JPS61213225A - Thermosetting resin molding material - Google Patents

Thermosetting resin molding material

Info

Publication number
JPS61213225A
JPS61213225A JP5551785A JP5551785A JPS61213225A JP S61213225 A JPS61213225 A JP S61213225A JP 5551785 A JP5551785 A JP 5551785A JP 5551785 A JP5551785 A JP 5551785A JP S61213225 A JPS61213225 A JP S61213225A
Authority
JP
Japan
Prior art keywords
thermosetting resin
molding material
inorganic filler
molding
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5551785A
Other languages
Japanese (ja)
Other versions
JPH0347293B2 (en
Inventor
Minoru Adachi
稔 安達
Takashi Kizawa
木澤 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADACHI SHIN SANGYO KK
Original Assignee
ADACHI SHIN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADACHI SHIN SANGYO KK filed Critical ADACHI SHIN SANGYO KK
Priority to JP5551785A priority Critical patent/JPS61213225A/en
Publication of JPS61213225A publication Critical patent/JPS61213225A/en
Publication of JPH0347293B2 publication Critical patent/JPH0347293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the titled material having low molding shrinkage and excellent surface smoothness and dimensional stability, and useful for electrical apparatuses, etc., by mixing a thermosetting resin homogeneously with specific carbon fibers and an inorganic filler. CONSTITUTION:The objective material can be produced by using (A) a thermosetting resin, (B) a carbon fiber having a fiber length of 0.02-1mm, and (C) an inorganic filler having particle diameter of <=50mum as main components, and mixing the components homogeneously or almost homogeneously. The amounts of the components B and C in the material are 35-65wt% and 3-35wt%, respectively. Preferably, the component A is epoxy resin or polyester resin and the component C is selected from fine powder of silica, kaolin, etc., and lamellar inorganic compounds such as montmorillonite, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、エポキシ樹脂やポリエステル樹脂で代表され
る熱硬化性樹脂のもつ優れた機械的性質、電気的性質、
寸法安定性、耐熱性、耐薬品性などの緒特性を活かして
、電気機器、車両及び航空機部品、船舶機器部品、スポ
ーツ・しジャー用品などの各分野で広く使用されている
複合成形材料で、詳しくは熱硬化性樹脂と炭素繊維並び
に無機充填剤を主要材料とし、これらを均一又は略均−
に混合してなる炭素繊維強化熱硬化性樹脂成形材料に関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to the excellent mechanical properties, electrical properties, and
It is a composite molding material that is widely used in various fields such as electrical equipment, vehicle and aircraft parts, marine equipment parts, sports and leisure goods, etc., taking advantage of its properties such as dimensional stability, heat resistance, and chemical resistance. Specifically, the main materials are thermosetting resin, carbon fiber, and inorganic filler, and these are uniformly or approximately uniformly distributed.
This invention relates to a carbon fiber-reinforced thermosetting resin molding material.

〈従来の技術〉 この種の複合成形材料として従来から実用に供されてい
るものに、 (1)  ガラス繊維と不飽和ポリエステル樹脂と無機
充填剤、並びに熱可塑性樹脂の粉末を主要材料とし、こ
れを均一又は略均−に混合してなる成形材料、 (り  炭素繊維とフェノール樹脂とを主要材料とし、
これらを均一又は略均−に混合してなる成形材料、 (3)繊維長6B乃至25mm の炭素繊維と熱硬化性
樹脂とt主要材料とじ、これらtバルク状又はシート状
にした成形材料、 等が知られている。
<Prior art> Composite molding materials of this type that have been in practical use for a long time include: (1) The main materials are glass fiber, unsaturated polyester resin, inorganic filler, and thermoplastic resin powder. A molding material made by uniformly or almost uniformly mixing carbon fiber and phenolic resin,
A molding material made by uniformly or almost uniformly mixing these, (3) Carbon fiber with a fiber length of 6B to 25 mm, a thermosetting resin, and a main material, a molding material made of these in bulk or sheet form, etc. It has been known.

〈発明が解決しようとする問題点〉 然し乍ら、上記従来の各成形材料による場合は、それら
による成形品において各々次のような欠点を有していた
<Problems to be Solved by the Invention> However, in the case of using each of the above-mentioned conventional molding materials, molded products made of them each had the following drawbacks.

即ち、(1)の成形材料による場合は、成形時の流動性
を保持する上でガラス繊維の上限含有率が重量百分単に
おいて35パーセン)以下に制約されるばかりでなく、
成形収縮を改善する、りまシ、硬化収縮を小さくするた
めに例えばポリエチレン粉末などの熱可塑性樹脂の粉末
r添加しているので、温度や圧力などの成形条件の相違
によって成形品の寸法にばらつきを生じ易い。
That is, in the case of using the molding material (1), the upper limit content of glass fiber is not only limited to 35% (weight percent) or less in order to maintain fluidity during molding, but also
Thermoplastic resin powder such as polyethylene powder is added to improve molding shrinkage and reduce curing shrinkage, so molded product dimensions may vary due to differences in molding conditions such as temperature and pressure. tends to occur.

更に、成形時の材料の流動状況によってガラス繊維の配
向性が異なシ、それに起因して成形収縮量が方向によシ
差異を生じ、徴形品が歪に変形し易い欠点がある。
Furthermore, the orientation of the glass fibers varies depending on the flow condition of the material during molding, and this causes a difference in the amount of molding shrinkage in different directions, resulting in the disadvantage that the shaped product is easily distorted.

(210成形材料による場合は、成形収縮率が小さい反
面、硬化時に水分を発生し易く、この水分の影響で成形
品の寸法にばらつきを生じ、複雑な形状、精密品の成形
材料としては不適であシ、用途範囲が非常に狭い欠点が
ある。
(In the case of 210 molding material, although the molding shrinkage rate is small, it tends to generate moisture during curing, and the influence of this moisture causes variations in the dimensions of the molded product, making it unsuitable as a molding material for complex shapes and precision products. However, the drawback is that the scope of use is very narrow.

(31の成形材料による場合は、例えば繊維長が6mm
乃至25mm の炭素繊維t−40乃至60僑含有させ
た成形材料では成形収縮が非常に小さくなるが、反面、
繊維長が大きいため成形時の流動性に伴なう繊維の配向
により、成形収縮に方向性が生じて成形品が変形するば
かりでなく、FiL形品形量表面になり、表面平滑性に
欠け、また小物の肉薄成形が不能であり、寸法精度の面
でも高い成形品を得ることができない欠点がある。
(For example, when using the molding material No. 31, the fiber length is 6 mm.
Molding materials containing T-40 to T-60 carbon fibers of 25 mm to 25 mm have very small molding shrinkage, but on the other hand,
Because the fiber length is large, the orientation of the fibers due to fluidity during molding causes directional molding shrinkage, which not only deforms the molded product, but also results in a FiL shaped surface and lacks surface smoothness. In addition, it is impossible to mold small objects with thin walls, and it is also difficult to obtain molded products with high dimensional accuracy.

以上の如〈従来から実用に供されている成形材料は何れ
のものも、近年頓みに脚光を浴び、将来にわたってその
進歩に著しい期待が寄せられている電子産業やオートメ
ーション機器分野、光関連分野等で使用する各種デバイ
ス、精密部品など寸法精度、表面平滑性に対する要求度
の高い成形品には適さず、それだけ用途範囲の狭い材料
であった。
As mentioned above, all of the molding materials that have been in practical use have been in the spotlight in recent years, and there are great expectations for their progress in the electronic industry, automation equipment fields, and optical-related fields. It is not suitable for molded products that have high requirements for dimensional accuracy and surface smoothness, such as various devices and precision parts used in manufacturing, etc., and its range of applications is therefore narrow.

く問題点を解決するための手段〉 未発明はかかる実情に鑑み、主要材料の配合比並びに、
それら材料の性状選定に鋭意研究を重ね、成形品の寸法
安定性および表面平滑性を著しく改善することができる
熱硬化性樹脂成形材料を提供する点に目的を有するもの
であり、この目的を達成するために本発明に係る熱硬化
性樹脂成形材料は、熱硬化性樹脂に均一又は略均−に混
合すべき炭素繊維として0.02mm 乃至1m!Il
の繊維長のものを使用し、かつ無機充填剤として50,
4m以下の粒径のものを使用するとともに、これら炭素
繊維及び無機充填剤の配合比が重量百分率で35乃至6
5パーセント及び35パーセントとした点に特徴勿有す
るものである。
Means for solving the problems> In view of the above-mentioned circumstances, the composition ratio of the main materials and the
Through intensive research into the selection of the properties of these materials, the objective is to provide a thermosetting resin molding material that can significantly improve the dimensional stability and surface smoothness of molded products, and this objective has been achieved. In order to achieve this, the thermosetting resin molding material according to the present invention has carbon fibers of 0.02 mm to 1 m! that should be mixed uniformly or approximately uniformly into the thermosetting resin! Il
fiber length of 50%, and as an inorganic filler,
In addition to using particles with a particle size of 4 m or less, the blending ratio of these carbon fibers and inorganic fillers is 35 to 6 in weight percentage.
It is notable that the values are 5% and 35%.

上記の如き特&1有する未発明に係る成形材料の基本的
な技術思想は、炭素繊維の含有率を非常に高くすること
によって、加熱加圧成形時に繊維と繊維との間に熱硬化
性樹脂と無機充填剤とt充填させて成形品の成形収縮率
を小さくすることと、炭素繊維を高含有することに伴な
って生じる流動性の低下?無機充填剤の混入によって抑
制し、適度な粘性金与えて流動性全適正化することと、
繊維長が0.02=乃至1mmの炭素繊維を用いること
によって戚形収縮率七小さくしながら繊維の配向に伴な
う成形収縮の方向性をなくすること並びに、粒径が50
.un以下の無機充填剤を用いることによって成形時の
流動性を適正に保ちつつ、成形品の表面平滑性上皮くす
る点にあシ、以下これら各点に関して本発明者らが考察
し究明した事項について仔細に詳述する。
The basic technical idea of the uninvented molding material having the above-mentioned characteristics is that by increasing the carbon fiber content to a very high level, a thermosetting resin is formed between the fibers during heat and pressure molding. Is it possible to reduce the mold shrinkage of a molded product by filling it with an inorganic filler, and to reduce fluidity due to high carbon fiber content? It is suppressed by mixing inorganic fillers, and gives appropriate viscosity to optimize fluidity.
By using carbon fibers with a fiber length of 0.02 to 1 mm, the shrinkage rate can be reduced by 7 mm, while the directionality of mold shrinkage due to fiber orientation can be eliminated, and the particle size can be reduced to 50 mm.
.. By using an inorganic filler of less than 100 mL, it is possible to maintain appropriate fluidity during molding and to make the surface of the molded product smooth. The details will be explained in detail.

即ち、炭素繊維は熱膨張係数がPM係で−0,1XIO
/?C、ピッチ糸で5X1010C,と極めて小さく、
熱硬化性樹脂のように成形温度の高い材料に高含有させ
ることは成形収縮を抑制する上で有効である。
That is, carbon fiber has a thermal expansion coefficient of -0.1XIO in PM ratio.
/? C, pitch thread is extremely small, 5X1010C,
High content in materials such as thermosetting resins that require high molding temperatures is effective in suppressing molding shrinkage.

然しなから、熱硬化性樹脂はその配合比に関係なく硬化
時に1乃至4パ一セント程度の収縮を起すものであシ、
この硬化収縮によって炭素繊維と樹脂との間に内部応力
が発生し、成形品の変形や樹脂層に生じる細小クラッチ
によシ成形品の強度低下の原因になる。
However, thermosetting resins shrink by about 1 to 4 percent during curing, regardless of their blending ratio.
This curing shrinkage generates internal stress between the carbon fibers and the resin, causing deformation of the molded product and a decrease in the strength of the molded product due to small clutches occurring in the resin layer.

本発明はこの点に鑑み、樹脂(30−100XIO/’
C)に比べて熱膨張係数が小さい(5〜8X10 /’
0無機充填剤を添加することによって熱硬化性樹脂の硬
化収縮を小さくし、炭素繊維と樹脂との間の内部応力の
発生を緩和して成形品の変形や強度低下を招くことなく
、成形収縮を改善できるのである。
In view of this point, the present invention has developed a resin (30-100XIO/'
The coefficient of thermal expansion is smaller than C) (5~8X10/'
0 By adding an inorganic filler, the curing shrinkage of the thermosetting resin is reduced, and the generation of internal stress between the carbon fiber and the resin is alleviated, thereby reducing molding shrinkage without causing deformation or strength reduction of the molded product. can be improved.

また、本発明に使用する炭素繊維の平均繊維長は0.0
2mm乃至1mmの間が最も良い。
Furthermore, the average fiber length of the carbon fibers used in the present invention is 0.0
The best value is between 2 mm and 1 mm.

つまり、平均繊維長が1mm以上の炭素繊維を使用する
と、成形時の流動によって繊維の向きが一方向に整列さ
れ、このような繊維の配合によって成形品の収縮の方向
性が生じて変形を生じる。また、平均繊維長が0.02
mm 以下の炭素繊維を使用すると、成形収縮の抑制効
果が低い。
In other words, when carbon fibers with an average fiber length of 1 mm or more are used, the fibers are aligned in one direction due to the flow during molding, and this combination of fibers causes directional shrinkage of the molded product, causing deformation. . In addition, the average fiber length is 0.02
If carbon fibers with a diameter of 2 mm or less are used, the effect of suppressing molding shrinkage will be low.

次に、未発明において使用する無機充填剤としては、シ
リカ、カオリン、クレー、炭酸カルシタム、炭酸マグネ
シウム、ドローマイト、水酸化カルシタム、ウォラスト
ナイト、硫酸パリクム等の微粉末のほかに、゛モンモリ
ロ・ナイト、ヘクトライト、バーキュライト、加水ハロ
イサイト、バイロフィライト等の粘土類、硫化タリウム
等の硫化物、プん酸水素ジルコニウム等のりん酸塩、オ
キシ塩化第二鉄等のハロゲン化物などで代表される層状
無機化合物等が考えられるが特に樹脂に対して優れた親
和性金有し、成形時の流動性を保持しつつかっ、成形品
の強度を向上できる層状無機化合物が好ましい。
Next, the inorganic fillers used in the invention include fine powders such as silica, kaolin, clay, calcium carbonate, magnesium carbonate, dolomite, calcium hydroxide, wollastonite, palicum sulfate, and montmorillonite. , clays such as hectorite, verculite, hydrated halloysite, and birophyllite, sulfides such as thallium sulfide, phosphates such as zirconium hydrogen phosphate, and halides such as ferric oxychloride. In particular, layered inorganic compounds that have excellent affinity for resins, maintain fluidity during molding, and can improve the strength of molded products are preferred.

また、無機充填剤としては、平均粒径が0.02/lA
m乃至50.−Amのものが最も効果的である。
In addition, as an inorganic filler, the average particle size is 0.02/lA
m to 50. -Am is the most effective.

つまり、平均粒径が50μm以上のものt用いると、成
形時の流動性が低下して成形性に悪影響を及ぼすととも
に、成形品の表面が粗になり、表面平滑性にも欠ける。
In other words, if a material having an average particle size of 50 μm or more is used, the fluidity during molding will be reduced and the moldability will be adversely affected, and the surface of the molded product will become rough and lack surface smoothness.

このことからみて、無機充填剤としては、平均粒子径の
小さいものほど好ましく、粒子径が小さければ小さいほ
ど実質表面積が増すので、それに比例して含有率も小さ
くなるものである。
In view of this, it is preferable that the inorganic filler has a smaller average particle diameter, and the smaller the particle diameter, the greater the substantial surface area, and therefore the smaller the content.

更に、炭素繊維の含有率については一重量百分率で35
乃至65パーセント、好ましくは40パ一セント以上6
5パーセント未満がa い。
Furthermore, the content of carbon fiber is 35% by weight.
65% to 65%, preferably 40% or more6
Less than 5% are a.

つまシ、炭素繊維t−65パ一セント以上含有させると
、成形時の金型内での流動性が低下し、特に複雑な形状
の成形品の成形が困難となり、また35パーセント以下
では成形収縮率が所期通り小さくならず、精密部品の成
形には適用できないのである。
If the carbon fiber content exceeds 65%, the fluidity within the mold during molding will decrease, making it particularly difficult to mold products with complex shapes, and if it is less than 35%, molding shrinkage will occur. The ratio is not as small as expected, and the method cannot be applied to molding precision parts.

〈発明の効果〉 以上詳述したように未発明は、炭素繊維の繊維長及び無
機充填剤の粒径といった二つの主要材料の性状選定、並
びに熱硬化性樹脂を含む三つの主要材料の配合比の選定
によって、成形時つまシ硬化時の樹脂の収縮による内部
応力の発生を抑制して成形品の成形収縮率を、金型寸法
に対して0.2パーセント以下の小さいものにできると
ともに、成形品の変形やクラックによる強度低下も殆ん
どなく、しかも表面平滑性に優れている。加えて、成形
品の熱膨張係数は約1、3X10.10(位で通常のプ
ラスチックに比べて極めて小さく、温度変化による寸法
変化も非常に小さくて成形品表面の面精度と寸法安定性
の面においても優れた効果があり、成形時の寸法精度の
向上と相俟って小物の肉薄材料品や精密成形部品にも十
分に適用できるのである。
<Effects of the invention> As detailed above, the uninvented problem lies in the selection of the properties of two main materials such as the fiber length of carbon fiber and the particle size of inorganic filler, and the blending ratio of three main materials including thermosetting resin. By selecting , it is possible to suppress the generation of internal stress due to the contraction of the resin during molding and curing, and to reduce the molding shrinkage rate of the molded product to less than 0.2% relative to the mold dimensions. There is almost no reduction in strength due to product deformation or cracking, and the surface is excellent in smoothness. In addition, the coefficient of thermal expansion of the molded product is approximately 1.3 x 10.10 (approximately 1.3 x 10.10), which is extremely small compared to ordinary plastics, and the dimensional change due to temperature changes is also very small, which improves the surface accuracy and dimensional stability of the molded product surface. It also has excellent effects, and together with improved dimensional accuracy during molding, it can be fully applied to small thin material products and precision molded parts.

従って、従来、アルミダイカストなどのメタル製品であ
ったものを、量産可能な成形品に置き換えることができ
て、真作コストの大幅な低減並びに製品重量の著しい軽
量化が図れるといった産業1頗る貢献度の高い成形材料
上提供できるに至ったのである。
Therefore, it is possible to replace conventional metal products such as aluminum die-casting with molded products that can be mass-produced, making it a major contribution to the industry in that it can significantly reduce production costs and significantly reduce product weight. As a result, we have been able to provide a molding material with high quality.

〈実施例〉 以下本発明の実施例を詳述する。<Example> Examples of the present invention will be described in detail below.

冷却粉砕した成形材料をトランスファー成形によって成
形圧力600WaR−金型温度1606Cで5分間加熱
して成形品を得た。
The cooled and pulverized molding material was heated by transfer molding at a molding pressure of 600 WaR and a mold temperature of 1606 C for 5 minutes to obtain a molded product.

実施例2゜ 上記各材料を加温しながら均−混合したのち、冷却粉砕
した成形材料t1射出成形機によって射出圧力1500
WcI?で210°Cの金型に射出し60秒加熱して成
形品を得た。
Example 2゜The above materials were uniformly mixed while being heated, then cooled and pulverized.The molding material was then injected into a t1 injection molding machine at an injection pressure of 1500.
WcI? The mixture was injected into a mold at 210°C and heated for 60 seconds to obtain a molded product.

実施例3゜ 上記各材料を加温しながら均一混合した成形材料をトラ
ンスファー戚形機によって成形圧力600’lF/’(
!ffi”で1609Cの金型に加圧注入し5分間加熱
して成形品を得た。
Example 3 A molding material obtained by uniformly mixing the above-mentioned materials while heating them was molded at a molding pressure of 600'lF/' (
! ffi'' into a 1609C mold and heated for 5 minutes to obtain a molded product.

上記各材料を加温しながら均−混合した成形材料を実施
例3.と同一条件で成形し成形品會得次に、未発明の上
記各実施例と比較すべき従来例を詳述する。
Example 3: A molding material obtained by homogeneously mixing the above-mentioned materials while heating them. Next, conventional examples to be compared with the above-mentioned uninvented examples will be described in detail.

従来例1゜ 上記各材料を均一に混合した成形材料を実施例3.と同
一条件で成形して成形品を得た。
Conventional Example 1゜A molding material obtained by uniformly mixing each of the above materials was used as Example 3. A molded product was obtained by molding under the same conditions as .

従来例2゜ 十F−8i訃ヶ加温し方から均一に混合した後、冷却粉
砕した成形材料をトランスファー成形によってぼ形圧力
600Q+7am”、金型温度160°Cで5分間加熱
して成形品を得た。
Conventional Example 2゜10F-8i Heating method After uniformly mixing, the cooled and pulverized molding material was heated by transfer molding at a pressure of 600Q+7am'' and a mold temperature of 160°C for 5 minutes to produce a molded product. I got it.

従来例3゜ 一般に市販されている乾式不飽和ポリエステル樹脂成形
材料(ガラス繊維、平均繊維長3mmt−201含む)
を射出成形様によって射出圧力1500re/m”で1
70’Cの金型に射出し50秒間加熱して成形品を得た
Conventional Example 3゜Commercially available dry unsaturated polyester resin molding material (including glass fiber, average fiber length 3mmt-201)
1 at an injection pressure of 1500re/m" depending on the injection molding method.
The mixture was injected into a mold at 70'C and heated for 50 seconds to obtain a molded product.

以上掲げた本発明実施例1.乃至4.及び従来例1、 
、2. 、3.による成形品評価を次表で示すが、この
評価に使用した成形品の形状及び金型の各部寸法ilt
第1図、第2図で示す通りである。
Example 1 of the present invention listed above. to 4. and conventional example 1,
, 2. , 3. The following table shows the evaluation of molded products by
As shown in FIGS. 1 and 2.

尚、成形品の測定寸法は成形材料の流れ方向とそれに対
して直角方向とt−’4゜。Omm  まで測定したも
のであり、金型寸法に対する成形収縮率(パーセント)
で比較した結果を示す。
The measured dimensions of the molded product are t-'4° with respect to the flow direction of the molding material and the direction perpendicular thereto. It is measured to 0mm, and the molding shrinkage rate (percentage) relative to the mold dimensions.
The results of the comparison are shown below.

上記の成形品比較評価から明白なように、未発明に係る
成形材料による成形品は、絶対的に成形収縮が非常に小
さい上に、A、B%Hといった三次元方向での成形収縮
率の差異が従来例のものに比べて非常に小さい。因みに
、従来例1、の成形品の成形収縮率の差異は、A:B:
Hで1 : 17.5 : 20.5であるのに対し、
本発明の実施例上の成形品では、A:B:Hでl :L
33:1.33  である。この仁とは成形寸法精度が
非常に高く、精密部品への適用を裏付けるに十分な証明
であシ、またこれに関連してトラス7アー放形や射出成
形等といった量産化、それに伴なうコストグクンを実現
で齢る証明でもある。
As is clear from the above comparative evaluation of molded products, the molded products made of the uninvented molding material have very small mold shrinkage in absolute terms, and the mold shrinkage rates in the three-dimensional directions such as A and B %H. The difference is very small compared to the conventional example. Incidentally, the difference in molding shrinkage rate of the molded product of Conventional Example 1 is A:B:
Whereas in H it is 1: 17.5: 20.5,
In the molded article according to the embodiment of the present invention, A:B:H and l:L
33:1.33. This technology has extremely high molding dimensional accuracy, which is sufficient to support its application to precision parts. It is also proof that you can grow old by achieving cost-effectiveness.

尚、未明細書中の実施例&で記載したモンモリロナイト
複合体とは、硬化促進剤を層間に吸着させた層状鉱物の
1つで、含水アルミゲイ酸塩の一種でAltos *4
s1θs ah nHsoであり、別名がベントナイト
である。
The montmorillonite composite described in Examples & in the unspecified section is one of the layered minerals in which a hardening accelerator is adsorbed between the layers, and is a type of hydrous aluminum gaitate called Altos *4.
s1θs ah nHso, another name is bentonite.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は成形材料の評価のために用いた成形
品(金型)形状勿示す平面図及び側面図である。
FIGS. 1 and 2 are a plan view and a side view showing the shape of a molded product (mold) used for evaluation of molding materials.

Claims (5)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂と炭素繊維並びに無機充填剤を主要
材料とし、これらを均一又は略均一に混合してなる成形
材料であって、前記炭素繊維として0.02mm乃至1
mmの繊維長のものを使用し、かつ前記無機充填剤とし
て50m以下の粒径のものを使用するとともに、これら
炭素繊維及び無機充填剤の配合比が重量百分率で35乃
至65パーセント及び3乃至35パーセントである熱硬
化性樹脂成形材料。
(1) A molding material whose main materials are a thermosetting resin, carbon fibers, and inorganic filler, and which are uniformly or almost uniformly mixed, wherein the carbon fibers have a thickness of 0.02 mm to 1 mm.
The carbon fibers with a fiber length of 50 mm are used, and the inorganic filler has a particle size of 50 mm or less, and the blending ratio of these carbon fibers and the inorganic filler is 35 to 65 percent and 3 to 35 percent by weight. Thermosetting resin molding material.
(2)前記熱硬化性樹脂がエポキシ樹脂である特許請求
の範囲第(1)項に記載の熱硬化性樹脂成形材料。
(2) The thermosetting resin molding material according to claim (1), wherein the thermosetting resin is an epoxy resin.
(3)前記熱硬化性樹脂がポリエステル樹脂である特許
請求の範囲第(1)項に記載の熱硬化性樹脂成形材料。
(3) The thermosetting resin molding material according to claim (1), wherein the thermosetting resin is a polyester resin.
(4)前記無機充填剤がシリカ、カオリン、クレー、炭
酸カルシウム、炭酸マグネシウム、ドローマイト、水酸
化カルシウム、ウォラストナイト、硫酸バリウム等の微
粉末から選ばれたものである特許請求の範囲第(1)項
に記載の熱硬化性樹脂成形材料。
(4) The inorganic filler is selected from fine powders of silica, kaolin, clay, calcium carbonate, magnesium carbonate, dolomite, calcium hydroxide, wollastonite, barium sulfate, etc. ) The thermosetting resin molding material described in item 1.
(5)前記無機充填剤がモンモリロナイト、ヘクトライ
ト、バーミキュライト、加水ハロイサイト、バイロフィ
ライト等の粘土類、硫化タリウム等の硫化物、りん酸水
素ジルコニウム等のりん酸塩、オキシ塩化第二鉄等のハ
ロゲン化物などで代表される層状無機化合物群から選ば
れたものである特許請求の範囲第(1)項に記載の熱硬
化性樹脂成形材料。
(5) The inorganic filler may be clays such as montmorillonite, hectorite, vermiculite, hydrated halloysite, birophyllite, sulfides such as thallium sulfide, phosphates such as zirconium hydrogen phosphate, ferric oxychloride, etc. The thermosetting resin molding material according to claim (1), which is selected from a group of layered inorganic compounds represented by halides.
JP5551785A 1985-03-18 1985-03-18 Thermosetting resin molding material Granted JPS61213225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5551785A JPS61213225A (en) 1985-03-18 1985-03-18 Thermosetting resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5551785A JPS61213225A (en) 1985-03-18 1985-03-18 Thermosetting resin molding material

Publications (2)

Publication Number Publication Date
JPS61213225A true JPS61213225A (en) 1986-09-22
JPH0347293B2 JPH0347293B2 (en) 1991-07-18

Family

ID=13000892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5551785A Granted JPS61213225A (en) 1985-03-18 1985-03-18 Thermosetting resin molding material

Country Status (1)

Country Link
JP (1) JPS61213225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679722A (en) * 1993-07-15 1997-10-21 Teijin Seiki Co., Ltd. Resin composition for production of a three-dimensional object by curing
WO2017118476A1 (en) * 2016-01-05 2017-07-13 Toyota Motor Europe Carbon fiber reinforced plastic material having high smoothness

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538976A (en) * 1978-09-13 1980-03-18 Nippon Rutsubo Kk Recarburizer for iron manufacture and steel making

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538976A (en) * 1978-09-13 1980-03-18 Nippon Rutsubo Kk Recarburizer for iron manufacture and steel making

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679722A (en) * 1993-07-15 1997-10-21 Teijin Seiki Co., Ltd. Resin composition for production of a three-dimensional object by curing
WO2017118476A1 (en) * 2016-01-05 2017-07-13 Toyota Motor Europe Carbon fiber reinforced plastic material having high smoothness
JP2019506484A (en) * 2016-01-05 2019-03-07 トヨタ モーター ヨーロッパ Carbon fiber reinforced plastic material with high smoothness
US10961361B2 (en) 2016-01-05 2021-03-30 Toyota Motor Europe Carbon fiber reinforced plastic material having high smoothness

Also Published As

Publication number Publication date
JPH0347293B2 (en) 1991-07-18

Similar Documents

Publication Publication Date Title
GB1587894A (en) Thermoplastic resin compositions
KR920002871B1 (en) Polyarylene sulfide resin compositions
US4490492A (en) Flowable mixture and use of synthetic calcium silicate
CN102775755A (en) Polyaryl ether nitrile (PEN) and carbonyl iron powder (Fe(CO)5) composite magnetic material and preparation method thereof
WO2006059666A1 (en) Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
US5073589A (en) Composite backing structure for spray metal tooling
JPS62207313A (en) Thermosetting resin molding material
JPS61213225A (en) Thermosetting resin molding material
JPH0560492B2 (en)
KR101488299B1 (en) Flame retardant polyamide resin compositions
CA2046761A1 (en) Polyarylene sulfide resin molding composition
JPH0267326A (en) Fiber-reinforced thermoplastic resin composition with excellent surface flatness
JPS6343964A (en) Inorganic powder having modified surface a resin composition containing the same
KR102020608B1 (en) Thermoplastic resin composition comprising flake additives and molded article comprising the same
KR20010015659A (en) Plastic-ceramic composite material and process for producing the same
JPS5867747A (en) Phenolic resin molding material
KR930008196B1 (en) Polyphenylene sulfide resin composition
JPH0739146B2 (en) Resin molding material
JP4849762B2 (en) Aromatic resin composition, heat-resistant sheet, and flexible circuit board reinforcing sheet
JP3074814B2 (en) Resin composition
JPH0195158A (en) Thermoplastic resin molding material
Bria et al. Thermal properties of particulate epoxy composites
KR940001077B1 (en) Polyphenylene sulfide resin composition
JPH0361693B2 (en)
Zhang et al. Diffusion of epoxy molecules on the chemically modified graphene: a molecular dynamics simulation study

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term