JPH0469643B2 - - Google Patents

Info

Publication number
JPH0469643B2
JPH0469643B2 JP60249811A JP24981185A JPH0469643B2 JP H0469643 B2 JPH0469643 B2 JP H0469643B2 JP 60249811 A JP60249811 A JP 60249811A JP 24981185 A JP24981185 A JP 24981185A JP H0469643 B2 JPH0469643 B2 JP H0469643B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
organic
organic thin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60249811A
Other languages
Japanese (ja)
Other versions
JPS62109803A (en
Inventor
Hideo Takahashi
Koichi Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24981185A priority Critical patent/JPS62109803A/en
Publication of JPS62109803A publication Critical patent/JPS62109803A/en
Publication of JPH0469643B2 publication Critical patent/JPH0469643B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属、セラミツクス、無機物質、有
機物質等の基板上に、基板との密着性にすぐれた
有機薄膜をその分子構造を制御しつつ形成させる
ものである。
Detailed Description of the Invention Field of Industrial Application The present invention is directed to forming an organic thin film with excellent adhesion to the substrate on a substrate such as metal, ceramics, inorganic material, organic material, etc. while controlling its molecular structure. It is something that makes you

従来の技術 気相中で、基板上に有機薄膜を形成する方法
は、従来の溶剤を用いる成膜法に比べて、高真空
下で、連続的に成膜処理が可能なことから、半導
体製造プロセスにおける絶縁膜、フオトレジスト
膜等の成膜方法として各種のものが提唱されてい
る。
Conventional technology The method of forming an organic thin film on a substrate in a gas phase allows for continuous film formation under high vacuum compared to conventional film formation methods using solvents, and is therefore popular in semiconductor manufacturing. Various methods have been proposed as methods for forming insulating films, photoresist films, etc. in processes.

例えば、原料物質として、モノマーガスをプラ
ズマ雰囲気中に供給し、基板上で重合膜を形成さ
せるプラズマ重合法が知られているが、プラズマ
雰囲気中にランダムな反応活性種が存在するた
め、重合反応の制御が難しく、規則正しい分子構
造を有する高分子物質を形成することが出来ない
という欠点がある。
For example, a plasma polymerization method is known in which a monomer gas is supplied as a raw material into a plasma atmosphere and a polymerized film is formed on a substrate. However, due to the presence of random reactive species in the plasma atmosphere, the polymerization reaction It has the disadvantage that it is difficult to control and it is impossible to form a polymeric substance with a regular molecular structure.

又、反応ガスを、紫外光あるいは放射線によつ
て励起させ、ラジカルを生成させて基板上に重合
膜を作成する化学気相成長法が知られており、励
起エネルギーの分布が均一なため重合反応の制御
が容易という利点はあるものの、成膜速度が遅い
ため、工業的な成膜法としては不十分である。成
膜速度を高めるには、出発原料として反応ガスで
はなく、既に重合反応をある程度進行させたオリ
ゴマーあるいはポリマーを用いることが考えられ
るが、一般にこれら高分子物質は加熱すると蒸発
する前に熱分解が起こり、熱分解させずに粒子状
にして気相中に取り出すことは困難であつた。
In addition, chemical vapor deposition is known, in which a reactive gas is excited by ultraviolet light or radiation to generate radicals and create a polymer film on a substrate.The uniform distribution of excitation energy allows the polymerization reaction to occur easily. Although it has the advantage of being easy to control, it is insufficient as an industrial film-forming method because the film-forming rate is slow. In order to increase the film formation rate, it is possible to use oligomers or polymers that have already undergone some degree of polymerization reaction as starting materials instead of reaction gases, but in general, when these polymeric substances are heated, thermal decomposition occurs before they evaporate. It was difficult to extract the particles into the gas phase without thermal decomposition.

発明の構成 本発明の方法において、原料高分子物の熱分解
を抑制し、これを粒子状とするため、いわゆる電
界脱離(Field Desorption)法を利用する。即
ち、高分子物質を軟化点もしくは融点以上に加熱
した状態とし、空間を隔てた電極との間に高電圧
を印加し、電界の吸引力により、高分子物質を粒
子状に気相に引出し、基板上に析出させるのであ
る。ここでいう粒子状とは、高分子物質が、分子
もしくは、微細粒子もしくはこれらのイオン化物
として存在するか、あるいはこれらが混在する状
態を意味する。
Structure of the Invention In the method of the present invention, a so-called field desorption method is used to suppress thermal decomposition of a raw material polymer and make it into particles. That is, a polymer substance is heated above its softening point or melting point, a high voltage is applied between the electrodes separated by a space, and the attraction force of the electric field draws out the polymer substance in the form of particles into a gas phase. It is deposited on the substrate. The term "particulate" as used herein means that the polymeric substance exists as molecules, fine particles, or ionized products thereof, or a state in which these are mixed.

以下に電界脱離法について簡単に説明する。 The field desorption method will be briefly explained below.

高分子材料などが塗つてある鋭く尖つた針金
や、カミソリの刃の先端などと、対向電極との間
に高電圧をかけ、約108V/cm以上の強い電場を
作り、徐々に温度を上げると、先端に塗られた材
料が部分的にイオン化され飛び出す。この場合、
材料は非常に微細な液滴となり、ジエツト噴射状
で飛び出す場合および分子状のいわゆる分子イオ
ンとして飛び出す場合がある。質量分析法におい
て、後者の現象が難揮発性物質の分子イオンスペ
クトルを測定するためのイオン化法として応用さ
れているが、非常に微量のイオンで質量スペクト
ルが得られるので、ジエツト噴射は利用されず、
むしろ有害なものとして前処理により除去され
る。
A high voltage is applied between a sharp wire coated with a polymeric material, the tip of a razor blade, etc., and a counter electrode, creating a strong electric field of approximately 10 8 V/cm or more, and the temperature is gradually increased. When raised, the material applied to the tip becomes partially ionized and pops out. in this case,
The material forms very fine droplets, which may be ejected in the form of a jet or as molecular ions. In mass spectrometry, the latter phenomenon is applied as an ionization method to measure molecular ion spectra of refractory substances, but since mass spectra can be obtained with very small amounts of ions, jet injection is not used. ,
Rather, they are considered harmful and are removed by pretreatment.

本発明の方法において、ジエツト噴射および分
子イオンの両方を有効に利用する。高分子物質等
の難揮発性物質の分解を最小限に抑え、これを分
子状にして気相中に取り出す。次いで、直接被覆
すべき基板上に導き、紫外線あるいは放射線を照
射することにより、基板上で重合反応を進行さ
せ、有機薄膜を形成させる。
In the method of the present invention, both jet jets and molecular ions are effectively utilized. Minimizes the decomposition of difficult-to-volatile substances such as polymeric substances, converts them into molecules, and extracts them into the gas phase. Next, the polymer is introduced directly onto the substrate to be coated and irradiated with ultraviolet rays or radiation, thereby allowing a polymerization reaction to proceed on the substrate to form an organic thin film.

原料物質を導入する前に、公知のイオンエツチ
ングあるいはプラズマエツチング等の処理により
基板表面をエツチングするか、もしくは中間接合
層を形成することが可能であり、よつて基板と有
機薄膜との密着性を更に向上させることができ
る。
Before introducing the raw material, it is possible to etch the surface of the substrate by a known process such as ion etching or plasma etching, or to form an intermediate bonding layer, thereby improving the adhesion between the substrate and the organic thin film. It can be further improved.

本発明に用いる薄膜材料は、熱溶融性のあらゆ
る有機高分子化合物であつてよいが、例えば溶融
粘度の低いポリエチレン、ポリアミド、ポリスチ
ン等が好ましい。
The thin film material used in the present invention may be any heat-melting organic polymer compound, but preferably polyethylene, polyamide, polystine, etc. having low melt viscosity are used.

本発明に用いる放射線源としては、電子線ある
いはガンマー線等を用いることが出来、照射線量
は、使用する高分子物質のラジカルを発生するよ
うに適宜定められる。又本発明に用いる紫外線源
としては、水銀ランプやキセノンランプあるいは
レーザー光等を用いることが出来、その光源及び
光子エネルギーは、使用する高分子物質に応じて
適宜選択出来る。
As the radiation source used in the present invention, electron beams, gamma rays, etc. can be used, and the irradiation dose is appropriately determined so as to generate radicals of the polymer substance used. Further, as the ultraviolet source used in the present invention, a mercury lamp, a xenon lamp, a laser beam, or the like can be used, and the light source and photon energy can be appropriately selected depending on the polymer material used.

実施例 以下に実施例を示し、本発明を更に詳しく説明
する。
Examples Examples are shown below to explain the present invention in more detail.

実施例 1 ポリエチレンをキシレンに溶解し、針状電極に
塗布し、溶剤を乾燥した後、真空下(10-4torr)
で針状電極を加熱した状態で引き出し電極との間
に約10KVの電圧を印加し、約5分間電子線を照
射しながら基板へのコーテイングを行なつた。電
子線の照斜線量は30メガラツドとした。
Example 1 Polyethylene was dissolved in xylene, applied to a needle electrode, and after drying the solvent, under vacuum (10 -4 torr)
While the needle electrode was heated, a voltage of about 10 KV was applied between it and the extraction electrode, and the substrate was coated while irradiating the electron beam for about 5 minutes. The irradiance of the electron beam was set to 30 megarads.

この結果、厚さ約1500Åの有機薄膜が得られ
た。この有機薄膜は、ポリエチレン溶液を塗布後
乾燥することによつて得られた薄膜に比較しては
るかにすぐれた密着性を示した。又エチレンモノ
マーを出発原料として得られたプラズマ重合ポリ
エチレン膜が通常の直鎖状の分子構造以外に、不
飽和結合や芳香環結合を含むのに対し、この有機
薄膜の分子構造は、直鎖状のポリエチレンが架橋
した規則正しいものであつた。
As a result, an organic thin film with a thickness of about 1500 Å was obtained. This organic thin film showed much better adhesion than a thin film obtained by coating and drying a polyethylene solution. In addition, plasma-polymerized polyethylene films obtained using ethylene monomer as a starting material contain unsaturated bonds and aromatic ring bonds in addition to the normal linear molecular structure, whereas the molecular structure of this organic thin film is linear. It was a regular cross-linked polyethylene.

実施例 2 多官能アクリレートを、ジメチルホルムアミド
に溶解し、実施例1と同様にして約10分間紫外光
を照謝しながら基板へのコーテイングを行なつ
た。光源としては、市販の低圧水銀灯を用いた。
Example 2 A polyfunctional acrylate was dissolved in dimethylformamide and coated on a substrate in the same manner as in Example 1 while being exposed to ultraviolet light for about 10 minutes. A commercially available low-pressure mercury lamp was used as a light source.

この結果、厚さ約2000Åの有機薄膜が得られ
た。この有機薄膜は、多官能アクリレート溶液を
塗布後焼き付けた膜と比較して膜厚が均一であ
り、ピンホールもなく緻密であつた。
As a result, an organic thin film with a thickness of about 2000 Å was obtained. This organic thin film had a uniform thickness and was dense with no pinholes compared to a film obtained by coating and baking a polyfunctional acrylate solution.

発明の効果 本発明の有機薄膜形成方法によつて、基板との
密着性にすぐれた緻密な薄膜をその分子構造を制
御しつつ形成することが出来る。
Effects of the Invention According to the organic thin film forming method of the present invention, a dense thin film with excellent adhesion to a substrate can be formed while controlling its molecular structure.

Claims (1)

【特許請求の範囲】[Claims] 1 薄膜形成原料である有機高分子物質をその軟
化点もしくは融点以上に加熱すると同時に、対向
電極との間に、高電圧を印加し、電界の吸引力を
利用して有機物質を粒子状に放出させて基板上に
導き、放射線照射あるいは紫外線照射により、基
板上で重合反応を引き起こすことにより、基板上
に有機薄膜を形成することを特徴とする有機薄膜
形成方法。
1. Heat the organic polymer material that is the raw material for thin film formation above its softening point or melting point, and at the same time apply a high voltage between it and a counter electrode, and release the organic material in the form of particles using the attractive force of the electric field. 1. A method for forming an organic thin film, the method comprising forming an organic thin film on a substrate by irradiating the organic material onto a substrate and causing a polymerization reaction on the substrate through irradiation with radiation or ultraviolet rays.
JP24981185A 1985-11-06 1985-11-06 Method of forming organic thin film Granted JPS62109803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24981185A JPS62109803A (en) 1985-11-06 1985-11-06 Method of forming organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24981185A JPS62109803A (en) 1985-11-06 1985-11-06 Method of forming organic thin film

Publications (2)

Publication Number Publication Date
JPS62109803A JPS62109803A (en) 1987-05-21
JPH0469643B2 true JPH0469643B2 (en) 1992-11-06

Family

ID=17198555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24981185A Granted JPS62109803A (en) 1985-11-06 1985-11-06 Method of forming organic thin film

Country Status (1)

Country Link
JP (1) JPS62109803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7138982B1 (en) * 2021-09-24 2022-09-20 東海物産株式会社 Anserine crystals and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164304A (en) * 1983-03-07 1984-09-17 Mitsubishi Electric Corp Apparatus for forming polymer membrane
JPS6047003A (en) * 1983-08-26 1985-03-14 Res Dev Corp Of Japan Process and apparatus for plasma polymerization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164304A (en) * 1983-03-07 1984-09-17 Mitsubishi Electric Corp Apparatus for forming polymer membrane
JPS6047003A (en) * 1983-08-26 1985-03-14 Res Dev Corp Of Japan Process and apparatus for plasma polymerization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7138982B1 (en) * 2021-09-24 2022-09-20 東海物産株式会社 Anserine crystals and method for producing the same

Also Published As

Publication number Publication date
JPS62109803A (en) 1987-05-21

Similar Documents

Publication Publication Date Title
JP3560914B2 (en) Plasma accelerated chemical vapor deposition using low vapor pressure compounds.
EP1144131B1 (en) Plasma enhanced chemical deposition of conjugated polymer
US4085248A (en) Method to apply a protective layer to the surface of optical reflectors, and so-made reflectors, particularly automotive vehicle head lamps
EP1506063B1 (en) Atomisation of a precursor into an excitation medium for coating a remote substrate
US6217947B1 (en) Plasma enhanced polymer deposition onto fixtures
US4264642A (en) Deposition of thin film organic coatings by ion implantation
KR20010089583A (en) Method of making light emitting polymer composite material
KR20010089582A (en) Conformal coating of a microtextured surface
EP1509332A2 (en) Application of a coating forming material onto at least one substrate
KR20010093843A (en) Method of making non-linear optical polymer
JP2001329083A (en) Material subjected to plasma treatment
JPH108254A (en) Formation of silicon dioxide layer
KR20030056328A (en) Method of manufacturing er-doped silicon nano-dot array and laser ablation apparatus used therein
JPH0469643B2 (en)
JPS5874701A (en) Formation of thin polymer film
JPH0368886B2 (en)
JPS6350463A (en) Method and apparatus for ion plating
Van der Wel et al. Surface modification of polymethylmethacrylate by UV light as studied by TOF‐SIMS
RU2190628C2 (en) Method of applying thin polymer layers on surface of solids
JPS63282254A (en) Production of thin fluororesin film
Usui et al. Synthesis of TPD-containing polymer thin films by physical vapor deposition
KR980009406A (en) Method for increasing adhesion of polyolefin resin
Arefi-Khonsari et al. In this chapter surface modifications of polymer films treated by cold plasmas are reviewed. To illustrate these modifications, examples of plasma processing of polymers are given exclusively by using a low-frequency low-pressure reactor with asymmetrical configuration of electrodes. After briefly discussing the main processes
MXPA00003090A (en) Plasma enhanced chemical deposition with low vapor pressure compounds
JPH03147326A (en) Formation of polyamideimide thin film