JPS6121200B2 - - Google Patents

Info

Publication number
JPS6121200B2
JPS6121200B2 JP57144679A JP14467982A JPS6121200B2 JP S6121200 B2 JPS6121200 B2 JP S6121200B2 JP 57144679 A JP57144679 A JP 57144679A JP 14467982 A JP14467982 A JP 14467982A JP S6121200 B2 JPS6121200 B2 JP S6121200B2
Authority
JP
Japan
Prior art keywords
whisker
cake
stirring
whiskers
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57144679A
Other languages
Japanese (ja)
Other versions
JPS5935100A (en
Inventor
Jiutaro Yamada
Hide Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP57144679A priority Critical patent/JPS5935100A/en
Publication of JPS5935100A publication Critical patent/JPS5935100A/en
Publication of JPS6121200B2 publication Critical patent/JPS6121200B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、SiCあるいはSi3N4の生成ウイスカー
ケーキを解体分散する方法に関する。 SiC、Si3N4の純枠単結晶で構成されたウイスカ
ーは、極めて高い強度ならびに弾性率を備えるう
えに材質個有の耐熱性と化学的安定性を有するた
め古くから金属あるいはプラスチツクの複合強化
材として注目されているが、未だに実用化の軌道
に乗つていない。この主要な技術的理由の1つ
は、生成させたウイスカーを、マトリツクス物質
中に均質分散しうる状態に解体することが著るし
く至難な点にある。すなわち、SiCウイスカーま
たはSi3N4ウイスカーは、SiO2含有粉末をカーボ
ンブラツクのような炭材および適宜な生成空間形
成材と混合して反応容器に充填し、不活性雰囲気
あるいは窒素気流中で1400〜2000℃の温度域で加
熱反応させることにより製造されるが、得られる
生成物は密生した短繊維状のウイスカーが無方向
に絡み合つた団塊ケーキ質の組織形態を呈してお
り、この生成ウイスカーケーキは単純な撹拌等の
手段によつては解体することが不可能である。ま
た、急激な撹拌または長時間の撹拌を与える場合
には、ある程度の解体はできるもののウイスカー
に切断、破塊などの損傷を生じて高性能の複合材
料を得ることが困難となる。 発明者らは、ウイスカーに損傷を与えることな
しにケーキを解体分散する技術について検討を重
ねた結果、生成ウイスカーケーキを一旦、圧縮し
てから撹拌するとウイスカーの損傷を全く伴うこ
となく極めて短時間内に均一な解体分散が得られ
るという意外な事実を確認した。 本発明は、上記の知見に基づいてなされたもの
で、SiCあるいはSi3N4の生成ウイスカーケーキを
圧縮したのち、そのままもしくは水中で撹拌処理
することを構成的特徴とする。 生成ウイスカーケーキの圧縮は、団塊ケーキを
モールド中に充填して加圧するモールド加圧法、
あるいは狭間隙を有するロール間を通過させるロ
ール加圧法などの方法によつておこなわれる。生
成ウイスカーケーキが大塊状である場合には、こ
れをそのまま撹拌装置に入れ数秒間撹拌して小粒
化するか、撹拌装置内に水を加えて撹拌小粒化し
たのち脱水してから圧縮工程に供することが処理
を円滑に進めるうえで便宜である。圧縮の度合
は、生成ウイスカーケーキの性状組織とくにその
嵩密度と前記小粒化処理の有無によつて異なる
が、概して1/5〜1/50の体積収縮を伴うまでおこ
なうことが望ましい。体積収縮が1/5に満たない
圧縮度合では解体分散が十分に達成されず、他
方、1/50を越る高圧縮は不要であり、ケーキ質に
よつては500Kg/cm2以上の高い加圧力を必要とする
ため実用上も好ましくない。 圧縮後の偏平状ウイスカー片は、そのままもし
くは水中で撹拌処理する。撹拌装置としては、プ
ロペラ型、タービン型等のインペラ形式の撹拌
機、ニーダーのような撹拌混合機のほか空気によ
る浮遊撹拌機など適宜な機器が用いられる。な
お、水中撹拌の場合には、処理すべきウイスカー
片の50〜100倍重量の水が使用される。 撹拌を開始すると、ウイスカー片はほとんど瞬
間的に解体し、数秒程度の撹拌時間内に完全に分
散する。このような著るしい急速解体分散が達成
できる理由については十分解明するに至つていな
いが、前段の圧縮処理により生成ケーキを構成す
るウイスカー相互の物理的接着が離れて絡み合い
が解放され、この状態が短時間撹拌での円滑な解
体分散化を可能にするものと推測される。このた
め、撹拌処理を通してウイスカーに損傷を与える
ことがない。 水中撹拌による場合には、水中に均一分散した
ウイスカーを別後、乾燥する。かくして解体分
散されたウイスカーは、粒形物を全く含まない均
質の粉体状で、各種マトリツクス物質に対し常に
迅速円滑な混和分散が保障される性状に転化す
る。 以上のように本発明によれば、SiCあるいは
Si3N4の生成ウイスカーケーキを極めて簡易な処
理工程によりウイスカーに損傷を与えることなし
に解体分散し、よつて従来複合化の隘路とされて
いたマトリツクス物質中への円滑な均質分散を容
易にしたものであるから産業上に貢献するところ
頗る大である。 実施例 1 Si分に対しCoCl27.0重量%を含有するシリカゲ
ル微粉末(200メツシユ以下)をけい素源原料と
し、これを炭材としてDBP吸油量130ml/100g、
よう素吸着量104mg/gの特性を有するIISAF−
Hs級フアーネスカーボンブラツク〔東海カーボ
ン(株)製、“SEAST 5H”〕を110重量部、生成空間
形成材としてNaClを90重量部の各配合比率で均
一に混合した。該混合原料を高純度黒鉛製反応容
器に充填し、反応容器の上部に黒鉛蓋を付してア
チソン型電気炉に移したのち周囲をコークス粒パ
ツキングで被包した。炉を通電昇温し、炉内を非
酸化性雰囲気に保持しながら1600℃で4時間加熱
処理した。加熱処理後、内容物を解体せずに反応
容器から取り出し、大気中で700℃の温度に熱処
理して残留する炭材成分を燃焼除去した。得られ
た生成物は、純粋なSiCウイスカーが無方向に絡
み合つた藻草質の団塊状ケーキで、構成するSiC
ウイスカーの性状は直径0.2〜0.5μm、長さ100
〜200μmのβ型単結晶、ケーキの性状は真比重
3.17g/cm3、嵩密度0.04g/cm3、平均気孔率98.7%
であつた。 上記団塊状の生成SiCウイスカーを金型に入れ
てモールド加圧し、体積収縮比の異なる偏平の圧
縮ウイスカー片を形成した。 次いで、圧縮された各ウイスカー片をプロペラ
型撹拌機に入れ、回転速度11000rpm.で約1秒間
撹拌処理した(乾式撹拌)。これとは別に、プロ
ペラ型撹拌機中に50倍重量の水とともにウイスカ
ー片を投入して撹拌処理(回転速度8000rpm.、
撹拌時間約5秒)し、別により水分を除去した
のち乾燥した(湿式撹拌)。 このようにして解体分散したSiCウイスカーの
性状観察結果を生成ウイスカーケーキの圧縮度合
(体積圧縮比)と対比させて表に示した。
The present invention relates to a method for dismantling and dispersing a SiC or Si 3 N 4 produced whisker cake. Whiskers, which are composed of pure frame single crystals of SiC and Si 3 N 4 , have extremely high strength and elastic modulus, as well as heat resistance and chemical stability unique to the material, so they have long been used for composite reinforcement of metals or plastics. Although it is attracting attention as a material, it is not yet on track for practical use. One of the main technical reasons for this is that it is extremely difficult to break up the whiskers that are produced into a state that allows them to be homogeneously dispersed in the matrix material. That is, SiC whiskers or Si 3 N 4 whiskers are produced by mixing SiO 2 -containing powder with a carbonaceous material such as carbon black and an appropriate generation space forming material, filling a reaction vessel, and heating the mixture for 1400 min in an inert atmosphere or nitrogen stream. It is produced by a heating reaction in the temperature range of ~2000℃, and the resulting product has a nodular cake-like structure in which dense short fibrous whiskers are intertwined in no direction. The cake cannot be broken up by simple stirring or other means. Furthermore, if rapid stirring or long-term stirring is applied, although some degree of disassembly is possible, damage such as breakage and broken clumps occurs in the whiskers, making it difficult to obtain a high-performance composite material. As a result of repeated studies on technology to dismantle and disperse the cake without damaging the whiskers, the inventors found that once the generated whisker cake is compressed and then stirred, it can be done within an extremely short time without causing any damage to the whiskers. We confirmed the surprising fact that uniform dispersion can be obtained. The present invention has been made based on the above-mentioned knowledge, and has a constitutional feature that, after compressing the generated whisker cake of SiC or Si 3 N 4 , it is stirred as it is or in water. The resulting whisker cake can be compressed using a mold pressurization method in which the nodule cake is filled into a mold and pressurized.
Alternatively, it may be carried out by a method such as a roll pressure method in which the material is passed between rolls having a narrow gap. If the produced whisker cake is in the form of a large lump, either put it in a stirring device and stir it for a few seconds to make it smaller, or add water to the stirring device and stir it to make it smaller, then dehydrate it and use it for the compression process. This is convenient for smooth processing. The degree of compression varies depending on the texture of the resulting whisker cake, particularly its bulk density, and whether or not the above-mentioned particle size reduction treatment has been carried out, but it is generally desirable to carry out the compression until the volume shrinks by 1/5 to 1/50. If the volumetric shrinkage is less than 1/5, sufficient decomposition and dispersion will not be achieved, whereas high compression exceeding 1/50 is unnecessary, and depending on the cake quality, high compression of 500 kg/cm 2 or more may be required. Since pressure is required, this is not preferred in practice. The flattened whisker pieces after compression are stirred as they are or in water. As the stirring device, appropriate equipment such as an impeller type stirrer such as a propeller type or a turbine type, a stirring mixer such as a kneader, or a floating stirrer using air may be used. In addition, in the case of underwater stirring, water whose weight is 50 to 100 times the weight of the whisker pieces to be treated is used. When stirring is started, the whisker pieces disintegrate almost instantaneously and are completely dispersed within a stirring time of about a few seconds. The reason why such remarkable rapid disintegration and dispersion can be achieved has not yet been fully elucidated, but the compression process in the first stage separates the physical adhesion between the whiskers that make up the resulting cake, releasing the entanglement. It is presumed that the conditions enable smooth disassembly and dispersion with short agitation. Therefore, the whiskers are not damaged during the stirring process. When stirring in water, whiskers uniformly dispersed in water are separated and then dried. The whiskers thus disintegrated and dispersed are in the form of a homogeneous powder that does not contain any particulate matter, and are converted into properties that ensure rapid and smooth mixing and dispersion in various matrix materials. As described above, according to the present invention, SiC or
The generated whisker cake of Si 3 N 4 can be dismantled and dispersed without damaging the whiskers through an extremely simple processing process, thus facilitating smooth homogeneous dispersion into matrix materials, which has traditionally been a bottleneck in compounding. Because of this, it makes a significant contribution to industry. Example 1 Fine silica gel powder (200 mesh or less) containing 7.0% by weight of CoCl 2 based on Si content was used as a silicon source material, and this was used as a carbon material with a DBP oil absorption of 130 ml/100 g,
IISAF- which has the characteristic of iodine adsorption amount of 104mg/g
110 parts by weight of Hs class furnace carbon black (manufactured by Tokai Carbon Co., Ltd., "SEAST 5H") and 90 parts by weight of NaCl as a generation space forming material were uniformly mixed. The mixed raw materials were filled into a reaction vessel made of high-purity graphite, a graphite lid was attached to the top of the reaction vessel, the vessel was transferred to an Acheson type electric furnace, and the surrounding area was covered with coke grain packing. Electricity was applied to the furnace to raise the temperature, and heat treatment was performed at 1600° C. for 4 hours while maintaining the inside of the furnace in a non-oxidizing atmosphere. After the heat treatment, the contents were taken out from the reaction vessel without being disassembled and heat treated in the atmosphere at a temperature of 700°C to burn off the remaining carbonaceous components. The resulting product is an algae-like nodular cake in which pure SiC whiskers are intertwined nondirectionally, and the constituent SiC
The whisker has a diameter of 0.2 to 0.5 μm and a length of 100 μm.
~200μm β type single crystal, cake properties are true specific gravity
3.17g/cm 3 , bulk density 0.04g/cm 3 , average porosity 98.7%
It was hot. The nodule-shaped produced SiC whiskers were placed in a mold and pressurized to form flat compressed whisker pieces having different volume shrinkage ratios. Next, each compressed whisker piece was placed in a propeller type stirrer and stirred for about 1 second at a rotational speed of 11,000 rpm (dry stirring). Separately, the whisker pieces were put into a propeller-type stirrer together with 50 times their weight of water and stirred (rotation speed 8000 rpm.
The mixture was stirred for about 5 seconds), water was removed separately, and then dried (wet stirring). The results of observing the properties of the SiC whiskers disassembled and dispersed in this way are shown in the table, comparing them with the degree of compression (volume compression ratio) of the generated whisker cake.

【表】【table】

【表】 処理後のSiCウイスカー粉状体か、梱包その他
の一般的取扱いによつては最早再び絡み合うこと
がない良分散性を有していた。 なお、前記SiCウイスカーの生成反応を窒素気
流下でおこなつて生成したSi3N4のウイスカーケ
ーキについて同様の解体分散処理を実施したとこ
ろ、上記と同一の結果が得られた。 比較例 実施例1の生成SiCウイスカーケーキを圧縮せ
ずに直接、乾式および湿式による撹拌処理をおこ
なつた。撹拌機、回転速度、湿式撹拌時の添加水
量等は全て実施例1と同一とした。 その結果、乾式撹拌においては、1分間の撹拌
時間でウイスカーケーキの団塊は直径1〜3mm程
度の藻草状小塊になつたが、これら小塊はウイス
カーが絡み合つたものであつた。さらに撹拌時間
を5〜10分に延長したが小塊はほとんど触れず、
ウイスカーに切断損傷が認められた。また湿式撹
拌では、撹拌時間を5分程度まで延長すると解体
はかなり進行するものの、半分近くが小塊として
水中に浮遊していた。浮遊小塊は20分の撹拌時間
で減少傾向が認められたが、これを脱水乾燥して
観察したところウイスカー長さが20μm以下に切
断損傷を生じていた。 実施例 2 実施例1と同一条件で生成した大塊状のSiCウ
イスカーケーキをそのままプロペラ型撹拌機に入
れ、回転速度11000rpm.で約1秒撹拌した。この
撹拌操作により、ウイスカーケーキは2〜5mm程
度の小塊群に粒化した。得られた小塊を連続的に
狭間隙のロール間を2回に亘り通過させて、体積
収縮比1/15〜1/20に圧縮した。 次いで圧縮片をプロペラ型撹拌機に入れ、回転
速度11000rpmで1秒間撹拌処理したところ、瞬
時に解体分散して均質の粉状体に転化した。該粉
状体は生成時と同様直径0.2〜0.5μm、長さ100
〜200μmの性状を有する個別SiCウイスカーか
ら構成されており、処理工程における損傷はみら
れなかつた。 実施例 3 直径0.5〜2μm、長さ20〜40μmのSi3N4ウイ
スカーが密生集合状に絡み合つた組織の大塊生成
ケーキをプロペラ型撹拌機に入れ、その90倍に相
当する重量の水を注加したのち約5秒間水中撹拌
した。撹拌後の状態は、ウイスカーが1〜3mm程
度の小粒として水中に浮遊していた。浮遊小粒を
布袋に入れ軽く絞つて脱水した後、2回に亘り狭
隙間ロール間を通過させて体積収縮比1/15〜1/20
に圧縮した。 ついで圧縮片を50倍重量の水とともにプロペラ
型撹拌機に入れ回転速度800rpmで5秒間湿式撹
拌した。圧縮片は撹拌直後に解体し、撹拌終了時
点で完全に均質分散した。水分を別乾燥後の粉
状体は、切断破壊等のない分散性良好な個別
Si3N4ウイスカーであつた。
[Table] The SiC whisker powder after treatment had good dispersibility and did not become entangled again due to packaging or other general handling. When the Si 3 N 4 whisker cake produced by carrying out the SiC whisker production reaction in a nitrogen stream was subjected to the same disassembly and dispersion treatment, the same results as above were obtained. Comparative Example The SiC whisker cake produced in Example 1 was directly subjected to dry and wet stirring treatments without being compressed. The stirrer, rotation speed, amount of water added during wet stirring, etc. were all the same as in Example 1. As a result, in dry stirring, the whisker cake nodules turned into weed-like nodules with a diameter of about 1 to 3 mm after 1 minute of agitation, but these nodules were made up of entangled whiskers. The stirring time was further extended to 5 to 10 minutes, but the small lumps were hardly touched.
Cutting damage was observed on the whiskers. In addition, in wet stirring, when the stirring time was extended to about 5 minutes, disassembly progressed considerably, but nearly half of the particles remained suspended in the water as small lumps. Although a tendency for the number of floating small lumps to decrease was observed after 20 minutes of stirring time, when they were dehydrated and dried and observed, it was found that the whiskers had a length of 20 μm or less and were damaged by cutting. Example 2 A large SiC whisker cake produced under the same conditions as in Example 1 was directly placed in a propeller type stirrer and stirred for about 1 second at a rotational speed of 11,000 rpm. By this stirring operation, the whisker cake was granulated into small lumps of about 2 to 5 mm. The obtained small lump was continuously passed between narrow-gap rolls twice to be compressed to a volume shrinkage ratio of 1/15 to 1/20. Next, the compressed pieces were placed in a propeller-type stirrer and stirred for 1 second at a rotational speed of 11,000 rpm, whereupon they were instantly disintegrated and dispersed and converted into a homogeneous powder. The powder has a diameter of 0.2 to 0.5 μm and a length of 100 μm, the same as when it was generated.
It was composed of individual SiC whiskers with a diameter of ~200 μm, and no damage was observed during the processing process. Example 3 A large cake with a structure in which Si 3 N 4 whiskers with a diameter of 0.5 to 2 μm and a length of 20 to 40 μm are densely intertwined is placed in a propeller-type stirrer, and water with a weight equivalent to 90 times the weight is poured into the cake. was added and then stirred in water for about 5 seconds. After stirring, the whiskers were suspended in the water as small particles of about 1 to 3 mm. After putting the floating particles in a cloth bag and squeezing it lightly to dehydrate it, it is passed through narrow gap rolls twice to reduce the volume shrinkage ratio to 1/15 to 1/20.
compressed into. Then, the compressed pieces were placed in a propeller-type stirrer with 50 times the weight of water and wet-stirred for 5 seconds at a rotational speed of 800 rpm. The compressed pieces were disintegrated immediately after stirring, and were completely homogeneously dispersed at the end of stirring. After drying the water separately, the powder is made into individual particles with good dispersibility without cutting breakage etc.
It was Si 3 N 4 whiskers.

Claims (1)

【特許請求の範囲】 1 SiCあるいはSi3N4の生成ウイスカーケーキを
圧縮したのち、そのままもしくは水中で撹拌処理
することを特徴とするウイスカーケーキの解体分
散法。 2 大塊状の生成ウイスカーケーキをそのまま撹
拌するか、水中で撹拌、脱水して小粒化したのち
圧縮する特許請求の範囲第1項記載のウイスカー
ケーキの解体分散法。 3 圧縮を、1/5〜1/50の体積収縮を伴うまでお
こなう特許請求の範囲第1項および第2項記載の
ウイスカーケーキの解体分散法。
[Claims] 1. A method for dismantling and dispersing a whisker cake, which comprises compressing a whisker cake produced from SiC or Si 3 N 4 and then stirring it as it is or in water. 2. The method for dismantling and dispersing a whisker cake according to claim 1, in which the large lump-shaped whisker cake produced is stirred as it is, or is stirred and dehydrated in water to be made into small particles and then compressed. 3. The method for dismantling and dispersing a whisker cake according to claims 1 and 2, wherein the compression is performed until the volume shrinks by 1/5 to 1/50.
JP57144679A 1982-08-23 1982-08-23 Disintegration and dispersion of whisker cake Granted JPS5935100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57144679A JPS5935100A (en) 1982-08-23 1982-08-23 Disintegration and dispersion of whisker cake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144679A JPS5935100A (en) 1982-08-23 1982-08-23 Disintegration and dispersion of whisker cake

Publications (2)

Publication Number Publication Date
JPS5935100A JPS5935100A (en) 1984-02-25
JPS6121200B2 true JPS6121200B2 (en) 1986-05-26

Family

ID=15367727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144679A Granted JPS5935100A (en) 1982-08-23 1982-08-23 Disintegration and dispersion of whisker cake

Country Status (1)

Country Link
JP (1) JPS5935100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312999U (en) * 1986-07-10 1988-01-28
JPH0329996U (en) * 1989-07-31 1991-03-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312999U (en) * 1986-07-10 1988-01-28
JPH0329996U (en) * 1989-07-31 1991-03-25

Also Published As

Publication number Publication date
JPS5935100A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
US3838092A (en) Dustless compositions containing fiberous polytetrafluoroethylene
CN1422235A (en) Pyrolyzed hard carbon material, preparation and its applications
JPS58145700A (en) Production of silicon carbide whisker
JP2004256382A (en) Ceramic-based nanocomposite powder strengthened by carbon nanotube and its producing method
JP2944469B2 (en) Method for producing silica particles and use of the particles
JPS6121200B2 (en)
JPH0364462B2 (en)
JP2517510B2 (en) Method for producing granular diatomaceous earth
SU559636A3 (en) The method of obtaining products from silicon nitride
CA1117271A (en) Spherical gypsum and process for production of same
US2673812A (en) Method of producing carbonaceous molding compositions
JPH0143823B2 (en)
JPH03215399A (en) Method for preparing fibrous aluminum nitride
US2793134A (en) Water dispersible carbon black
JP2020070210A (en) Method for synthesizing spherically carbonized material
JPH0364575B2 (en)
JP4286549B2 (en) Method for manufacturing mullite whiskers
JPH0135932B2 (en)
JPS62246810A (en) Production of oil-treated insoluble sulfur with improved fluidity
JPH0891954A (en) Ceramic fiber granular assembly and its production
CN108264651B (en) Process for the preparation of substantially spherical reaction complexes of sulfur-containing silanes with carbon black and products obtained by said process
JPH01270507A (en) Production of mixture comprising beta-type silicon carbide powder and whisker
CN108557815B (en) Preparation method of nanocrystalline micron graphite spheres
JPS59230737A (en) Elastic heat resisting sheet-shaped article
JPH0143822B2 (en)