JPS61212280A - Production of cultivated laver of new type having high resistance to nutrition deficiency - Google Patents

Production of cultivated laver of new type having high resistance to nutrition deficiency

Info

Publication number
JPS61212280A
JPS61212280A JP60053752A JP5375285A JPS61212280A JP S61212280 A JPS61212280 A JP S61212280A JP 60053752 A JP60053752 A JP 60053752A JP 5375285 A JP5375285 A JP 5375285A JP S61212280 A JPS61212280 A JP S61212280A
Authority
JP
Japan
Prior art keywords
seaweed
laver
cultivated
nutrition
protoplasts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60053752A
Other languages
Japanese (ja)
Other versions
JPH031954B2 (en
Inventor
Teruhiko Shibata
柴田 照彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60053752A priority Critical patent/JPS61212280A/en
Publication of JPS61212280A publication Critical patent/JPS61212280A/en
Publication of JPH031954B2 publication Critical patent/JPH031954B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/14Plant cells

Abstract

PURPOSE:To obtain cultivated laver not causing fading even if nutrition is insufficient in a fishing ground, by subjecting protoplast of laver of naturally occurring kind which has a large amount of dyestuff and strong resistance to deficiency of nutrition and protoplast of cultivated laver to cell fusion. CONSTITUTION:Protoplast of laver (Porphyra suborbiculata Kjellman, Porphyra okamurarai Ueda, Porphyra deutate Kjellman, etc.) of naturally occurring type which has a large amount of dyestuff and strong resistance to deficiency of nutrition is prepared and protoplast of cultivated laver is prepared. Both the protoplasts are subjected to cell fusion, the prepared fused cell is grown, to give cultivated laver which will not fade even in raising in a fishing ground deficient in nutrition.

Description

【発明の詳細な説明】 産業上皇■里公立 本発明は、細胞融合の手法を利用して、貧栄養漁場での
養殖において、いわゆる色落ちのしない貧栄養耐性の強
い品種の養殖海苔を作成する方法に関する。
[Detailed Description of the Invention] The present invention utilizes a cell fusion technique to create a variety of cultured seaweed that does not fade in color and is highly resistant to poor nutrition in aquaculture in poor nutrition fishing grounds. Regarding the method.

従来立技血皿!量 海苔の養殖は、一般にある程度栄養に富んだ環境の漁場
で養殖されている。しかし、最近、海におけるプランク
トンの大量発生のため海水中の窒素及びリンが減少し、
その結果、海苔養殖漁場の貧栄養化(窒素及びリンの減
少による海苔の養殖に必要な栄養塩類の減少)をもたら
し、養殖海苔に色落ちの現象を起すことが問題となって
いる。
Traditional standing technique blood plate! Seaweed is generally cultivated in fishing grounds with a somewhat nutrient-rich environment. However, recently, due to the large amount of plankton in the ocean, nitrogen and phosphorus in the seawater have decreased.
As a result, it has become a problem that the seaweed cultivation and fishing grounds are becoming oligotrophic (a decrease in the nutritional salts necessary for cultivation of seaweed due to a decrease in nitrogen and phosphorus), and the phenomenon of discoloration of cultivated seaweed is caused.

また、一方、海苔の生産量の増大に伴ない、限られた漁
場での密集的養殖が行なわれるようになり、しかも1)
月から3月頃までの養殖期間に何十回もの摘採が行なわ
れるために、漁期の進行にしたがって、海水中の栄養塩
類の減少をきたすようになって、養殖海苔の色落ち現象
の原因ともなっている。
On the other hand, with the increase in seaweed production, intensive cultivation has been carried out in limited fishing grounds, and 1)
As the seaweed is harvested dozens of times during the cultivation period from March to March, the amount of nutrients in the seawater decreases as the fishing season progresses, causing the discoloration of cultivated seaweed. There is.

而して、上述したような海苔の養殖漁場における貧栄養
化の問題の対策としては抜本的なものは行われておらず
、上記色落ち現象の発生に応じて硫安のような窒素源肥
料を漁場に散布することが行われているにすぎない。
However, no drastic countermeasures have been taken to combat the problem of malnutrition in seaweed farming areas as described above, and nitrogen source fertilizers such as ammonium sulfate have been introduced in response to the occurrence of the discoloration phenomenon described above. All that is being done is spraying the fishing grounds.

しかし、このような漁場における施肥では肥料の流失が
避けられないため色落ち防止の効果も余りみられず、加
うるに、同じ漁場でアサリやカキの養殖も行われること
が多いことから、これらの養殖に与える影響から最近で
は漁場への施肥は抑制されるようになっている。
However, fertilization in such fishing grounds is not very effective in preventing discoloration because the fertilizer inevitably washes away, and in addition, clams and oysters are often farmed in the same fishing grounds. Fertilizer application to fishing grounds has recently been restricted due to the impact it has on aquaculture.

したがって、漁場における貧栄養化に起因する養殖海苔
の色落ち現象の防止対策が重要な課題となっている。
Therefore, measures to prevent discoloration of cultivated seaweed caused by oligotrophic conditions in fishing grounds have become an important issue.

が ° しようとするp 占 本発明者は、上述したごとき海苔の養殖上の問題点に鑑
み、その対策について検討する過程において、天然品種
の海苔が貧栄養耐性の形質を保有していることを見出し
、本発明者がさきに開発に成功した海苔のプロトプラス
ト化の技術に基づき細胞融合の手法を利用して、上記形
質を欠如している養殖海苔に該形質を導入することに成
功し、本発明をなすに至った。
In view of the above-mentioned problems in seaweed cultivation, the present inventor discovered that natural varieties of seaweed possess oligotrophic tolerance traits in the process of considering countermeasures. Under the heading, the present inventors have succeeded in introducing the above-mentioned trait into cultured seaweed that lacks it by using a cell fusion method based on the seaweed protoplastization technology that they had previously successfully developed. He came up with an invention.

すなわち、本発明は、貧栄養耐性を保有する品種の養殖
海苔を作成することにより、漁場の貧栄養化に起因する
養殖海苔の色落ち現象の問題を解決し得たものであって
、細胞融合の手法を利用して貧栄養耐性の強い品種の養
殖海苔を作成するための方法を提供することを目的とす
る。
In other words, the present invention solves the problem of discoloration of cultured seaweed caused by oligotrophic fishing in fishing grounds by creating a variety of cultured seaweed that has oligotrophic tolerance. The purpose of this study is to provide a method for creating cultured seaweed that is highly resistant to oligotrophic conditions using this method.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

髪皿曳盪底 本発明の特徴は、色i量が多くて貧栄養耐性の強い天然
品種の海苔のプロトプラストを調製し、一方養殖海苔の
プロトプラストを調製し、得られる両方のプロトプラス
トを細胞融合させて細胞融合体を形成し、ついで該細胞
融合体を育成することにより、貧栄養耐性の強い品種の
養殖海苔を作成することにある。
The feature of the present invention is that protoplasts of a natural variety of seaweed with a large amount of color and strong resistance to oligotrophy are prepared, and on the other hand, protoplasts of cultured seaweed are prepared, and both of the obtained protoplasts are subjected to cell fusion. The object of the present invention is to form a cell fusion and then grow the cell fusion to create a cultivated variety of laver with strong oligotrophic tolerance.

ロ 占を ゛するための手 本発明において用いる貧栄養耐性の強い天然品種の海苔
は、通称岩海苔と呼ばれ岩に付着して生育する野生種で
あって、マルバアマノリ、クロノリ、オニアマノリ等を
例示し得る。これらの海苔は一般に養殖海苔と同様な黒
茶色乃至黒色を呈するが、それの葉型がマル葉型並びに
それに近く、密殖性であって成長速度が遅く、ある程度
の大きさまでしか成長しないため、養殖には用いられな
い、しかしながら、これらの海苔は上述したとおり、貧
栄養耐性が在来の養殖海苔に比べて非常に強いことが判
明した。
B. A method for fortune-telling The natural variety of seaweed with strong oligotrophic tolerance used in the present invention is commonly called rock seaweed and is a wild species that grows attached to rocks. It is possible. These seaweeds generally have the same dark brown to black color as cultured seaweed, but their leaf shape is close to the round leaf type, and they are densely fertilized and grow at a slow rate, only growing to a certain size. These seaweeds are not used for aquaculture, however, as mentioned above, it has been found that their oligotrophic tolerance is much stronger than that of conventionally cultivated seaweeds.

次に、上記天然品種の海苔の貧栄養耐性を養殖海苔との
対比において実験した結果を示す。
Next, we will show the results of an experiment on the oligotrophic tolerance of the above natural varieties of seaweed in comparison with cultured seaweed.

なお、ここでいう“養殖海苔”とは、現在養殖に用いら
れている多種類の品種の海苔のうち、主として用いられ
ているアサクサノリとスサビノリを意味する。
Note that the term "cultured seaweed" as used herein refers to Asakusanori and Susabi-nori, which are mainly used among the many varieties of seaweed currently used for cultivation.

° のゝ   生についての 。° About life.

実験方法: 試料として各品種の海苔葉体(葉長10〜20mm程度
)の3枚宛を、NaN01のみの濃度を1/1000に
低減した下記組成のAsp、 12培養液中で16℃、
6000ルクス(明朗9時間、晴朗15時間)、振とう
数30ストローク/分の振とう培養の条件下で、換水す
ることなく培養し、経日的に各葉体の色落ち伏態を肉眼
観察と葉体の吸収スペクトルにより凋べた。
Experimental method: As samples, three sheets of seaweed thallus (leaf length approximately 10 to 20 mm) of each variety were incubated at 16°C in an Asp.
Culture was carried out under shaking culture conditions of 6,000 lux (9 hours of light, 15 hours of clear light) and 30 strokes/minute of shaking without changing the water, and the state of color fading of each leaflet was observed with the naked eye over time. It was determined by the absorption spectrum of the leaf.

また、対照として、NaN01の濃度を低減しないAs
p、 12培養液中の培養を同様にして行なった。結果
は表1に示すとおりである。
As a control, we also used As without reducing the concentration of NaN01.
p, 12 culture in culture medium was carried out in the same manner. The results are shown in Table 1.

As、12立 ゛の且 : 蒸留水        100   tallNaCl
           2.8  gMgSO,・7H
200,7g MgCl26thO0,4g KCI                O,07gC
a(as C1〜)         40    m
gNaNOl             10  1)
gKJPk              1    m
gNa2−グリセロリンa    1    mgビタ
ミンB12       0.02μgビオチン   
     0.I 1)gチアミン        1
0 1!g1)pH金属混液      1   m1
2)SII金属混液      1   telトリス
アミノメタン   0.1  gpH7,8〜8.0 1)Pn金属混液組成 蒸留水      100   mj!Na2−[!D
TA      100   mgFe(as C1−
)     1   mgB(HiBOi )    
  2OragMn(as C1″″)       
4   a+gZn(as C1−)      50
   μgGo(as C1−)      100 
 8g2)SI[金属混液組成 蒸留水      100   vllIMo (Na
摺o04 )    5   l1)g8r (as 
k” )    100   mgSr(as C1−
)     20   tagRb(as C1−) 
    2   mgLi(as C1−)     
2   sgl  (ask”)    100 1)
gVa(as C1−)     10  μg表1に
みられるように、養殖海苔に比べて天然品種の海苔の色
落ち発生時期が可成り遅く、したがって、天然品種の海
苔の貧栄養耐性が強いことがわかる。
As, 12 ゛: Distilled water 100 tall NaCl
2.8 gMgSO, 7H
200,7g MgCl26thO0,4g KCI O,07gC
a (as C1~) 40 m
gNaNOl 10 1)
gKJPk 1 m
gNa2-glycerolin a 1 mg vitamin B12 0.02 μg biotin
0. I 1) gthiamine 1
0 1! g1) pH metal mixture 1 ml
2) SII metal mixture 1 tel trisaminomethane 0.1 g pH 7,8-8.0 1) Pn metal mixture composition Distilled water 100 mj! Na2-[! D
TA 100 mgFe (as C1-
) 1 mgB (HiBOi)
2OragMn(as C1″″)
4 a+gZn(as C1-) 50
μgGo(as C1-) 100
8g2) SI [metal mixture composition Distilled water 100 vllIMo (Na
Suri o04) 5 l1) g8r (as
k") 100 mgSr(as C1-
) 20 tagRb(as C1-)
2 mgLi (as C1-)
2 sgl (ask”) 100 1)
gVa (as C1-) 10 μg As shown in Table 1, the time of discoloration of natural varieties of seaweed is considerably later than that of cultured seaweed, which indicates that natural varieties of seaweed are highly tolerant to oligotrophy. .

本発明では、上述したような天然品種の海苔が保有する
貧栄養耐性の形質を、細胞融合の手法を利用して養殖海
苔に導入するものであって、そのために、まず、これら
の海苔のプロトプラストを調製する。
In the present invention, the oligotrophic tolerance trait possessed by the above-mentioned natural varieties of seaweed is introduced into cultured seaweed using a cell fusion method. Prepare.

上記各海苔のプロトプラストの調製は、本発明者がさき
に開発した方法(特願昭58−149378号又は特願
昭59−22415号)を通用して行ない得る。
The protoplasts of each of the above-mentioned seaweeds can be prepared using the method previously developed by the present inventor (Japanese Patent Application No. 149378/1982 or 22415/1982).

これらの方法の概要を説明すると、前者の方法は、シュ
ードモナス属(Pseudo信onas)に属する難消
化性多糖類(マンナン、キシラン及びボルフイラン)の
加水分解能を有する微生物(シュードモナスsp嵐PT
−5.微工研条寄魚BP−330)を、海苔もしくは海
苔由来の多糖類(海苔を熱水抽出して可溶性成分を除去
して得られる、主としてマンナンもしくはキシランのよ
うな多糖類から成る残渣又は該残渣を更に精製処理して
多ti類含量を高めたもの)を誘導物質とて含む培地中
で培養して得られる培養液を遠心分離し、その上澄液を
酵素液として用いて海苔葉体を処理することから成る。
To give an overview of these methods, the former method uses microorganisms (Pseudomonas sp. PT.
-5. BP-330), seaweed or seaweed-derived polysaccharides (residues mainly consisting of polysaccharides such as mannan or xylan obtained by hot water extraction of seaweed to remove soluble components) The resulting culture solution is centrifuged by culturing in a medium containing as an inducer substance (the residue has been further purified to increase the content of polytidines), and the supernatant is used as an enzyme solution to incubate seaweed fronds. It consists of processing.

上記酵素液にはマンナン加水分解酵素とキシラン加水分
解酵素が含まれているので該酵素液を海苔葉体に作用さ
せるとマンナン加水分解酵素が海苔の表面に存在する顆
粒状のマンナンに作用して葉体に大きく切断部を形成し
、それによりキシラン加水分解酵素により細胞壁を形成
しているミクロフィブリル形態のキシランが作用され易
くなって、葉体の細胞壁が分解除去されてプロトプラス
ト化されるようになる。また、上記酵素液にはボルフイ
ラン分解酵素も含まれているので、海苔葉体の細胞光間
物質としてのポルフィランにも作用して分解するのでプ
ロトプラスト化が−そう促進される。
The above enzyme solution contains mannan hydrolase and xylan hydrolase, so when the enzyme solution is applied to the seaweed thallus, the mannan hydrolase acts on the granular mannan present on the surface of the seaweed. A large cut is formed in the leaf body, which makes it easier for xylan hydrolase to act on xylan in the form of microfibrils that form the cell wall, allowing the cell wall of the leaf body to be degraded and removed and converted into protoplasts. Become. Furthermore, since the enzyme solution contains borphyranase, it also acts on and decomposes porphyran, which is an intercellular material of the seaweed thallus, thereby promoting protoplast formation.

なお、上記プロトプラスト化に際して、海苔葉体を予め
パパインのようなプロテアーゼで処理するか、又は上記
酵素液と並行的にプロテアーゼを作用させると、更に効
果的である。
In addition, during the above-mentioned protoplast formation, it is more effective if the seaweed thallus is treated with a protease such as papain in advance, or if the protease is allowed to act in parallel with the above-mentioned enzyme solution.

又、後者の方法は、海苔葉体を予めプロテアーゼで処理
した後、β−1,3−キシラナーゼとβ−1゜4−マン
ナナーゼで処理するか、或はβ−1,3−キシラナーゼ
とβ−1,4−マンナナーゼ及びボルフイラナーゼとで
処理することから成るものであって、非常に短時間で、
しかも健全な海苔葉体のプロトプラストを調製し得る。
In the latter method, the seaweed thallus is treated with protease in advance and then treated with β-1,3-xylanase and β-1°4-mannanase, or the seaweed thallus is treated with β-1,3-xylanase and β-1°4-mannanase. It consists of treatment with 1,4-mannanase and volufilanase, and in a very short time,
Furthermore, healthy seaweed thallus protoplasts can be prepared.

本発明においては、上述した方法により天然品種である
マルバアマノリのプロトプラストを調製し、一方養殖海
苔であるアサクサノリ並びにスサビノリのプロトプラス
トを同じく調製し、マルバアマノリのプロトプラストと
、アサクサノリもしくはスサビノリの各プロトプラスト
とを細胞融合させる。この細胞融合は公知の手法を適用
して行なうとよく、上記各2種のプロトプラストを混合
して形成させた沈澱にポリエチレングリコール溶液と旧
gh−pH−Ca溶液を加えて放置した後、これに培養
液(例えば人工海水Asp、 12又はProvaso
liの栄養添加海水)を加えて培養を行なって融合体を
形成する。なお、培養は15℃の温度で6000Lux
の照度で明期9時間、時期15時間の条件下で行なうと
よい。
In the present invention, protoplasts of the natural variety Maruva laver are prepared by the method described above, and protoplasts of cultured seaweeds Asakusanori and Susabi nori are prepared in the same manner, and the protoplasts of Maruva laver and each protoplast of Asakusanori or Susabi nori are cell-fused. let This cell fusion is preferably carried out by applying a known method. After adding a polyethylene glycol solution and a former gh-pH-Ca solution to the precipitate formed by mixing the two types of protoplasts mentioned above and leaving it to stand, Culture medium (e.g. artificial seawater Asp, 12 or Provaso
li (nutrient-added seawater) is added and cultured to form a fusion. In addition, the culture is carried out at a temperature of 15°C and 6000 Lux.
It is best to carry out the test under the conditions of 9 hours of brightness and 15 hours of light.

上述のようにして得られた細胞融合体(融合細胞)につ
いて下記の手順により識別(選別)を行なう。この識別
は、AとBの2種のプロトプラストを細胞融合させた場
合、2種の細胞の融合体(AXB)のほかに、同種の細
胞の融合体(BXB及びAXA)及び融合しない細胞が
混在しているので、これらから2種の細胞の融合体(A
XB)を選抜するために行なうものである。なお、上記
識別のための方法としては両者の細胞の形質マ−カーに
ついて行な・うとよく、それには下記のようにして品種
組合わせ別により行ない得るが、これに限るものでない
The cell fusion product (fused cells) obtained as described above is identified (selected) by the following procedure. This identification means that when two types of protoplasts, A and B, are fused, in addition to the fusion of the two types of cells (AXB), there are also fusions of the same type of cells (BXB and AXA) and unfused cells. Therefore, from these, a fusion of two types of cells (A
This is done to select XB). The method for the above-mentioned identification is preferably carried out using trait markers of both cells, and can be carried out according to the combination of varieties as described below, but is not limited thereto.

例えば、アサクサノリとマルバアマノリの各プロトプラ
ストを細胞融合させて得られた融合体の選抜は、アサク
サノリの葉体が細葉型であるのに対し、マルバアマノリ
はマル葉型であり、又、単胞子の放出時期がアサクサノ
リでは0.2〜1闘の葉長のときであるのに対し、マル
バアマノリでは0.5〜231の葉長のときである両者
の相違点を利用して行なう。すなわち、上記細胞融合体
について細葉型であって、10mm程度の葉長時に単胞
子を放出するものを選抜するとよい。また、直接的な選
抜法として、前述したように、両者の貧栄養耐性が著し
く異なる点を利用して、上記細胞融合体を窒素欠乏培地
中で培養し、適当な日数が経過した時点で色落ちがみら
れない細葉型のものを選抜してもよい。
For example, when selecting a fusion product obtained by cell fusion of the protoplasts of Prunus sp. This is done by taking advantage of the difference between the two, that in the case of Asakusa nori, the leaf length is 0.2 to 1 cm, while in the case of Maruba laver, the leaf length is 0.5 to 231 cm. That is, it is preferable to select the above-mentioned cell fusion that has narrow leaf type and releases monospores when the leaf length is about 10 mm. In addition, as a direct selection method, as mentioned above, taking advantage of the fact that the oligotrophic tolerance of the two is significantly different, the cell fusion described above is cultured in a nitrogen-deficient medium, and after an appropriate number of days, the color changes. You may select those with narrow leaves that do not show any shedding.

叙上のようにして得られる養殖l毎苔と天然品種の海苔
の各プロトプラストの細胞融合体は、天然品種の海苔が
保有する貧栄養耐性の形質が導入されているので、該融
合体を育成することにより、貧栄養耐性の強い新しい品
種の養殖海苔を作成することが可能となる。したがって
、本発明によると、上記品種の養殖海苔を用いることに
より、漁場の貧栄養化に起因する色落ちの問題を解決し
得るようになる。
The cell fusion of protoplasts of cultured seaweed and natural seaweed obtained as described above has the oligotrophic tolerance trait possessed by natural seaweed, so the fusion is cultivated. By doing so, it becomes possible to create new varieties of cultured seaweed with strong oligotrophic tolerance. Therefore, according to the present invention, by using the cultured seaweed of the above-mentioned variety, it becomes possible to solve the problem of discoloration caused by oligotrophication of fishing grounds.

の     と六 以下に実施例を示して本発明及びその効果を具体的に説
明する。なお、本実施例は、養殖海苔として代表的なア
サクサノリと、天然品種として代表的なマルバアマノリ
を用いて貧栄養耐性の強い品種の養殖海苔の作成の態様
について例示したものであって、本発明者はこれに限定
されるものでない。
The present invention and its effects will be specifically explained with reference to Examples below. This example is an example of how to create cultured seaweed with strong oligotrophic tolerance using Asakusanori, a typical cultured seaweed, and Malva seaweed, a typical natural variety. is not limited to this.

1施皿 アサクサノリとマルバアマノリの各プロトプラストの調
M: アサクサノリ並びにマルバアマノリの各葉体の10枚(
葉長10〜20mm)宛をL型試験管にそれぞれ収容し
、アサクサノリ葉体では0.2%濃度のパパイン溶液(
M/15 トIJ ス塩酸緩衝液、pH7,400m1
を加え、20℃で振盪下(100ストローク/分)に5
分間処理し、マルバアマノリ葉体では1%1度(7)上
記パパイン溶液を10nj!を加え、同様な条件下で1
0分間処理した。
1 Plate Preparation of each protoplast of Asakusanori and Maruba amanori: 10 pieces of each leaf of Asakusanori and Maruba amanori (
Place leaves (10-20 mm in length) in L-shaped test tubes, and add 0.2% papain solution (
M/15 ToIJS hydrochloric acid buffer, pH 7,400ml
and shaken (100 strokes/min) at 20°C for 5 minutes.
Treat for 1 minute, and add 1% 1 degree (7) of the above papain solution to 10nj! and under similar conditions 1
Processed for 0 minutes.

ついで、得られた各葉体を海水で十分洗浄した後、別の
し型試験管に収容し、その各々に予めシュードモナス(
Pseudomonas)sp、 NaPT−5(ii
i&工研条寄IIkLBP−330)をスサビノリ粉末
を基質とする培地中で培養して得られた酵素液(0,7
5Mマンニトール添加)Iom/宛を加え、20’Cで
振盪下(70ストロ一ク/分)に60分間反応させて、
プロトプラスト化を行なった。
Next, each leaflet obtained was thoroughly washed with seawater and then placed in another rhombus-shaped test tube.
Pseudomonas) sp, NaPT-5(ii
Enzyme solution (0,7
Add 5M mannitol) and react at 20'C with shaking (70 strokes/min) for 60 minutes.
Protoplastization was performed.

このようにして得られた各酵素処理混合物を40μメツ
シユのナイロン製網で濾過し、濾液を遠心分離(150
0rpm、5分間)して上澄液を除去し、残渣を適量の
下記組成の人工海水(Provasol iの栄養添加
海水)を加え、それぞれのプロトプラスト懸濁液を調製
した。
Each of the enzyme-treated mixtures thus obtained was filtered through a 40 μm mesh nylon net, and the filtrate was centrifuged (150 μm).
0 rpm for 5 minutes), the supernatant was removed, and an appropriate amount of artificial seawater having the following composition (nutrient-added seawater from Provasol i) was added to the residue to prepare each protoplast suspension.

人工海水の組成: 濾過海水1.0On+j!に対し、下記栄養剤2mj2
を添加して調製したもの。
Composition of artificial seawater: Filtered seawater 1.0On+j! For that, the following nutritional supplements 2mj2
Prepared by adding.

苺留水         100  ml!NaN0q
          350  mgNa2−グリセロ
リン酸    50  mgFe(as EDTA:1
:1モル)     2.5mg!lp■金属混液  
    25m7!ビタミンB12       10
8gチアミン         o、smgビオチン 
        5μg ″TRl5” (Sigma Co、)   500 
 mgpH7,8 XIp[金属混液組成 蒸留水         100  taINa2−E
DT^        100  mgFe(as C
1−)        1  mgB(HiBO3) 
        20  lagMn(as C1”−
)        4  tsgZn(as C1”−
)       500 μgCo(as C1−) 
      100 、ljg皿叔散企体二立底 上述のようにして調製したアサクサノリとマルバアマノ
リの各プロトプラストを混合し、このプロトプラスト混
合液の0.1mJ  (約106個)をパスツールピペ
ットでベトリI内に滴下し、5〜10分間放置してプロ
トプラストをガラス表面に沈澱させた。この沈澱に下記
組成のポリエチレングリコール溶液の0.2mj!を加
えて10分間放置した後、さらに下記組成のHigh 
pH−Ca溶液の0.5n+1を加えて5分間放置した
Strawberry distilled water 100ml! NaN0q
350 mg Na2-glycerophosphate 50 mgFe (as EDTA:1
: 1 mole) 2.5 mg! lp ■Metal mixture
25m7! Vitamin B12 10
8g thiamine o, smg biotin
5μg "TRl5" (Sigma Co,) 500
mgpH7,8 XIp [Metal mixture composition Distilled water 100 taINa2-E
DT^ 100 mgFe (as C
1-) 1 mgB (HiBO3)
20 lagMn(as C1”-
) 4 tsgZn(as C1”-
) 500 μgCo (as C1-)
Mix the protoplasts of Asakusanori and Maruba Nori prepared as described above, and transfer 0.1 mJ (approximately 106 protoplasts) of this protoplast mixture into Vetri I using a Pasteur pipette. It was added dropwise and left for 5 to 10 minutes to precipitate protoplasts on the glass surface. Add 0.2 mj of a polyethylene glycol solution of the following composition to this precipitate! After adding and leaving it for 10 minutes, add High
0.5n+1 of pH-Ca solution was added and left for 5 minutes.

ポリエチレングリコールα゛の且 ポリエチレングリコール(H6,000)の54%水溶
液にCaCl22H2010,5mM 、KtPO+H
200,7+++Mおよびグルコース0.1Mを添加す
る。
CaCl22H2010.5mM, KtPO+H was added to a 54% aqueous solution of polyethylene glycol α' and polyethylene glycol (H6,000).
Add 200,7+++M and glucose 0.1M.

旧h■−Ca泊lの且 ■ CaCl22H20を100mMおよびグルコース
を0.4Mの各濃度に蒸留水に溶解する。
Former h■-Ca and H20 were dissolved in distilled water to respective concentrations of 100 mM CaCl22H20 and 0.4M glucose.

■ 100mM NaOH−グリシンバッファー(pH
10,5)にグルコースを0.4Mの濃度に溶解する。
■ 100mM NaOH-glycine buffer (pH
10,5) Dissolve glucose to a concentration of 0.4M.

上記■と■の溶液を使用前に1:1の割合に混合する。Mix the above solutions ① and ① in a ratio of 1:1 before use.

次に、上述のように放置したものに、下記に示、 す人
工海水(Provasol iの栄養添加海水)から成
る培養液0゜3tm12を加え、5分後その0.3ta
lをペトリ皿から吸い上げ、さらにそれに上記培養液を
5分後その0.3a+j!を吸い上げる操作を5回繰返
して行なった後、新たに上記培養液を加えて培養を行な
つた。培養は15℃の温度で6.000Lux照度下で
明朗9時間(晴朗15時間)で行なった。
Next, 0.3 tml of a culture solution consisting of artificial seawater (Provasol i nutrient-added seawater) shown below was added to the mixture left as described above, and after 5 minutes, 0.3 tml of the culture solution was added.
1 from the Petri dish, and then added the above culture solution to it for 5 minutes and then 0.3a+j! After repeating this operation five times, the above culture solution was newly added and cultured. Cultivation was carried out at a temperature of 15° C. under 6.000 Lux illuminance with 9 hours of light (15 hours of light).

貢貴殿金生見産汰 約10m+a葉長程度に育った時、細葉型のみ1葉体づ
つマイクロプレートに入れ、人工海水(Provas。
When the leaf length of Mitsukidenkin Ikumi Sata grew to about 10 m+a, only the narrow-leaved type was placed in a microplate, one leaf at a time, and treated with artificial seawater (Provas).

!iの栄養添加海水)を各5m1t入れ、単胞子放出処
理(上述の培養条件で温度のみを15℃から20”Cに
変える)をし、単胞子の放出のあったものだけを選抜し
その単胞子を上述の培養条件にて培養、育成して成葉を
得た。
! Add 5 ml of each nutrient-added seawater (I), perform monospore release treatment (change only the temperature from 15°C to 20"C under the above culture conditions), and select only those that released monospores. The spores were cultured and grown under the above-mentioned culture conditions to obtain adult leaves.

次に、上述のようにして得られた成葉についての貧栄養
耐性を前記本文記載の実験方法に準拠して実験してその
判定を行なった。結果は表2に示すとおりである。
Next, the oligotrophic tolerance of the adult leaves obtained as described above was tested and determined in accordance with the experimental method described in the text above. The results are shown in Table 2.

なお、比較として細胞融合の処理を行なわないアサクサ
ノリ及びマルバアマノリの成葉についても同様の実験を
行ない、その結果を併せて表に示した。
For comparison, similar experiments were conducted on adult leaves of Asakusa nori and Maruba nori that were not subjected to cell fusion treatment, and the results are also shown in the table.

表2にみられるように、本発明者に従って得られる細胞
融合体から成る海苔の成葉の貧栄養耐性は、天然品種で
あるマルバアマノリの成葉よりもむしろ強いことがわか
る。
As shown in Table 2, it can be seen that the oligotrophic tolerance of the adult leaves of the seaweed made of the cell fusion obtained according to the present inventors is rather stronger than that of the adult leaves of the natural variety Malva laver.

Claims (3)

【特許請求の範囲】[Claims] (1)色素量が多くて貧栄養耐性の強い天然品種の海苔
のプロトプラストを調製し、一方養殖海苔のプロトプラ
ストを調製し、得られる両方のプロトプラストを細胞融
合させて細胞融合体を形成し、ついで該細胞融合体を育
成することを特徴とする貧栄養耐性の強い品種の養殖海
苔の作成方法。
(1) Prepare protoplasts from a natural variety of seaweed that has a large amount of pigment and is highly resistant to oligotrophy, and on the other hand, prepare protoplasts from cultured seaweed, fuse both of the resulting protoplasts to form a cell fusion, and then A method for producing a cultivated variety of seaweed with strong oligotrophic tolerance, which comprises cultivating the cell fusion.
(2)天然品種の海苔がマルバアマノリである特許請求
の範囲第(1)項記載の作成方法。
(2) The production method according to claim (1), wherein the natural variety of seaweed is Malva laver.
(3)養殖海苔がアサクサノリもしくはスサビノリであ
る特許請求の範囲第(1)項記載の作成方法。
(3) The production method according to claim (1), wherein the cultured seaweed is Asakusanori or Susabi-nori.
JP60053752A 1985-03-18 1985-03-18 Production of cultivated laver of new type having high resistance to nutrition deficiency Granted JPS61212280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053752A JPS61212280A (en) 1985-03-18 1985-03-18 Production of cultivated laver of new type having high resistance to nutrition deficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053752A JPS61212280A (en) 1985-03-18 1985-03-18 Production of cultivated laver of new type having high resistance to nutrition deficiency

Publications (2)

Publication Number Publication Date
JPS61212280A true JPS61212280A (en) 1986-09-20
JPH031954B2 JPH031954B2 (en) 1991-01-11

Family

ID=12951541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053752A Granted JPS61212280A (en) 1985-03-18 1985-03-18 Production of cultivated laver of new type having high resistance to nutrition deficiency

Country Status (1)

Country Link
JP (1) JPS61212280A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503856B2 (en) 2008-09-10 2014-05-28 キユーピー株式会社 Method for obtaining highly unsaturated fatty acid derivatives
EP3305754B1 (en) 2015-06-01 2021-11-10 Bizen Chemical Co., Ltd. Process for producing highly unsaturated fatty acid of high purity in high yield

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611386A (en) * 1984-06-14 1986-01-07 Koasa Shoji Kk Method of transforming laver by cell fusion
JPS619291A (en) * 1984-06-25 1986-01-16 Koasa Shoji Kk Selection of cytoplasmic fusant prepared by cell fusion of laver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611386A (en) * 1984-06-14 1986-01-07 Koasa Shoji Kk Method of transforming laver by cell fusion
JPS619291A (en) * 1984-06-25 1986-01-16 Koasa Shoji Kk Selection of cytoplasmic fusant prepared by cell fusion of laver

Also Published As

Publication number Publication date
JPH031954B2 (en) 1991-01-11

Similar Documents

Publication Publication Date Title
US7484329B2 (en) Technology for cultivation of Porphyra and other seaweeds in land-based sea water ponds
Shekhawat et al. Isolation, culture, and regeneration of moth bean Vigna aconitofolia leaf protoplasts
CN108575761B (en) Rubber tree embryoid induced medium, the abductive approach of embryo callus and the breeding method of resistant calli
Santra Biology of rice-fields blue-green algae
KR102334749B1 (en) Nutrient for seaweed and uses thereof
CN113636891A (en) Mangrove seedling cultivation nutrient solution and preparation method thereof
JPS58175451A (en) Artificial raising method of lobster and crab
KR102054598B1 (en) The cultivating medium of conchocelis phase of laver
CN101411320A (en) Overyearing conservation and asexual propagation method for hydranth of jellyfish
CN103458679B (en) Utilize the production method of the shrimp seedling of biological feedstuff
US20080083160A1 (en) Compositions of enriched seaweeds in land-based sea water ponds
JPS61212280A (en) Production of cultivated laver of new type having high resistance to nutrition deficiency
MURATA et al. Callus formation and plant regeneration from petiole protoplast of sweet potato, Ipomoea batatas (L.) Lam.
CN110622850B (en) Sexual reproduction artificial crossbreeding method for fine purified variety and wild variety of sargassum fusiforme
CN106278630A (en) A kind of Fructus Jujubae tree growing nursery and culture substrate and preparation method thereof
KR101989023B1 (en) The cultivating method of conchocelis phase of laver
Karmarkar et al. Effect of sand culture and sodium chloride on growth physical structure and organic acid metabolism in Bryophyllum pinnatum
CN110073965A (en) The production method and peanut sprout of peanut sprout
Rabanal et al. Laboratory manipulation of Gracilariopsis bailinae Zhang et xia (Gracilariales, Rhodophyta)
JPS611386A (en) Method of transforming laver by cell fusion
KR100540071B1 (en) Method of producing Grateloupia filicina seedlings from spores
RU2764265C1 (en) Method for joint breeding of kelp and sea urchin
JPS61212281A (en) Production of cultivated laver of new kind having high temperature resistance
CN111493008B (en) Method for improving body color of indoor industrial cultured spotted maigre
Ogbimi et al. Effects of pH, photoperiod, and nutrient on germination and growth of Calymperes erosum C. Muell. Gemmaling