JPS6121106A - Method and apparatus for forming organic thin film - Google Patents

Method and apparatus for forming organic thin film

Info

Publication number
JPS6121106A
JPS6121106A JP14389984A JP14389984A JPS6121106A JP S6121106 A JPS6121106 A JP S6121106A JP 14389984 A JP14389984 A JP 14389984A JP 14389984 A JP14389984 A JP 14389984A JP S6121106 A JPS6121106 A JP S6121106A
Authority
JP
Japan
Prior art keywords
thin film
raw material
substrate
plasma
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14389984A
Other languages
Japanese (ja)
Other versions
JPH0368886B2 (en
Inventor
Koichi Iwata
岩田 幸一
Hideo Takahashi
英雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14389984A priority Critical patent/JPS6121106A/en
Publication of JPS6121106A publication Critical patent/JPS6121106A/en
Publication of JPH0368886B2 publication Critical patent/JPH0368886B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain an organic thin film free from pinholes and having excellent adhesivity to the substrate, in high efficiency, by melting an organic substance used as a raw material of the thin film, introducing the substance in a molecular form together with other raw material substances into a plasma, and depositing an organic thin film containing the above substances to a substrate. CONSTITUTION:The substrate 2 to be coated is placed on the high-frequency glow discharge electrode 3 furnished with a heater 4, and an earth electrode 1 is placed opposite to the electrode 3. High electrical potential generated by the high-frequency source 6 is applied to the electrodes 1, 3 to generate a plasma. An organic substance used as a raw material for forming a thin film is molten, and is converted to a molecular form taking advantage of the attracting force of an electrical field generated by high potential applied between the discharge electrode and the counter electrode. The molecular substance is introduced into the plasma by the deflector 5 if necessary together with other raw materials. An organic thin film containing the raw material substance and optionally other substances can be deposited on the substrate 2.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、金属、セラミンクス、無磯物質、有磯物質等
の基板」二に、所望の特性を持ち、かつ基板との密着性
にすぐれた有機薄膜を形成させる方法および装置に関す
るものである。
Detailed Description of the Invention "Industrial Field of Application" The present invention is directed to substrates made of metals, ceramics, non-porous materials, non-porous materials, etc., which have desired characteristics and excellent adhesion to the substrate. The present invention relates to a method and apparatus for forming organic thin films.

[従来技術] 近年、低圧グロー放電により生ずるプラズマを利用して
有機物の薄膜を作る方法が行われるようになっている。
[Prior Art] In recent years, methods have been used to create thin films of organic substances using plasma generated by low-pressure glow discharge.

その代表的な方法としてプラズマ重合およびプラズマ開
始重合がある。
Typical methods include plasma polymerization and plasma initiated polymerization.

プラズマ重合は、有機化合物の蒸気を含む雰囲気中で、
低分子物質の励起は行われるが重合生成物の分解は起こ
りにくいように制御したグロー放電を行い、プラズマ中
もしくはプラズマ付近に挿入した基板上に高分子物質薄
膜を形成させるもので、放電の電源としては通常高周波
電源を用い、放電時の圧力は通常0.1〜10Torr
程度である。
Plasma polymerization is carried out in an atmosphere containing vapors of organic compounds.
Glow discharge is controlled so that low-molecular substances are excited but polymerization products are not easily decomposed, and a thin film of polymeric material is formed on a substrate inserted in or near the plasma. Usually, a high frequency power source is used, and the pressure during discharge is usually 0.1 to 10 Torr.
That's about it.

この反応は気相で行われるため、原料の有機物質は通常
、モノマーあるいはモノマーに近い低分子量のガスとし
て供給される。プラズマ重合おける重合反応はかなり複
雑で、生成した高分子物質の構造も通常の重合反応で得
られるものと大島く異なる場合が多い。プラズマ重合に
は、装置が簡単で、容易に有機薄膜を形成で終るという
利点がある。しかし、反応の制御が難しく、分子構造が
規則正しい高分子物質を形成することかで鰺ないという
欠点がある。
Since this reaction is carried out in the gas phase, the raw organic substance is usually supplied as a monomer or a low molecular weight gas close to the monomer. The polymerization reaction in plasma polymerization is quite complex, and the structure of the resulting polymer material is often very different from that obtained in normal polymerization reactions. Plasma polymerization has the advantage of simple equipment and easy formation of organic thin films. However, it has the disadvantage that it is difficult to control the reaction and that it is difficult to form a polymer substance with a regular molecular structure.

一方、プラズマ開始重合は、重合反応を開始させるため
のエネルギー源としてプラズマを利用するもので、」−
記のプラズマ重合と異なって、反応は液相もしくは固相
で進行する場合がほとんどである。プラズマ開始重合で
は、重合反応は通常のラジカル反応と同様に進行するの
で、得られる高分子物質には規則性がある。重合開始の
ため、プラズマに代えて放射線等を用いることができる
On the other hand, plasma-initiated polymerization uses plasma as an energy source to start the polymerization reaction.
Unlike the plasma polymerization mentioned above, the reaction mostly proceeds in the liquid phase or solid phase. In plasma-initiated polymerization, the polymerization reaction proceeds in the same way as a normal radical reaction, so the resulting polymer material has regularity. To initiate polymerization, radiation or the like can be used instead of plasma.

しかし、プラズマ開始重合には、適用可能な化合物の範
囲が限られており(主としてビニル化合物のみ)、反応
速度が遅いので、能率的な薄膜形成かで外ないという欠
点がある。
However, plasma-initiated polymerization has the disadvantage that the range of applicable compounds is limited (mainly only vinyl compounds) and the reaction rate is slow, so it is only an efficient method for forming thin films.

これらの他に、薄膜形成法として、高分子物質の溶液を
塗布した後溶剤を乾燥除去する方法がある。これは、昔
から行われてきた簡単な方法であるが、基板との密着性
を改善することが難しいという欠点がある。
In addition to these, as a thin film forming method, there is a method in which a solution of a polymeric substance is applied and then the solvent is dried and removed. This is a simple method that has been used for a long time, but it has the disadvantage that it is difficult to improve the adhesion to the substrate.

さらに、熱軟化性樹脂を高電圧アーク火花で溶融させ、
基板に吹き付けて被覆層を形成させる溶射法があるが、
成膜中にピンホールを含みやすく、緻密な膜を形成する
ことが難しいという欠点がある。
Furthermore, the thermoplastic resin is melted with high voltage arc sparks,
There is a thermal spraying method that sprays onto the substrate to form a coating layer.
It has the disadvantage that it tends to contain pinholes during film formation, making it difficult to form a dense film.

[発明の目的] 本発明の目的は、前述のような従来の有機薄膜形成方法
の欠点を改良し、良好な有機薄膜を得る方法および装置
を提供することにある。
[Object of the Invention] An object of the present invention is to improve the drawbacks of the conventional organic thin film forming method as described above and to provide a method and apparatus for obtaining a good organic thin film.

[発明の構成1 本発明の第1の要旨は、薄膜形成原料である有機物質を
溶融し、分子状にして所望により他の原料物質と共にプ
ラズマ中に導入し、該原料物質および所望により他の原
料物質を含んで成る有機薄膜を基板上に形成することを
特徴とする有機薄膜形成方法に存する。
[Structure 1 of the Invention] The first gist of the present invention is to melt an organic substance that is a raw material for forming a thin film, make it into molecules, introduce it into a plasma together with other raw materials as desired, and combine the raw material and other raw materials as desired. The present invention relates to a method for forming an organic thin film, which comprises forming an organic thin film containing a raw material on a substrate.

モノマーガスを直接プラズマ中に導入すると複雑な高分
子化合物を形成するので、比較的低分子量の原料高分子
物質を分子状にしてプラズマ中に導入する。しかし、原
料高分子物質を分解せず分子状にすることは困難である
。低分子有機化合物は常態で気体であるかまたは減圧、
加熱などの方法により、簡単に気体にすることができる
。しかし、高分子化合物は常圧では固体であり、加熱す
ることによって一部のものを除いて液状にすることがで
終るが、更に加熱すると蒸発する前に熱分解反応が起こ
り、低分子化が生じる。通常、金属の蒸着に使われる荷
電粒子によるスパッターや加熱等においても同様に分解
反応が先行する。
If a monomer gas is introduced directly into the plasma, a complex polymer compound will be formed, so a raw material polymer substance with a relatively low molecular weight is made into molecules and introduced into the plasma. However, it is difficult to convert raw polymeric substances into molecules without decomposing them. Low-molecular organic compounds are normally gaseous or under reduced pressure,
It can be easily turned into a gas by heating or other methods. However, polymer compounds are solid at normal pressure, and when heated, they are turned into liquid except for some components, but when heated further, a thermal decomposition reaction occurs before evaporation, resulting in lower molecular weight. arise. Normally, a decomposition reaction similarly precedes sputtering or heating using charged particles used in metal vapor deposition.

本発明の方法において、原料高分子物の分解を抑制し、
これを分子状とするため、いわゆる電界脱離(F 1e
ld Desorption)法を利用する。即ち、高
分子物質を軟化点もしくは融点以上に加熱した状態とし
、空間を隔てた電極との開に直流電圧を印加し、電界の
吸引力により、高分子物質を分子状イオンまたは荷電粒
子の形で空間に引出すのである。
In the method of the present invention, the decomposition of the raw material polymer is suppressed,
In order to make this into a molecular state, so-called field desorption (F 1e
ld Desorption) method is used. That is, a polymer substance is heated above its softening point or melting point, a DC voltage is applied across an electrode separated by a space, and the attraction force of the electric field causes the polymer substance to form molecular ions or charged particles. It is pulled out into space.

以下に、電界脱離法について簡単に説明する。The field desorption method will be briefly explained below.

高分子材料などが塗っである鋭く尖った針金や、カミソ
リの刃の先端などと、対向電極との間に高電圧をかけ、
約10’V/cm以上の強い電場を作り、徐々に温度を
上げると、先端に塗られた材料が部分的にイオン化され
飛び出す。この場合、材料は非常に微細な液滴となり、
ジェット噴射状で飛び出す場合および分子状のいわゆる
分子イオンとして飛び出す場合がある。質量分析法にお
いて、後者の現象が難揮発性物質の分子イオンスペクト
ルを測定するためのイオン化法として応用されているが
、非常に微量のイオンで質量スペクトルが得られるので
、ジェット噴射は利用されず、むしろ有害なものとして
前処理により除去される。
A high voltage is applied between a sharp wire coated with a polymeric material, the tip of a razor blade, etc., and a counter electrode.
By creating a strong electric field of about 10'V/cm or higher and gradually increasing the temperature, the material applied to the tip becomes partially ionized and ejects. In this case, the material forms very fine droplets,
Sometimes it comes out in the form of a jet, and sometimes it comes out in the form of molecules, so-called molecular ions. In mass spectrometry, the latter phenomenon is applied as an ionization method to measure molecular ion spectra of refractory substances, but since mass spectra can be obtained with very small amounts of ions, jet injection is not used. Rather, they are considered harmful and are removed by pretreatment.

本発明の方法において、ジエッY噴射及び分子イオンの
両方を有効に利用する。高分子物質等の難揮発性物質の
分解を最小限に抑え、これを分子状にして気相中に取出
す。次いで、直接被覆すべき基板上に導くか、もしくは
低温プラズマ中に導く。プラズマのエネルギーレベルは
、ラジカル励起は起こるが、分子の分解は起こりにくい
ように、ガス圧、周波数、供給電力によって制御する。
In the method of the present invention, both jet Y jets and molecular ions are effectively utilized. Minimizes the decomposition of difficult-to-volatile substances such as polymeric substances, converts them into molecules, and extracts them into the gas phase. It is then introduced either directly onto the substrate to be coated or into a low temperature plasma. The energy level of the plasma is controlled by gas pressure, frequency, and supplied power so that radical excitation occurs but molecular decomposition is unlikely to occur.

導入された原料高分子物質は、プラズマによって励起さ
れ、更に重合して基板上に析出するか、もしくは基板上
に析出後重合し、基板と強固な密着性を有する有機薄膜
を得る。原料物質を導入する前にプラズマによって基板
表面をエツチングするか、もしくは中間接合層を形成す
ることが可能であり、よって、基板と高分子薄膜との密
着性を更に向上させることができる。
The introduced raw material polymer substance is excited by the plasma and is further polymerized and deposited on the substrate, or polymerized after being deposited on the substrate to obtain an organic thin film having strong adhesion to the substrate. Before introducing the raw material, it is possible to etch the substrate surface with plasma or form an intermediate bonding layer, thereby further improving the adhesion between the substrate and the polymer thin film.

本発明の方法によって製造された薄膜の分子構造は、通
常の重合反応で得られる高分子の分子構造に近い。
The molecular structure of the thin film produced by the method of the present invention is close to that of polymers obtained by ordinary polymerization reactions.

本発明の方法において用いる薄膜材料は、熱溶融性のあ
らゆる(比較的低分子量の)重合体であってよいが、例
えば(ポリスチレン、ポリエチレングリコール)が特に
好ましい。
The thin film material used in the method of the invention may be any heat-melting (relatively low molecular weight) polymer, but for example (polystyrene, polyethylene glycol) are particularly preferred.

本発明の第2の要旨は、 (’I)薄膜形成原料である有機物質をその軟化点以上
の温度に加熱でき、かつ原料物質を保持する電極および
空間を隔てて対向する電極を有し、該電極間に電圧が印
加された場合に電界を発生させ、原料有機物質を保持電
極から分子状で脱離させる原料供給装置、および (TI)グロー放電プラズマを発生させる電極を有して
成る、有機薄膜を基板上に形成する装置に存する。
The second gist of the present invention is ('I) having an electrode that can heat an organic substance, which is a raw material for forming a thin film, to a temperature equal to or higher than its softening point, and that holds the raw material and an electrode that faces across a space; comprising a raw material supply device that generates an electric field when a voltage is applied between the electrodes and desorbs the raw organic substance in molecular form from the holding electrode; and an electrode that generates (TI) glow discharge plasma. An apparatus for forming an organic thin film on a substrate.

本発明の装置の好ましい態様を第1〜3図に示す。Preferred embodiments of the apparatus of the present invention are shown in FIGS. 1-3.

以下、添付図面を参照して、本発明の方法および装置を
具体的に説明するが、本発明はこれに限定されるもので
はない。
Hereinafter, the method and apparatus of the present invention will be specifically described with reference to the accompanying drawings, but the present invention is not limited thereto.

第1図は、本発明の装置全体の模式的構成の一例を示す
図、第2図および第3図は、本発明の装置の電界脱離装
置の模式的構成の例を示す図である。
FIG. 1 is a diagram showing an example of the schematic configuration of the entire apparatus of the present invention, and FIGS. 2 and 3 are diagrams showing examples of the schematic configuration of the electric field desorption device of the apparatus of the present invention.

第1図において、被覆されるべき基板2は、高周波グロ
ー放電用電極3の上に配置される。電極3は、加熱用ヒ
ーター(または必要に応して冷却装置)4を有しており
、基板2を加熱または冷却できる。電極3に対向する高
周波グロー放電用型極1があり、これら電極に高周波電
源6からの高電圧を印加することによってプラズマが発
生する。
In FIG. 1, a substrate 2 to be coated is placed on an electrode 3 for high-frequency glow discharge. The electrode 3 has a heating heater (or a cooling device if necessary) 4, and can heat or cool the substrate 2. There is a high-frequency glow discharge type pole 1 facing the electrode 3, and plasma is generated by applying a high voltage from a high-frequency power source 6 to these electrodes.

高分子物質は電界脱離装置5がらプラズマ中へ分子状で
供給され、基板2の上へ堆積する。ガス入ロアおよびガ
ス出口8があり、装置内空気を不活性ガス雰囲気下にす
ること、およびその気相組成を変化調節することが可能
である。
The polymer substance is supplied in molecular form from the field desorption device 5 into the plasma and deposited on the substrate 2. There is a gas inlet lower and a gas outlet 8, and it is possible to bring the air inside the device under an inert gas atmosphere and to change and adjust the gas phase composition.

第2図において、−態様の電界脱離装置5は、エミッタ
ー10(例えば、タングステン/シリコン)、エミッタ
ーホルダー11、荷電粒子収束系12およびエミッター
ケース13を有する。エミッター10は質量分析用エミ
ッターと異なり、被覆に必要な高分子材料を供給する必
要があるため、全体をらせん状とし、かつ全体を効率よ
く利用するため移動及び回転(矢印方向)可能な構造に
なっている。エミッター10はエミッター電源(図示せ
ず)に接続されており、更に、高圧電源14にも接続さ
れている。原料高分子物質は、エミッター10に塗布さ
れている。
In FIG. 2, the field desorption device 5 of the - embodiment includes an emitter 10 (for example, tungsten/silicon), an emitter holder 11, a charged particle focusing system 12, and an emitter case 13. Unlike an emitter for mass spectrometry, the emitter 10 needs to be supplied with a polymer material necessary for coating, so it has a spiral shape as a whole, and has a structure that can be moved and rotated (in the direction of the arrow) in order to efficiently utilize the whole. It has become. The emitter 10 is connected to an emitter power source (not shown) and is further connected to a high voltage power source 14. A raw polymer material is applied to the emitter 10.

第3図において、別懇様の電界脱離装置5は、=8− 荷電粒子収束系19、高圧電源20、ヒーター15、プ
ランジャー16を有する。原料高分子物質17は、プラ
ンジャー16によって押出され(矢印方向)ながら、先
端部18から連続的に供給される。
In FIG. 3, a separate electric field desorption device 5 has a charged particle focusing system 19, a high voltage power source 20, a heater 15, and a plunger 16. The raw material polymeric substance 17 is continuously supplied from the tip 18 while being extruded by the plunger 16 (in the direction of the arrow).

装置において、原料高分子物質を揮発させるための電極
は適宜選択で外るが、タングステンの針金もしくはそれ
にシリコーンやカーボンのウィスカーを成長させたもの
が好ましい。電極に電流を流して加熱し、高分子物質の
軟化または溶融温度まで昇温させる。
In the apparatus, the electrode for volatilizing the raw material polymer substance can be selected as appropriate, but it is preferably a tungsten wire or one on which silicone or carbon whiskers are grown. An electric current is passed through the electrode to heat it, raising the temperature to the softening or melting temperature of the polymeric substance.

エミッターの形状、電界脱離装置の数およびグロー放電
チャンバーと位置関係、グロー放電チャンバーの構造等
については、基板の形状等に対して適切であるように設
計を行なうことが可能である。
The shape of the emitter, the number of field desorption devices, their positional relationship with the glow discharge chamber, the structure of the glow discharge chamber, etc. can be designed to be appropriate for the shape of the substrate, etc.

[発明の効果1 本発明の有機薄膜形成方法及び装置によって、従来の方
法に比べてはるかに基板との密着性に優れた緻密な薄膜
を原料高分子の物性をそこなうことなく形成できる。
[Effect of the Invention 1] The organic thin film forming method and apparatus of the present invention can form a dense thin film with far superior adhesion to a substrate compared to conventional methods without impairing the physical properties of the raw material polymer.

[実施例] 以下に実施例を示し、本発明を更に詳しく説明する。[Example] EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1 ポリスチレンをトルエンに溶解し、エミッターに塗布し
、乾燥した後、電界脱離装置へこのエミッターを取付け
た。圧力的0.1Torrのアルゴン雰囲気中でグロー
放電点火し、電極−Lに置いたニッケル基板をアルゴン
プラズマ中に10分間保持した後、エミッターと引出し
電極の間に約10KVの電圧を印加しながら、エミッタ
ー電流を徐々に増した。ポリスチレンの導入によって、
グロー放電の発光状態が変化するのを確認し、約30分
間基板のコーティングを行なった。その結果、厚さ約l
 rl O0人の有機薄膜が得られた。
Example 1 Polystyrene was dissolved in toluene, applied to an emitter, and after drying, the emitter was attached to a field desorption device. Glow discharge was ignited in an argon atmosphere at a pressure of 0.1 Torr, and the nickel substrate placed on the electrode-L was held in the argon plasma for 10 minutes, while applying a voltage of about 10 KV between the emitter and the extraction electrode. The emitter current was gradually increased. With the introduction of polystyrene,
After confirming that the light emission state of the glow discharge changed, the substrate was coated for about 30 minutes. As a result, the thickness is about l
An organic thin film of rlO0 was obtained.

この有機薄膜は、ポリスチレン溶液を塗布後乾燥するこ
とによって得られた薄膜に比較して、はるかに優れた密
着性を示した。また、スチレン単量体ガスをプラズマ中
に導入することにより得られた薄膜が柔軟性に乏しく、
もろい性質を示したのに対して、この有機薄膜は柔軟で
あった。
This organic thin film showed much better adhesion than a thin film obtained by applying and drying a polystyrene solution. In addition, the thin film obtained by introducing styrene monomer gas into the plasma has poor flexibility;
This organic thin film was flexible, whereas it exhibited brittle properties.

実施例2 ポリイミド樹脂をN−メチル−2−ピロリドンに溶解し
、エミッターに塗布し、溶媒を揮散させた後、このエミ
ッターを電界脱離装置に取付けた。
Example 2 A polyimide resin was dissolved in N-methyl-2-pyrrolidone, applied to an emitter, and after the solvent was evaporated, the emitter was attached to an electric field desorption device.

実施例1と同様の方法でエミッター電流および引出し電
圧を調整し、ポリイミド樹脂薄膜をニッケル基板上に形
成させた。この薄膜は溶剤に希釈後塗布し、乾燥させて
作ったポリイミド薄膜に比較して良好な密着性を示した
Emitter current and extraction voltage were adjusted in the same manner as in Example 1, and a polyimide resin thin film was formed on a nickel substrate. This thin film showed better adhesion than a polyimide thin film made by diluting it in a solvent, coating it, and drying it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の装置全体の模式的構成の一例を示す
図、 第2図および第3図は、本発明の装置の電界脱離装置の
模式的構成の例を示す図である。 、3・・・電極、2・・・基板、4・・・ヒーター、5
・・・電界脱離装置、6・・・高周波電源、7・・・ガ
ス入口、8・・・ガス出口、10・・・エミッター、1
1・・・エミッターホルダー、12.19・・・荷電粒
子収束系、1=11− 3・・・エミッターケース、14.20・・・高圧電源
、15・・・ヒーター、16・・・プランジャー、17
・・・原料高分子物質、18・・・先端部。 特許出願人 住友電気工業株式会社 代 理 人 弁理士 青白 葆 ばか2名−12= 〜      O−rつ 手続補正書(自発) 昭和60年 3月29日 昭和59年特許願第 143899    号2発明の
名称 有機薄膜形成方法及び装置 3、補正をする者 事件との関係 特許出願人 住所 大阪府大阪市東区北浜 5丁目15番地名称(2
13)住友電気工業株式会社 4、代理人 7、補正の内容 明細書中、次の箇所を補正しまず。 ■、特許請求の範囲の欄 別紙の通り。 ■6発明の詳細な説明の欄 (1)4頁末7行、「溶融し、」の後に、「対抗電極と
の間に高電圧を印加して、電界の吸引力を利用して有機
物質を」を挿入。 (2)5頁末5行、「直流」とあるを削除。 以−L (別紙) 特許請求の範囲 (1)薄膜形成原料である有機物質を溶融し、対セ(1
琢」曵kが不と■yL←呵夛η−」工↓■しを二Ell
−!旦−1,ヱ;、−□η工界pM力を41i−川−レ
p任横物質−剣分子状にして所望により他の原料物質と
共にプラズマ中に導入し、該原料物質および所望により
他の原料物質を含んで成る有機薄膜を基板−1−に形成
することを特徴とする有機薄膜形成方法。 (2)(1)薄膜形成原料である有機物質をその軟化意
思」−の温度に加熱でき、かつ原料物質を保持する電極
および空間を隔てて対向する電極を有し、該電極間に電
圧が印加された場合に電界を発生ざU゛、束w例閾史力
(刊州−1にニー原料有機物質を保持電極から分子状で
脱離させる原[1供給装置、および (II)グロー放電プラズマを発生させる電極を有して
成る、有機薄膜を基板−1−に形成する装置。
FIG. 1 is a diagram showing an example of the schematic configuration of the entire apparatus of the present invention, and FIGS. 2 and 3 are diagrams showing examples of the schematic configuration of the electric field desorption device of the apparatus of the present invention. , 3... Electrode, 2... Substrate, 4... Heater, 5
...Electric field desorption device, 6...High frequency power source, 7...Gas inlet, 8...Gas outlet, 10...Emitter, 1
1... Emitter holder, 12.19... Charged particle focusing system, 1=11- 3... Emitter case, 14.20... High voltage power supply, 15... Heater, 16... Plunger , 17
... Raw material polymeric substance, 18... Tip part. Patent Applicant Sumitomo Electric Industries Co., Ltd. Representative Patent Attorney 2 Idiots - 12= ~O-r Procedural Amendment (Voluntary) March 29, 1985 Patent Application No. 143899 of 1988 2 Invention Name Organic thin film forming method and apparatus 3, relationship with the amended person case Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka-shi, Osaka Name (2)
13) Sumitomo Electric Industries, Ltd. 4, Agent 7, first amended the following points in the statement of contents of the amendment. ■As per the appendix in the claims section. ■6 Detailed description of the invention column (1), line 7 at the end of page 4, after ``melting,'' it says ``A high voltage is applied between the counter electrode and the organic material is melted using the attractive force of the electric field. Insert ``. (2) Delete "DC" in line 5 at the end of page 5. I-L (Attachment) Claims (1) Melting an organic substance that is a raw material for forming a thin film,
琢" 曵k is not ■yL←呵夛η-" 工↓■しを2El
-! dan-1, ヱ;, -□η The pM force is made into the form of a 41i-river-rep horizontal substance-sword molecule and introduced into the plasma together with other source materials as desired, and the source materials and other materials as desired are introduced into the plasma. 1. A method for forming an organic thin film, which comprises forming an organic thin film containing a raw material on a substrate-1-. (2) It has an electrode that can heat the organic material that is the raw material for thin film formation to a temperature that will soften it, and has an electrode that holds the raw material and an electrode that faces each other across a space, and a voltage is applied between the electrodes. When an electric field is applied, an electric field is generated, and (II) a glow discharge. An apparatus for forming an organic thin film on a substrate-1-, comprising an electrode for generating plasma.

Claims (2)

【特許請求の範囲】[Claims] (1)薄膜形成原料である有機物質を溶融し、分子状に
して所望により他の原料物質と共にプラズマ中に導入し
、該原料物質および所望により他の原料物質を含んで成
る有機薄膜を基板上に形成することを特徴とする有機薄
膜形成方法。
(1) An organic substance that is a raw material for forming a thin film is melted, made into molecules, and introduced into a plasma together with other raw materials if desired, and an organic thin film containing the raw material and other raw materials if desired is formed on a substrate. 1. A method for forming an organic thin film, characterized by forming the organic thin film.
(2)( I )薄膜形成原料である有機物質をその軟化
点以上の温度に加熱でき、かつ原料物質を保持する電極
および空間を隔てて対向する電極を有し、該電極間に電
圧が印加された場合に電界を発生させ、原料有機物質を
保持電極から分子状で脱離させる原料供給装置、および (II)グロー放電プラズマを発生させる電極を有して成
る、有機薄膜を基板上に形成する装置。
(2) (I) It is possible to heat the organic substance that is the raw material for thin film formation to a temperature above its softening point, and it has an electrode that holds the raw material and an electrode that faces across a space, and a voltage is applied between the electrodes. (ii) forming an organic thin film on a substrate, comprising: a raw material supply device that generates an electric field and detaches the raw organic material in molecular form from the holding electrode when device to do.
JP14389984A 1984-07-10 1984-07-10 Method and apparatus for forming organic thin film Granted JPS6121106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14389984A JPS6121106A (en) 1984-07-10 1984-07-10 Method and apparatus for forming organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14389984A JPS6121106A (en) 1984-07-10 1984-07-10 Method and apparatus for forming organic thin film

Publications (2)

Publication Number Publication Date
JPS6121106A true JPS6121106A (en) 1986-01-29
JPH0368886B2 JPH0368886B2 (en) 1991-10-30

Family

ID=15349646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14389984A Granted JPS6121106A (en) 1984-07-10 1984-07-10 Method and apparatus for forming organic thin film

Country Status (1)

Country Link
JP (1) JPS6121106A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164304A (en) * 1983-03-07 1984-09-17 Mitsubishi Electric Corp Apparatus for forming polymer membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164304A (en) * 1983-03-07 1984-09-17 Mitsubishi Electric Corp Apparatus for forming polymer membrane

Also Published As

Publication number Publication date
JPH0368886B2 (en) 1991-10-30

Similar Documents

Publication Publication Date Title
JP3560914B2 (en) Plasma accelerated chemical vapor deposition using low vapor pressure compounds.
EP1144131B1 (en) Plasma enhanced chemical deposition of conjugated polymer
US20020076506A1 (en) Plasma enhanced polymer deposition onto fixtures
KR20010093843A (en) Method of making non-linear optical polymer
WO2003017737A2 (en) Cascade arc plasma and abrasion resistant coatings made therefrom
JP4416402B2 (en) Plasma device for forming functional layer and method for forming functional layer
JPS6121106A (en) Method and apparatus for forming organic thin film
USH872H (en) Method of applying coatings to substrates
HU188635B (en) Apparatus for reactive application of layer with plasmatrone
JP2857743B2 (en) Thin film forming apparatus and thin film forming method
RU2653399C2 (en) Method of amorphous oxide of aluminum coating by reactive evaporation of aluminum in low pressure discharge
JP2778955B2 (en) Continuous multi-stage ion plating equipment
JPH0472586B2 (en)
JPS61136678A (en) Formation of high-hardness carbon film
JP2001140061A (en) Deposition assist vapor deposition system and thin film deposition method
JPH0469643B2 (en)
JPH01119661A (en) Manufacture of thin film of organic matter
JPS6347362A (en) Ion plating device
JPH01242177A (en) Method for coating wire
JPS63109160A (en) Thin organic film forming device
JPS63197541A (en) Formation of organic thin film and apparatus
JP2001355060A (en) Method for depositing hyperfine-grained film
JPH02258967A (en) Formation of thin carbide film
JP2001104773A (en) Method for forming acetylenic monomer polymeric film
JPS63282254A (en) Production of thin fluororesin film