JPH031954B2 - - Google Patents

Info

Publication number
JPH031954B2
JPH031954B2 JP60053752A JP5375285A JPH031954B2 JP H031954 B2 JPH031954 B2 JP H031954B2 JP 60053752 A JP60053752 A JP 60053752A JP 5375285 A JP5375285 A JP 5375285A JP H031954 B2 JPH031954 B2 JP H031954B2
Authority
JP
Japan
Prior art keywords
seaweed
protoplasts
oligotrophic
cultured
tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60053752A
Other languages
Japanese (ja)
Other versions
JPS61212280A (en
Inventor
Teruhiko Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60053752A priority Critical patent/JPS61212280A/en
Publication of JPS61212280A publication Critical patent/JPS61212280A/en
Publication of JPH031954B2 publication Critical patent/JPH031954B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/14Plant cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Cultivation Of Seaweed (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、細胞融合の手法を利用して、貧栄養
漁場での養殖において、いわゆる色落ちのしない
貧栄養耐性の強い品種の養殖海苔を作成する方法
に関する。 従来の技術的背景 海苔の養殖は、一般にある程度栄養に富んだ環
境の漁場で養殖されている。しかし、最近、海に
おけるプランクトンの大量発生のため海水中の窒
素及びリンが減少し、その結果、海苔養殖漁場の
貧栄養化(窒素及びリンの減少による海苔の養殖
に必要な栄養塩類の減少)をもたらし、養殖海苔
に色落ちの現象を起すことが問題となつている。 また、一方、海苔の生産量の増大に伴ない、限
られた漁場での密集的養殖が行なわれるようにな
り、しかも11月から3月頃までの養殖期間に何十
回もの摘採が行なわれるために、漁期の進行にし
たがつて、海水中の栄養塩類の減少をきたすよう
になつて、養殖海苔の色落ち現象の原因ともなつ
ている。 而して、上述したような海苔の養殖漁場におけ
る貧栄養化の問題の対策としては抜本的なものは
行われておらず、上記色落ち現象の発生に応じて
硫安のような窒素源肥料を漁場に散布することが
行われているにすぎない。 しかし、このような漁場における施肥では肥料
の流失が避けられないため色落ち防止の効果も余
りみられず、加うるに、同じ漁場でアサリやカキ
の養殖も行われることが多いことから、これらの
養殖に与える影響から最近では漁場への施肥は抑
制されるようになつている。 したがつて、漁場における貧栄養化に起因する
養殖海苔の色落ち現象の防止対策が重要な課題と
なつている。 発明が解決しようとする問題点 本発明者は、上述したごとき海苔の養殖上の問
題点に鑑み、その対策について検討する過程にお
いて、天然品種の海苔が貧栄養耐性の形質を保有
していることを見出し、本発明がさきに開発に成
功した海苔のプロトプラスト化の技術に基づき細
胞融合の手法を利用して、上記形質を欠如してい
る養殖海苔に該形質を導入することに成功し、本
発明をなすに至つた。 すなわち、本発明は、貧栄養耐性を保有する品
種の養殖海苔を作成することにより、漁場の貧栄
養養化に起因する養殖海苔の色落ち現象の問題を
解決し得たものであつて、細胞融合の手法を利用
して貧栄養耐性の強い品種の養殖海苔を作成する
ための方法を提供することを目的とする。 以下本発明を詳しく説明する。 発明の構成 本発明の特徴は、色素量が多くて貧栄養耐性の
強い天然品種の海苔のプロトプラストを調製し、
一方養殖海苔のプロトプラストを調製し、得られ
る両方のプロトプラストを細胞融合させて細胞融
合体を形成し、ついで該細胞融合体を育成するこ
とにより、貧栄養耐性の強い品種の養殖海苔を作
成するとにある。 問題点を解決するための手段 本発明において用いる貧栄養耐性の強い天然品
種の海苔は、通称岩海苔と呼ばれ岩に付着して生
育する野生種であつて、マルバアマノリ、クロノ
リ、オニアマノリ等を例示し得る。これらの海苔
は一般に養殖海苔と同様な黒茶色乃至黒色を呈す
るが、それの葉型がマル葉型並びにそれに近く、
密殖性であつて成長速度が遅く、ある程度の大き
さまでしか成長しないため、養殖には用いられな
い。しかしながら、これらの海苔は上述したとお
り、貧栄養耐性が在来の養殖海苔に比べて非常に
強いことが判明した。 次に、上記天然品種の海苔の貧栄養耐性を養殖
海苔との対比において実験した結果を示す。 なお、ここでいう“養殖海苔”とは、現在養殖
に用いられている多種類の品種の海苔のうち、主
として用いられるアサクサノリとスサビノリを意
味する。 海苔の貧栄養耐性についての実験 実験方法: 試料として各品種の海苔葉体(葉長10〜20mm程
度)の3枚宛を、NaNO3のみの濃度を1/1000
に低減した下記組成のAsp.12培養液中で16℃、
6000ルクス(明期9時間、暗期15時間)、振とう
数30ストローク/分の振とう培養の条件下で、換
水することなく培養し、経日的に各葉体の色落ち
状態を肉眼観察と葉体の吸収スペクトルにより調
べた。また、対照として、NaNO3の濃度を低減
しないAsp.12培養液中の培養を同様にして行な
つた。結果は表1に示すとおりである。 Asp.12培養液の組成: 蒸留水 100ml NaCl 2.8g MgSO47H2O 0.7g MgCl2・6H2O 0.4g KCl 0.07g Ca(as Cl-) 40mg NaNO3 10μg K2HPO4 1mg Na2―グリセリン酸 1mg ビタミンB12 0.02μg ビオチン 0.1μg チアミン 10μg 1) P金属混液 1ml 2) S金属混液 1ml トリスアミノメタン 0.1g PH 7.8〜8.0 1) P金属混液組成 蒸留水 100ml Na2―EDTA 100mg Fe(as Cl-) 1mg B(H3BO3) 20mg Mn(as Cl-) 4mg Zn(as Cl-) 50μg Co(as Cl-) 100μg 2) S金属混液組成 蒸留水 100ml Mo(Na2MoO4) 5mg Br(as k+) 100mg Sr(as Cl-) 20mg Rb(as Cl-) 2mg Li(as Cl-) 2mg I(as k+) 100μg Va(as Cl-) 10μg
FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method of producing cultured seaweed of a variety that does not lose its color and has strong oligotrophic tolerance in aquaculture in oligotrophic fishing grounds using a cell fusion technique. Conventional technical background Seaweed is generally cultivated in fishing grounds with a somewhat nutrient-rich environment. However, recently, due to the large amount of plankton in the sea, nitrogen and phosphorus in the seawater have decreased, resulting in oligotrophic conditions in seaweed farming fishing grounds (a decrease in nutrients necessary for seaweed cultivation due to a decrease in nitrogen and phosphorus). It has become a problem that this causes color fading in cultivated seaweed. On the other hand, as the production of seaweed increases, intensive cultivation is carried out in limited fishing grounds, and moreover, seaweed is harvested dozens of times during the cultivation period from November to March. Additionally, as the fishing season progresses, the amount of nutrient salts in seawater decreases, causing the discoloration of cultivated seaweed. However, no drastic measures have been taken to address the problem of malnutrition in seaweed farming areas as described above, and nitrogen source fertilizers such as ammonium sulfate have been introduced in response to the occurrence of the discoloration phenomenon described above. All that is being done is spraying the fishing grounds. However, fertilization in such fishing grounds is not very effective in preventing discoloration because the fertilizer inevitably washes away, and in addition, clams and oysters are often farmed in the same fishing grounds. Fertilizer application to fishing grounds has recently been restricted due to the impact it has on aquaculture. Therefore, measures to prevent the discoloration of cultivated seaweed caused by oligotrophic conditions in fishing grounds have become an important issue. Problems to be Solved by the Invention In view of the above-mentioned problems in cultivating seaweed, the present inventor discovered, in the process of considering countermeasures, that natural varieties of seaweed possess oligotrophic tolerance traits. Based on the protoplastization technology of seaweed that the present invention had previously successfully developed, the present invention succeeded in introducing the above-mentioned trait into cultured seaweed that lacks it, using a cell fusion method. He came up with an invention. That is, the present invention solves the problem of discoloration of cultured seaweed caused by oligotrophic feeding in fishing grounds by creating cultured seaweed of a variety possessing oligotrophic tolerance. The purpose of this study is to provide a method for creating cultured seaweed varieties with strong oligotrophic tolerance using fusion techniques. The present invention will be explained in detail below. Structure of the Invention The present invention is characterized by preparing protoplasts of a natural variety of seaweed that has a large amount of pigment and is highly resistant to oligotrophy.
On the other hand, by preparing protoplasts of cultured seaweed, fusing both of the resulting protoplasts to form a cell fusion, and then cultivating the cell fusion, we plan to create a variety of cultured seaweed with strong oligotrophic tolerance. be. Means for Solving the Problems The natural variety of seaweed with strong oligotrophic tolerance used in the present invention is commonly called rock seaweed, and is a wild species that grows attached to rocks. It is possible. These seaweeds generally have the same dark brown to black color as cultured seaweed, but their leaf shapes are round-leaf or similar.
It is not used for aquaculture because it is densely fertilized, has a slow growth rate, and only grows to a certain size. However, as mentioned above, it has been found that these seaweeds are much more resistant to oligotrophy than conventionally cultivated seaweeds. Next, we will show the results of an experiment on the oligotrophic tolerance of the above-mentioned natural varieties of seaweed in comparison with cultured seaweed. Note that the term "cultured seaweed" as used herein refers to Asakusanori and Susabi-nori, which are mainly used among the many varieties of seaweed currently used for cultivation. Experimental method for testing oligotrophic tolerance of seaweed: Three sheets of seaweed thallus (leaf length approximately 10 to 20 mm) of each variety were used as samples, and the concentration of NaNO 3 alone was 1/1000.
16℃ in Asp.12 culture solution with the following composition reduced to
Culture was carried out under conditions of shaking culture at 6000 lux (9 hours of light, 15 hours of darkness) and 30 strokes/minute of shaking, without changing the water, and the state of discoloration of each leaflet was observed with the naked eye over time. It was investigated by observation and absorption spectra of leaf bodies. In addition, as a control, cultivation in Asp.12 culture solution without reducing the concentration of NaNO 3 was carried out in the same manner. The results are shown in Table 1. Composition of Asp.12 culture solution: Distilled water 100ml NaCl 2.8g MgSO 4 7H 2 O 0.7g MgCl 2・6H 2 O 0.4g KCl 0.07g Ca (as Cl - ) 40mg NaNO 3 10μg K 2 HPO 4 1mg Na 2 - Glyceric acid 1mg Vitamin B 12 0.02μg Biotin 0.1μg Thiamine 10μg 1) P metal mixture 1ml 2) S metal mixture 1ml Tris-aminomethane 0.1g PH 7.8-8.0 1) P metal mixture composition Distilled water 100ml Na 2 -EDTA 100mg Fe ( as Cl - ) 1mg B (H 3 BO 3 ) 20mg Mn (as Cl - ) 4mg Zn (as Cl - ) 50μg Co (as Cl - ) 100μg 2) S metal mixture composition distilled water 100ml Mo (Na 2 MoO 4 ) 5mg Br (as k + ) 100mg Sr (as Cl - ) 20mg Rb (as Cl - ) 2mg Li (as Cl - ) 2mg I (as k + ) 100μg Va (as Cl - ) 10μg

【表】 表1にみられるように、養殖海苔に比べて天然
品種の海苔の色落ち発生時期が可成り遅く、した
がつて、天然品種の海苔の貧栄養耐性が強いこと
がわかる。 本発明では、上述したような天然品種の海苔が
保有する貧栄養耐性の形質を、細胞融合の手法を
利用して養殖海苔に導入するものであつて、その
ために、まず、これらの海苔のプロトプラストを
調製する。 上記各海苔のプロトプラストの調製は、本発明
者がさきに開発した方法(特願昭58−149378号
(特開昭60−41485号)又は特願昭59−22415号
(特開昭60−168381号))を適用して行ない得る。 これらの方法の概要を説明すると、前者の方法
は、シユードモナス属(Pseudomonas)に属す
る難消化性多糖類(マンナン、キシラン及びポル
フイラン)の加水分解能を有する微生物(シユー
ドモナスSPNo.PT―5、微工研条寄No.BP―330)
を、海苔もしくは海苔由来の多糖類(海苔を熱水
抽出して可溶性成分を除去して得られる。主とし
てマンナンもしくはキシランのような多糖類から
成る残渣又は該残渣を更に精製処理て多糖類含量
を高めたもの)の誘導物質とて含む培地中で培養
して得られる培養液を遠心分離し、その上澄液を
酵素液として用いて海苔葉体を処理することから
成る。 上記酵素液にはマンナン加水分解酵素とキラシ
ン加水分解酵素が含まれているので該酵素液を海
苔葉体に作用させるとマンナン加水分解酵素が海
苔の表面に存在する顆粒状のマンナンに作用して
葉体に大きく切断部を形成し、それによりキシラ
ン加水分解酵素により細胞壁を形成しているミク
ロフイブリル形態のキシランが作用され易くなつ
て、葉体の細胞壁が分解除去されてプロトプラス
ト化されるようになる。また、上記酵素液にはポ
ルフイラン分解酵素も含まれているので、海苔葉
体の細胞充間物質としてのポルフイランにも作用
して分解するのでプロトプラスト化が一そう促進
される。 なお、上記プロトプラスト化に際して、海苔葉
体を予めパパインのようなプロテアーゼで処理す
るか、又は上記酵素液と並行的にプロテアーゼを
作用させると、更に効果的である。 又、後者の方法は、海苔葉体を予めプロテアー
ゼで処理した後、β―1,3―キシラナーゼとβ
―1,4―マンナナーゼで処理するか、或はβ―
1,3―キシラナーゼとβ―1,4―マンナナー
ゼ及びポルフイラナーゼとで処理することから成
るものであつて、非常に短時間で、しかも健全な
海苔葉体のプロトプラストを調製し得る。 本発明においては、上述した方法により天然品
種であるマルバアマノリのプロトプラストを調製
し、一方養殖海苔であるアサクサノリ並びにスサ
ビノリのプロトプラストを同じく調製し、マルバ
アマノリのプロトプラストと、アサクサノリもし
くはスサビノリの各プロトプラストとを細胞融合
させる。この細胞融合は公知の手法を適用して行
なうとよく、上記各2種のプロトプラストを混合
して形成させた沈澱にポリエチレングリコール溶
液とHigh―PH―Ca溶液を加えて放置した後、こ
れに培養液(例えば人工海水Asp.12又は
Provasoliの栄養添加海水)を加えて培養を行な
つて融合体を形成する。なお、培養は15℃の温度
で6000Luxの照度で明期9時間、暗期15時間の条
件下で行なうとよい。 上述のようにして得られた細胞融合体(融合細
胞)について下記の手順により識別(選別)を行
なう。この識別は、AとBの2種のプロトプラス
トを細胞融合させた場合、2種の細胞の融合体
(A×B)のほかに、同種の細胞の融合体(B×
B及びA×A)及び融合しない細胞が混在してい
るので、これらから2種の細胞の融合体(A×
B)を選抜するために行なうものである。なお、
上記識別のための方法としては両者の細胞の形質
マーカーについて行なうとよく、それには下記の
ようにして品種組合わせ別により行ない得るが、
これに限るものでない。 例えば、アサクサノリとマルバアマノリの各プ
ロトプラストを細胞融合させて得られた融合体の
選抜は、アサクサノリの葉体が細葉型であるのに
対し、マルバアマノリはマル葉型であり、又、単
胞子の放出時期がアサクサノリでは0.2〜1mmの
葉長のときであるのに対し、マルバアマノリでは
0.5〜23mmの葉長のときである両者の相違点を利
用して行なう。すなわち、上記細胞融合体につい
て細葉型であつて、10mm程度の葉長時に単胞子を
放出するものを選抜するとよい。また、直接的な
選抜法として、前述したように、両者の貧栄養耐
性が著しく異なる点を利用して、上記細胞融合体
を窒素欠乏培地中で培養し、適当な日数が経過し
た時点で色落ちがみられない細葉型のものを選抜
してもよい。 叙上のようにして得られる養殖海苔と天然品種
の海苔の各プロトプラストの細胞融合体は、天然
品種の海苔が保有する貧栄養耐性の形質が導入さ
れているので、該融合体を育成することにより、
貧栄養耐性の強い新しい品種の養殖海苔を作成す
ることが可能となる。したがつて、本発明による
と、上記品種の養殖海苔を用いることにより、漁
場の貧栄養化に起因する色落ちの問題を解決し得
るようになる。 発明の実施例と効果 以下に実施例を示して本発明及びその効果を具
体的に説明する。なお、本実施例は、養殖海苔と
して代表的なアサクサノリと、天然品種として代
表的なマルバアマノリを用いて貧栄養耐性の強い
品種の養殖海苔の作成の態様について例示したも
のであつて、本発明者はこれに限定されるもので
ない。 実施例 アサクサノリとマルバアマノリの各プロトプラ
ストの調製: アサクサノリ並びにマルバアマノリの各葉体の
10枚(葉長10〜20mm)宛をL型試験管にそれぞれ
収容し、アサクサノリ葉体では0.2%濃度のパパ
イン溶液(M/15トリス塩酸緩衝液、PH7.4)10
mlを加え、20℃で振盪下(100ストローク/分)
に5分間処理し、マルバアマノリ葉体では1%濃
度の上記パパイン溶液を10mlを加え、同様な条件
下で10分間処理した。 ついで、得られた各葉体を海水で十分洗浄した
後、別のL型試験管に収容し、その各々に予めシ
ユードモナス(Pseudomonas)sp.No.PT―5(微
工研条寄No.BP―330)をスサビノリ粉末を基質と
する培地中で培養して得られた酵素液(0.75Mマ
ンニトール添加)10ml宛を加え、20℃で振盪下
(70ストローク/分)に60分間反応させて、プロ
トプラスト化を行なつた。 このようにして得られた各酵素処理混合物を
40μメツシユのナイロン製網で濾過し、濾液を遠
心分離(150rpm、5分間)して上澄液を除去し、
残渣を適量の下記組成の人工海水(Provasoliの
栄養添加海水)を加え、それぞれのプロトプラス
ト懸濁液を調製した。 人工海水の組成: 濾過海水100mlに対し、下記栄養剤2mlを添加
して調製したもの。 蒸留水 100ml NaNO3 350mg Na2―グリセロリン酸 50mg Fe(as EDTA;1:1モル) 2.5mg ※1 P金属混液 25ml ビタミンB12 10μg チアミン 0.5mg ビオチン 5μg “TRIS”(Sigma Co.) 500mg PH 7.8 ※1 P金属混液組成 蒸留水 100ml Na2―EDTA 10mg Fe(as Cl-) 1mg B(H3BO3) 20mg Mn(as Cl-) 4mg Zn(as Cl-) 500μg Co(as Cl-) 100μg 細胞融合体の作成 上述のようにして調製したアサクサノリとマル
バアマノリの各プロトプラストを混合し、このプ
ロトプラスト混合液の0.1ml(約106個)をパスツ
ールピペツトでペトリ皿内に滴下し、5〜10分間
放置してプロトプラストをガラス表面に沈澱させ
た。この沈澱に下記組成のポリエチレングリコー
ル溶液の0.2mlを加えて10分間放置した後、さら
に下記組成のHigh PH―Ca溶液の0.5mlを加えて
5分間放置した。 ポリエチレングリコール溶液の組成 ポリエチレングリコール(MW6000)の54%水
溶液にCaCl2・2H2O10.5mM、K2PO4H2O
0.7mMおよびグルコース0.1Mを添加する。 High PH―Ca溶液の組成 CaCl2・2H2Oを100mMおよびグルコースを
0.4Mの各濃度に蒸留水に溶解する。 100mM NaOH―クリシンバツフアー(PH
10.5)にグルコースを0.4Mの濃度に溶解する。 上記との溶液を使用前に1:1の割合に混
合する。 次に、上述のように放置したものに、下記に示
す人工海水(Provasoliの栄養添加海水)から成
る培養液0.3mlを加え、5分後その0.3mlをペトリ
皿から吸い上げ、さらにそれに上記培養液を5分
後その0.3mlを吸い上げる操作を5回繰返して行
なつた後、新たに上記培養液を加えて培養を行な
つた。培養は15℃の温度で6000Lux照度下で明期
9時間(暗期15時間)で行なつた。 細胞融合体の選抜 約10mm葉長程度に育つた時、細葉型のみ1葉体
づつマイクロプレートに入れ、人工海水
(Provasoliの栄養添加海水)を各5ml入れ、単胞
子放出処理(上述の培養条件で温度のみを15℃か
ら20℃に変える)をし、単胞子の放出のあつたも
のだけを選抜しその単胞子を上述の培養条件にて
培養、育成して成葉を得た。 次に、上述のようにして得られた成葉について
の貧栄養耐性を前記本文記載の実験方法に準拠し
て実験してその判定を行なつた。結果は表2に示
すとおりである。 なお、比較として細胞融合の処理を行なわない
アサクサノリ及びマルバアマノリの成葉について
も同様の実験を行ない、その結果を併せて表に示
した。
[Table] As shown in Table 1, the onset of discoloration of natural varieties of seaweed is considerably later than that of cultured seaweed, which indicates that natural varieties of seaweed are more tolerant to oligotrophy. In the present invention, the oligotrophic tolerance trait possessed by natural seaweed varieties as described above is introduced into cultured seaweed using a cell fusion method. Prepare. The protoplasts of each of the above seaweeds can be prepared by the method previously developed by the present inventor (Japanese Patent Application No. 58-149378 (Japanese Patent Application Laid-Open No. 60-41485) or Japanese Patent Application No. 59-22415 (Japanese Patent Application Laid-Open No. 60-168381). This can be done by applying the following. To give an overview of these methods, the former method uses a microorganism (Pseudomonas SP No. Article No. BP-330)
, seaweed or seaweed-derived polysaccharides (obtained by hot water extraction of seaweed to remove soluble components; residue mainly consisting of polysaccharides such as mannan or xylan, or the residue further purified to reduce the polysaccharide content) The method consists of centrifuging the culture solution obtained by culturing in a medium containing an inducing substance (e.g., increased concentration of thallus) and treating the nori fronds using the supernatant as an enzyme solution. The above enzyme solution contains mannan hydrolase and chilacin hydrolase, so when the enzyme solution is applied to the seaweed leaflets, the mannan hydrolase acts on the granular mannan present on the surface of the seaweed. A large cut is formed in the leaf body, which makes it easier for xylan hydrolase to act on xylan in the form of microfibrils that form the cell wall, and the cell wall of the leaf body is decomposed and removed to form protoplasts. become. Furthermore, since the enzyme solution contains a porphyranase degrading enzyme, it acts on and decomposes porphyrane as a cell-filling substance of the seaweed thallus, thereby further promoting protoplast formation. In addition, during the above-mentioned protoplast formation, it is more effective if the seaweed thallus is treated with a protease such as papain in advance, or if the protease is allowed to act in parallel with the above-mentioned enzyme solution. In addition, in the latter method, the seaweed thallus is treated with protease in advance, and then β-1,3-xylanase and β
-1,4-mannanase treatment or β-
It consists of treatment with 1,3-xylanase, β-1,4-mannanase and porphyranase, and can prepare healthy seaweed thallus protoplasts in a very short time. In the present invention, protoplasts of the natural variety Maruva laver are prepared by the method described above, and protoplasts of cultured seaweeds Asakusanori and Susabi nori are prepared in the same manner, and the protoplasts of Maruva laver and each protoplast of Asakusanori or Susabi nori are cell-fused. let This cell fusion is best carried out by applying a known method. After adding a polyethylene glycol solution and a High-PH-Ca solution to the precipitate formed by mixing each of the two types of protoplasts mentioned above and leaving it to stand, culture this. liquid (e.g. artificial seawater Asp.12 or
Provasoli's nutrient-added seawater) is added and cultured to form a fusion. The culture is preferably carried out at a temperature of 15° C. with an illuminance of 6000 Lux, a light period of 9 hours, and a dark period of 15 hours. The cell fusion product (fused cells) obtained as described above is identified (selected) by the following procedure. This distinction is made when two types of protoplasts, A and B, are fused together, in addition to a fusion of the two types of cells (A x B), a fusion of the same type of cells (B x
B and A×A) and non-fused cells are mixed, so from these, a fusion of two types of cells (A×
This is done to select B). In addition,
As a method for the above-mentioned discrimination, it is preferable to use trait markers of both cells, and this can be done by cultivar combination as described below.
It is not limited to this. For example, when selecting a fusion product obtained by cell fusion of the protoplasts of Prunus sp. In Asakusa nori, the leaf length is 0.2 to 1 mm, while in Malva nori, the leaf length is 0.2 to 1 mm.
This is done by taking advantage of the difference between the two, which is when the leaf length is 0.5 to 23 mm. That is, it is preferable to select the above-mentioned cell fusion that has a narrow leaf type and releases monospores when the leaf length is about 10 mm. In addition, as a direct selection method, as mentioned above, taking advantage of the fact that the oligotrophic tolerance of the two is significantly different, the cell fusion described above is cultured in a nitrogen-deficient medium, and after an appropriate number of days, the color changes. You may also select those with narrow leaves that do not show any shedding. The cell fusion of protoplasts of cultured seaweed and natural variety of seaweed obtained as described above has the oligotrophic tolerance trait possessed by the natural variety of seaweed introduced, so the fusion must be cultivated. According to
It becomes possible to create new varieties of cultured seaweed that are highly resistant to poor nutrition. Therefore, according to the present invention, by using cultured seaweed of the above-mentioned variety, it becomes possible to solve the problem of discoloration caused by oligotrophic fishing grounds. EXAMPLES AND EFFECTS OF THE INVENTION The present invention and its effects will be specifically explained below with reference to Examples. This example is an example of how to create a cultured seaweed with strong oligotrophic tolerance using Asakusa nori, which is a typical cultured seaweed, and Malva seaweed, which is a typical natural variety. is not limited to this. Example: Preparation of protoplasts of Prunus chinensis and Porphyra chinensis:
Place 10 leaves (leaf length 10-20 mm) in each L-shaped test tube, and add 0.2% papain solution (M/15 Tris-HCl buffer, PH 7.4) to the leaves of Asakusanori.
ml and shaken at 20°C (100 strokes/min).
10 ml of the above-mentioned papain solution with a concentration of 1% was added to the leaves of Lava laver for 10 minutes under the same conditions. Next, each of the obtained leaf bodies was thoroughly washed with seawater and then placed in another L-shaped test tube, and each one was preliminarily infected with Pseudomonas sp. No. PT-5 (Feikoken Joyori No. BP). -330) in a medium with Porphyra japonica powder as a substrate, add 10ml of the enzyme solution (added with 0.75M mannitol), and react at 20°C with shaking (70 strokes/min) for 60 minutes. I made it into a protoplast. Each enzyme-treated mixture obtained in this way was
Filter through a 40μ mesh nylon net, centrifuge the filtrate (150 rpm, 5 minutes) and remove the supernatant.
An appropriate amount of artificial seawater having the composition shown below (nutrient-added seawater from Provasoli) was added to the residue to prepare each protoplast suspension. Composition of artificial seawater: Prepared by adding 2ml of the following nutrients to 100ml of filtered seawater. Distilled water 100ml NaNO 3 350mg Na 2 - Glycerophosphoric acid 50mg Fe (as EDTA; 1:1 mol) 2.5mg *1 P metal mixture 25ml Vitamin B 12 10μg Thiamine 0.5mg Biotin 5μg “TRIS” (Sigma Co.) 500mg PH 7.8 *1 P metal mixture composition Distilled water 100ml Na 2 - EDTA 10mg Fe (as Cl - ) 1mg B (H 3 BO 3 ) 20mg Mn (as Cl - ) 4mg Zn (as Cl - ) 500μg Co (as Cl - ) 100μg Creation of cell fusion: Mix the protoplasts of Asakusa nori and Malva nori prepared as described above, drop 0.1ml (approximately 10 6 protoplasts) of this protoplast mixture into a Petri dish with a Pasteur pipette, and The protoplasts were left to settle on the glass surface for 10 minutes. To this precipitate, 0.2 ml of a polyethylene glycol solution having the composition shown below was added and left to stand for 10 minutes, and then 0.5 ml of a High PH-Ca solution having the following composition was added and left to stand for 5 minutes. Composition of polyethylene glycol solution: 54% aqueous solution of polyethylene glycol (MW6000) with 10.5mM of CaCl 2 2H 2 O, K 2 PO 4 H 2 O
Add 0.7mM and glucose 0.1M. Composition of High PH-Ca solution: 100mM CaCl 2 2H 2 O and glucose
Dissolve in distilled water to each concentration of 0.4M. 100mM NaOH-chrysin buffer (PH
10.5) Dissolve glucose to a concentration of 0.4M. Mix the above solutions in a 1:1 ratio before use. Next, 0.3 ml of a culture solution consisting of artificial seawater (nutrient-added seawater from Provasoli) shown below was added to the solution left as described above, and after 5 minutes, 0.3 ml of the culture solution was sucked up from the Petri dish, and then added to the above culture solution. After 5 minutes, the operation of sucking up 0.3 ml was repeated 5 times, and then the above culture solution was newly added and cultured. Cultivation was carried out at a temperature of 15° C. under 6000 Lux illumination with a light period of 9 hours (dark period of 15 hours). Selection of cell fusions When the leaves have grown to approximately 10 mm in length, only the narrow-leaved type is placed in a microplate, one leaf at a time, and 5 ml of artificial seawater (Provasoli's nutrient-added seawater) is added to each plate, followed by monospore release treatment (the culture described above). The temperature was changed from 15°C to 20°C), and only those that released monospores were selected, and the monospores were cultured and grown under the above-mentioned culture conditions to obtain adult leaves. Next, the oligotrophic tolerance of the adult leaves obtained as described above was tested and determined in accordance with the experimental method described in the text above. The results are shown in Table 2. For comparison, similar experiments were conducted on adult leaves of Asakusa nori and Maruba nori that were not subjected to cell fusion treatment, and the results are also shown in the table.

【表】 表2にみられるように、本発明者に従つて得ら
れる細胞融合体から成る海苔の成葉の貧栄養耐性
は、天然品種であるマルバアマノリの成葉よりも
むしろ強いことがわかる。
[Table] As seen in Table 2, it can be seen that the oligotrophic tolerance of the adult leaves of the seaweed made of the cell fusion obtained according to the present inventors is rather stronger than that of the adult leaves of the natural variety Marva laver.

Claims (1)

【特許請求の範囲】 1 色素量が多くて貧栄養耐性の強い天然品種の
海苔のプロトプラストを調製し、一方養殖海苔の
プロトプラストを調製し、得られる両方のプロト
プラストを細胞融合させて細胞融合体を形成し、
ついで該細胞融合体を育成することを特徴とする
貧栄養耐性の強い品種の養殖海苔の作成方法。 2 天然品種の海苔がマルバアマノリである特許
請求の範囲第1項記載の作成方法。 3 養殖海苔がアサクサノリもしくはスサビノリ
である特許請求の範囲第1項記載の作成方法。
[Scope of Claims] 1. Protoplasts of a natural variety of seaweed with a high pigment content and strong oligotrophic tolerance are prepared, and on the other hand, protoplasts of cultured seaweed are prepared, and both protoplasts obtained are subjected to cell fusion to obtain a cell fusion product. form,
A method for producing a cultivated variety of seaweed with strong oligotrophic tolerance, which comprises then cultivating the cell fusion. 2. The production method according to claim 1, wherein the natural variety of seaweed is Malva laver. 3. The production method according to claim 1, wherein the cultured seaweed is Asakusanori or Susabi-nori.
JP60053752A 1985-03-18 1985-03-18 Production of cultivated laver of new type having high resistance to nutrition deficiency Granted JPS61212280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053752A JPS61212280A (en) 1985-03-18 1985-03-18 Production of cultivated laver of new type having high resistance to nutrition deficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053752A JPS61212280A (en) 1985-03-18 1985-03-18 Production of cultivated laver of new type having high resistance to nutrition deficiency

Publications (2)

Publication Number Publication Date
JPS61212280A JPS61212280A (en) 1986-09-20
JPH031954B2 true JPH031954B2 (en) 1991-01-11

Family

ID=12951541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053752A Granted JPS61212280A (en) 1985-03-18 1985-03-18 Production of cultivated laver of new type having high resistance to nutrition deficiency

Country Status (1)

Country Link
JP (1) JPS61212280A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029706A1 (en) 2008-09-10 2010-03-18 キユーピー株式会社 Method for acquiring highly unsaturated fatty acid derivatives
US10196584B2 (en) 2015-06-01 2019-02-05 Bizen Chemical Co., Ltd. Production method of highly unsaturated fatty acid with high purity/high yield

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611386A (en) * 1984-06-14 1986-01-07 Koasa Shoji Kk Method of transforming laver by cell fusion
JPS619291A (en) * 1984-06-25 1986-01-16 Koasa Shoji Kk Selection of cytoplasmic fusant prepared by cell fusion of laver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611386A (en) * 1984-06-14 1986-01-07 Koasa Shoji Kk Method of transforming laver by cell fusion
JPS619291A (en) * 1984-06-25 1986-01-16 Koasa Shoji Kk Selection of cytoplasmic fusant prepared by cell fusion of laver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029706A1 (en) 2008-09-10 2010-03-18 キユーピー株式会社 Method for acquiring highly unsaturated fatty acid derivatives
US10196584B2 (en) 2015-06-01 2019-02-05 Bizen Chemical Co., Ltd. Production method of highly unsaturated fatty acid with high purity/high yield

Also Published As

Publication number Publication date
JPS61212280A (en) 1986-09-20

Similar Documents

Publication Publication Date Title
Wiencke Seasonality of brown macroalgae from Antarctica—a long-term culture study under fluctuating Antarctic daylengths
Volcani Cell wall formation in diatoms: morphogenesis and biochemistry
Attree et al. Regeneration of somatic embryos from protoplasts isolated from an embryogenic suspension culture of white spruce (Picea glauca)
Kol et al. The snow and ice algae of Alaska
Chirapart et al. Seasonal variation in the physical properties of agar and biomass of Gracilaria sp.(chorda type) from Tosa Bay, southern Japan
DE68926054T2 (en) Artificial seeds
JPH031954B2 (en)
EP0134536B1 (en) Process for obtaining and multiplying defective, non infectious virus genomes
Ramakrishnan et al. Adaptation to Excess Salts in an Alkaline Soil Population of Cynodon Dactylon (L.) Pers.
KR20190073305A (en) Preparation method of encapsulated seaweed spores
JP2663217B2 (en) A method for inducing shoot tip-like tissue from pepper protoplasts
JPH031955B2 (en)
JPH0229313B2 (en)
Cvetić et al. In vitro culture and apogamy: Alternative pathway in the life cycle of the moss Amblystegium serpens (Amblystegiaceae)
JPH0229314B2 (en) NORINOSAIBOJUGONYORUSAIBOSHITSUJUGATSUTAINOSENBATSUHOHO
JPH031953B2 (en)
DE2533437A1 (en) METHOD OF NUTRITIONING IN VITRO-CULTURES OF PLANT CELLS WITH CARBON
Rabanal et al. Laboratory manipulation of Gracilariopsis bailinae Zhang et xia (Gracilariales, Rhodophyta)
KR100540071B1 (en) Method of producing Grateloupia filicina seedlings from spores
JP2517322B2 (en) Growth promoter for orchids
AU636112B2 (en) Method for cultivating microorganisms, particularly of the frankia group, and preparation of bacterial inoculums
JP2620045B2 (en) High Chlorophyll-Containing Chlorella Mutants
EP0625570A1 (en) Process for the production of dried algal biomass
DE3003083A1 (en) Microbiological recultivation of industrial refuse heaps - by treatment with fertiliser, humic prepn. contg. Aspergillus niger, grass seeds, then bacterial cultures
Johnson et al. The effect of nitrogen and potassium on tomato quality