑性の飛躍的向上のために
、Si粒子から切削力を除去し、球状等の如くエツジ部
に丸味をおびさせるよう形態を制御した。
From this point of view, the present inventors removed the cutting force from the Si particles and controlled the shape so that the edges were rounded, such as spherical, in order to dramatically improve the lubricity.

すなわち、第2図は本発明の一つの実施例に係る軸受台
金の一部の拡大断面図であって、第2図に示す如く、マ
トリックス1中に分散析出するSi粒子2は球状化し、
この球状粒子2によって点接触の理想に近づけ、より潤
滑性を高め、また、高速かつ急激な高荷重がかけられて
も、相手軸をきずつけることがない。
That is, FIG. 2 is an enlarged cross-sectional view of a part of the bearing base metal according to one embodiment of the present invention, and as shown in FIG. 2, the Si particles 2 dispersed and precipitated in the matrix 1 are spheroidized,
These spherical particles 2 bring the ideal point contact closer to the ideal, further improve lubricity, and prevent damage to the mating shaft even when high loads are applied rapidly and rapidly.

このSi粒子の球状化は、Slが析出する共晶貞のA1
合金液相の性質を改善することによって達成でき、とく
に、その添加元素として、Srが有効であることを見出
した。
This spheroidization of Si particles is caused by the eutectic A1 in which Sl precipitates.
It has been found that this can be achieved by improving the properties of the alloy liquid phase, and that Sr is particularly effective as an additive element.

また、S「を添加すると、5n−Pb合金粒子3の析出
形態が変化し、第2図に示す様にSiの球状化粒子2に
5n−Pb合金3が隣接して存在する様になる。この構
造は、従来例のもの(例えば、第10図参照)に比して
、潤滑性能を飛躍的に向上させる。
Further, when S'' is added, the precipitation form of the 5n-Pb alloy particles 3 changes, and as shown in FIG. 2, the 5n-Pb alloy 3 comes to exist adjacent to the spheroidized Si particles 2. This structure dramatically improves the lubrication performance compared to the conventional structure (see, for example, FIG. 10).

また、以上のような表面性能の原理的解決を計るととも
に、A/7トリツクスの高温での強化を考える必要があ
る。すなわち、Alは熱に対して感受性が強く、150
℃をすぎると軟化してしまい(HvlO以下)、強度を
失なってしまう。
In addition to finding a theoretical solution to the surface performance as described above, it is also necessary to consider strengthening the A/7 trix at high temperatures. In other words, Al is highly sensitive to heat and 150
If the temperature is too high, it will soften (below HvlO) and lose its strength.

そこで、この軟化を防止する為に、高温でも安定な化合
物を析出させ、変形力に対抗する構造が研究され、その
結果、Cu、 Ni、 Mn系の金属間化合物を5〜3
0μ程度の長さの棒状若しくは繊維状に析出させると、
高温での強度が上昇することが確認された。これはAl
マトリックスの繊維強化を金属間化合物で行なったこと
になる。
Therefore, in order to prevent this softening, research has been conducted on structures that can resist deformation forces by precipitating compounds that are stable even at high temperatures.As a result, 5 to 3
When precipitated in the form of rods or fibers with a length of about 0μ,
It was confirmed that the strength increases at high temperatures. This is Al
This means that the matrix is reinforced with fibers using an intermetallic compound.

第1図はその改良された断面組織を簡略に示したもので
ある。
FIG. 1 simply shows the improved cross-sectional structure.

更に詳しく説明すると、第1図に示す構造の軸受では、
潤滑面がマトリックス1の表面から突出するSi粒子2
の先端部であり、しかも、Si粒子と相手軸との間に油
膜が介在し、流体潤滑が保たれている。しかし、急激な
変動荷重を受け、この油膜が破れ、局部的に境界潤滑に
達し、この時に、Si粒子2の上面に5n−Pb合金の
フィルムが存在すれば、焼付きを防止でき、しかも、正
常に油膜が再生されて流体潤滑の状態にすみやかに復帰
することができる。このときにも、第1図に示す構造で
あると、S;粒子2の近傍に5n−pb合金粒子3が存
在し、この合金が溶融状態でも親和性があり、このため
、油切れを起こしにくい。また、相手軸とSi粒子との
摩擦で、Si粒子が高温になっても、5n−Pbの融解
熱で熱吸収され、近傍のマトリックスのAJ合金と相手
軸との焼付きが起りにくくなる。又、この時にも第3図
に示す如(、Si粒子2に隣接する5n−Pb合金粒子
3の少なくとも一部が液相化しており、この液相3aが
Si粒子2の突出面に供給される。
To explain in more detail, in the bearing with the structure shown in Fig. 1,
Si particles 2 whose lubricated surfaces protrude from the surface of matrix 1
Moreover, an oil film is interposed between the Si particles and the mating shaft to maintain fluid lubrication. However, this oil film ruptures when subjected to a rapidly fluctuating load and locally reaches boundary lubrication, and if a 5n-Pb alloy film is present on the top surface of the Si particles 2 at this time, seizure can be prevented. The oil film is normally regenerated and the state of fluid lubrication can be quickly restored. At this time as well, with the structure shown in Figure 1, 5n-pb alloy particles 3 exist near S; particles 2, and this alloy has affinity even in the molten state, which causes oil to run out. Hateful. Furthermore, even if the Si particles become high in temperature due to friction between the mating shaft and the Si particles, the heat is absorbed by the heat of fusion of 5n-Pb, making it difficult for the mating shaft to seize with the AJ alloy in the matrix nearby. Also, at this time, as shown in FIG. 3, at least a part of the 5n-Pb alloy particles 3 adjacent to the Si particles 2 is in a liquid phase, and this liquid phase 3a is supplied to the protruding surface of the Si particles 2. Ru.

この供給量は温度の上昇とともに75%えて、Si粒子
2の潤滑面には常に5n−Pbの液相3aが介在するた
め、オーバーヒートを未然に防止できる。
This supply amount increases by 75% as the temperature rises, and since the 5n-Pb liquid phase 3a is always present on the lubricated surface of the Si particles 2, overheating can be prevented.

要するに、Si粒子2が球状化し、これに5n−Pb合
金粒子3が隣接する構造は、境界潤滑状態(油膜が切れ
た)で非常に有効であり、また、普通の流体潤滑状態で
も、硬いSi粒子2が相手軸に適切になじみかつやわら
かい5n−Pb合金層におおわれ、これがショックアブ
ソーバ−的な働きをする。
In short, the structure in which the Si particles 2 are spherical and the 5n-Pb alloy particles 3 are adjacent to them is very effective in the boundary lubrication state (oil film has broken), and even in the normal fluid lubrication state, the structure in which the hard Si particles The particles 2 suitably adapt to the mating shaft and are covered with a soft 5n-Pb alloy layer, which acts as a shock absorber.

更に、すぐれた潤滑面を得る為にはSi粒子や5n−P
b合金粒子を支持する強靭なAlマトリックスが必要で
、このためにCu、 Ni、 Mnのうちの少なくとも
1種又は2種以上を添加し、Alとの金属間化合物を棒
状若しくは繊維状に析出させるが、その量は総量で5%
を越えると、化合物が粗大化しかえってその靭性を劣化
させるのでその添加量としては、総量で0.1〜5%が
適切である。更に8口も3〜35%の範囲でpbも0.
1〜10%の範囲で適切な潤滑面が形成できる。
Furthermore, in order to obtain an excellent lubricating surface, Si particles and 5n-P
b A strong Al matrix is required to support the alloy particles, and for this purpose, at least one or more of Cu, Ni, and Mn is added to precipitate intermetallic compounds with Al in the form of rods or fibers. However, the amount is 5% of the total amount
If it exceeds this, the compound will become coarse and its toughness will deteriorate, so the appropriate amount to add is 0.1 to 5% in total. In addition, 8 mouths also have a pb of 0.0 in the range of 3 to 35%.
An appropriate lubricating surface can be formed within the range of 1 to 10%.

実施例 次に、実施例について説明する。Example Next, examples will be described.

まず、第1表に示す組成のAl−3n系合金を連続鋳造
により厚さ2010mの板状材として鋳造し、各鋳造ビ
レッI・の上下面を1.Omm面削面側い−て冷間圧延
により2n+mの厚さまで圧下した。この状態で300
〜350℃の熱処理を行なってひずみを除去し、その後
、純Alの薄い板を介して裏金の鉄板に圧着させて厚み
1.50mmの軸受を得た。
First, an Al-3n alloy having the composition shown in Table 1 was cast as a plate material with a thickness of 2010 m by continuous casting, and the upper and lower surfaces of each casting billet I. It was rolled down to a thickness of 2n+m by cold rolling on the 0mm-faced surface side. 300 in this state
A heat treatment at ~350° C. was performed to remove strain, and then a thin plate of pure Al was crimped onto an iron backing plate to obtain a bearing with a thickness of 1.50 mm.

第1表 これらの軸受のうちで供試材に1はSrを添加し、Si
を球状化したもの、供試材Nt2はN1、Mnを&、1
の成分に加え、Ns、3はNl2にざらにCuを添加し
、化合物を析出させた本発明によるものである。
Table 1 Among these bearings, 1 has Sr added to the test material and Si
The sample material Nt2 is N1, Mn is &, 1
In addition to the above components, Ns, 3 is based on the present invention in which Cu is roughly added to Nl2 to precipitate the compound.

これらの各供試材は、軸受として使用される常温〜25
0℃までの機械的な性質を見るために、常温(25℃)
、50℃、100℃、150℃、200℃、250℃の
6条件下での引張り強度と伸びの試験を行なったところ
、第4図ならびに第5図に示す関係が得られた。なお、
各供試材は裏金を機械加工により削除してAl−3n合
金部分のみとし、形状はJIS Z 2201の5号に
示すものとした。
Each of these test materials was used as a bearing at room temperature to 25°C.
To check mechanical properties down to 0°C, room temperature (25°C)
Tensile strength and elongation tests were conducted under six conditions: , 50°C, 100°C, 150°C, 200°C, and 250°C, and the relationships shown in Figures 4 and 5 were obtained. In addition,
The back metal of each sample material was removed by machining to leave only the Al-3n alloy portion, and the shape was as shown in No. 5 of JIS Z 2201.

これらの結果から供試材2.3は特に高″zio。These results show that sample material 2.3 has a particularly high ``zio''.

〜250℃における強度低下があまりみられず、Cu、
 Ni、 Mnの添加効果がうかがえる。又、この供試
材2.3の組織は第1図にみられる様にCu、Ni%M
nとAlとの化合物が棒状に析出しているものであった
There was not much decrease in strength at ~250°C, and Cu,
The effect of adding Ni and Mn can be seen. In addition, the structure of this sample material 2.3 is Cu, Ni%M as seen in Figure 1.
A compound of n and Al was precipitated in a rod shape.

次に、これらの供試材の表面の摩擦性能を知るために、
鈴木式摩va摩耗試験機を用いて試験し、その試験条件
は次の通りであった。
Next, in order to find out the friction performance of the surface of these test materials,
The test was carried out using a Suzuki type abrasion tester, and the test conditions were as follows.

面   圧 10kgf/I]2〜100klJf/I
)’まで15分毎に10kof/c12づツ5tep 
upさせる。
Surface pressure 10kgf/I] 2~100klJf/I
)' 10kof/c12 5tep every 15 minutes until
Upload it.

マサツ速度 411 /sea 相 手 材 845C%硬さHRC−55面アラサ0.
8〜1.O3 使用オイル SAE、 20w−40 油     温  150℃±5℃ この結果を示すと、第6図に示す通りであった。
Masatsu speed 411/sea Mating material 845C% Hardness HRC-55 Surface roughness 0.
8-1. O3 Oil used: SAE, 20w-40 Oil temperature: 150°C±5°C The results are as shown in Figure 6.

Cれによれば、供試材1〜3何れも良好な摩擦係数値を
示しており、cu、 Nt、 vnの化合物による摩擦
性能の影響はほとんどないと見てよい。
According to C, all of Sample Materials 1 to 3 show good friction coefficient values, and it can be seen that the friction performance is hardly affected by the compounds of cu, Nt, and vn.

ちなみに、100kgf/allの荷重下で供試材3の
摩擦係数は0.011とすぐれた値を示している。
Incidentally, under a load of 100 kgf/all, the friction coefficient of sample material 3 shows an excellent value of 0.011.

次に、実際に、各供試材をベアリング形状に加工し、最
終的なベアリング性能をチェックするアンダーウッド疲
労試験を行なったところ、第7図の通りの結果が得られ
た。これは実際のエンジンの条件とほぼ同じようにベア
リングをコンロッドのハウジングに固定し、軸に偏心荷
重をかけて、以下の条件で耐久テストを行ない、焼付か
ずにその性能を維持した時間の長さで評価するテストで
ある。
Next, each sample material was actually processed into a bearing shape and an Underwood fatigue test was conducted to check the final bearing performance, and the results shown in Figure 7 were obtained. This is the length of time that performance was maintained without seizure when the bearing was fixed to the connecting rod housing and an eccentric load was applied to the shaft under the following conditions, almost the same as in an actual engine. This is a test to evaluate.

面 圧600kgf/c12 回 転 数 4000r、p、 m/分分相輪軸材質F
Cロア0、アラサ0.8〜1.5S使用オイル 20w
−40(SAE) 油     温  170℃±10℃ なお、そのテスト時間の上限は250時間とした。この
最終チェックによっても、高温での耐久性を付加した本
発明合金はすぐれた構造をもった合金系であることがわ
かる。
Surface pressure 600kgf/c12 Rotation speed 4000r, p, m/min Phase wheel shaft material F
C lower 0, roughness 0.8~1.5S oil used 20w
-40 (SAE) Oil temperature 170°C±10°C The upper limit of the test time was 250 hours. This final check also shows that the alloy of the present invention with added durability at high temperatures is an alloy system with excellent structure.

このように潤滑面の構成とその潤滑機構に着目して開発
された本発明合金は、高負荷、高速運転におけるA1合
金軸受として推奨されるものである。
The alloy of the present invention, which was developed by focusing on the structure of the lubrication surface and its lubrication mechanism, is recommended as an A1 alloy bearing for high-load, high-speed operation.

〈発明の効果〉 以上詳しく説明した通り、本発明は重員%で、3〜35
%Sn、 0.1〜10%Pb、 0.1〜6%Si、
3%以下S「ならびにCu%Ni、Mnのうちの少なく
とも1種若しくは2種以上を合計で0.1〜5%含有し
、残余が実質的にAtからなり、しかも、このマトリッ
クス中に81粒子を球状、だ円状若しくはそれに近い形
状に析出させ、かつ、Cu、 Ni、MnとAlとの化
合物を棒状若しくは繊維状に析出させて成るものである
<Effects of the Invention> As explained in detail above, the present invention has a weight percentage of 3 to 35
%Sn, 0.1-10%Pb, 0.1-6%Si,
Contains 0.1 to 5% in total of 3% S or less and at least one or more of Cu%Ni and Mn, with the remainder substantially consisting of At, and furthermore, this matrix contains 81 particles. is precipitated into a spherical, elliptical, or similar shape, and a compound of Cu, Ni, Mn, and Al is precipitated into a rod or fiber shape.

これらの構成による本発明軸受合金は極めて潤滑性に優
れ、かつ、100〜250℃の高温における機械的性質
が極めて良好であり、高負荷運転による使用条件の苛酷
化に十分に耐える軸受台金である。
The bearing alloy of the present invention with these configurations has extremely excellent lubricity, has extremely good mechanical properties at high temperatures of 100 to 250°C, and is a bearing base metal that can fully withstand harsh usage conditions due to high-load operation. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一つの実施例に係る軸受台金の一部の
拡大断面図、第2図はSi粒子を球状化し潤滑性を高め
た軸受の一部の拡大断面図、第3図は第2図に示す軸受
台金の潤滑機構の説明図、第4図は本発明による軸受台
金を比較材と対比した温度〜引張強さの関係を示すグラ
フ、第5図は比較材と対比した温度〜伸びの関係を示す
グラフ、第6図は比較材と対比した荷重〜摩擦係数の関
係を示すグラフ、第7図は比較材と対比した各供試材の
耐久時間を示すグラフ、第8図ならびに第9図は従来例
の軸受の一部の各拡大断面図、第10図は第9図の軸受
台金の一部の拡大断面図である。 符号1・・・・・・マトリックス 2・・・・・・Si
粒子3・・・・・・5n−Pb合金粒子 3a・・・・・・5n−Pb液相 4・−・・・・II維状状金属間化合 物5・・・・・オーバーレイメツキ ロ・・・・・・軸受合金層  7・・・・・・裏金特許
出願人 工ヌデーシー株式会社 代 理 人 弁理士 松 下 義 勝 弁護士 副 島 文 雄 @I図 1!2図 53tl!5 第4図 温友(°C) 第5図 達 &  (’C) m6図 !!7図 蛸又峙r4
FIG. 1 is an enlarged cross-sectional view of a part of a bearing base metal according to one embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of a part of a bearing in which Si particles are sphericalized to improve lubricity, and FIG. is an explanatory diagram of the lubrication mechanism of the bearing base metal shown in Figure 2, Figure 4 is a graph showing the relationship between temperature and tensile strength when the bearing base metal according to the present invention is compared with a comparative material, and Figure 5 is a graph showing the relationship between the bearing base metal according to the present invention and a comparative material. A graph showing the relationship between temperature and elongation in comparison, Fig. 6 a graph showing the relationship between load and coefficient of friction in comparison with the comparison material, and Fig. 7 a graph showing the durability time of each test material in comparison with the comparison material. 8 and 9 are enlarged sectional views of a portion of a conventional bearing, and FIG. 10 is an enlarged sectional view of a portion of the bearing base metal of FIG. 9. Code 1...Matrix 2...Si
Particles 3...5n-Pb alloy particles 3a...5n-Pb liquid phase 4...II fibrous intermetallic compound 5...Overlay... ...Bearing alloy layer 7 ...Backing metal patent applicant KonuDC Co., Ltd. Representative Patent attorney Yoshikatsu Matsushita Lawyer Fumihiro Soejima@I Figure 1! 2 Figure 53 tl! 5 Figure 4 Warm friend (°C) Figure 5 &('C) m6 figure! ! Figure 7 Takomata R4

Claims (1)

【特許請求の範囲】[Claims] 重量%で3〜35%Sn、0.1〜10%Pb、0.1
〜6%Si、3%以下SrならびにCu、Ni、Mnの
うちの少なくとも1種若しくは2種以上を合計で0.1
〜5%含有し、残余が実質的にAlからなって、しかも
、このマトリックス中にSi粒子を球状、だ円状若しく
はそれに近い形状に析出させ、かつ、Cu、Ni、Mn
とAlとの化合物を棒状若しくは繊維状に析出させてな
ることを特徴とするAl−Sn系軸受合金。
3-35% Sn, 0.1-10% Pb, 0.1% by weight
~6% Si, 3% or less Sr, and at least one or two or more of Cu, Ni, and Mn in total of 0.1
~5%, with the remainder essentially consisting of Al, and furthermore, Si particles are precipitated in a spherical, elliptical, or similar shape in this matrix, and Cu, Ni, Mn
An Al-Sn bearing alloy characterized by being formed by precipitating a compound of and Al in the form of a rod or fiber.
JP5303085A 1985-03-15 1985-03-15 Al-sn bearing alloy Granted JPS61213336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5303085A JPS61213336A (en) 1985-03-15 1985-03-15 Al-sn bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5303085A JPS61213336A (en) 1985-03-15 1985-03-15 Al-sn bearing alloy

Publications (2)

Publication Number Publication Date
JPS61213336A true JPS61213336A (en) 1986-09-22
JPH0121858B2 JPH0121858B2 (en) 1989-04-24

Family

ID=12931490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5303085A Granted JPS61213336A (en) 1985-03-15 1985-03-15 Al-sn bearing alloy

Country Status (1)

Country Link
JP (1) JPS61213336A (en)

Also Published As

Publication number Publication date
JPH0121858B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
JPH0539811A (en) Multilayer sliding material for high speed and manufacture thereof
JP3570607B2 (en) Sliding member
JP2525538B2 (en) Copper alloy plain bearing having high strength backing and method of manufacturing the same
JPH01316514A (en) Multilayer sliding material
WO1997006950A1 (en) Aluminum alloy bearing and method of making same
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
JP2004137512A (en) Copper based alloy for sliding
JPH0235020B2 (en) ALLSNNPBKEIJIKUKEGOKIN
JPS6160906B2 (en)
JPH0617820A (en) Slide member
JPS6254853B2 (en)
JPS61213336A (en) Al-sn bearing alloy
JPH0347934A (en) Al-sn-pb series bearing alloy
JPH0347935A (en) Al-sn-pb series bearing alloy
JPS6212298B2 (en)
JPH0711046B2 (en) Al-Sn bearing alloy
JPH0257654A (en) Al-sn-pb bearing alloy
JPS61117244A (en) Sliding aluminum alloy
JPH0277546A (en) Al-sn-pb bearing alloy
JPH0347936A (en) Al-sn-pb series bearing alloy
JP4136056B2 (en) Plain bearing
JPH0257653A (en) Al-sn bearing alloy
JPS62218538A (en) Al-sn bearing alloy
JPS6056220B2 (en) aluminum bearing alloy