JPS61210223A - Exhaust turbosupercharging device - Google Patents

Exhaust turbosupercharging device

Info

Publication number
JPS61210223A
JPS61210223A JP60050120A JP5012085A JPS61210223A JP S61210223 A JPS61210223 A JP S61210223A JP 60050120 A JP60050120 A JP 60050120A JP 5012085 A JP5012085 A JP 5012085A JP S61210223 A JPS61210223 A JP S61210223A
Authority
JP
Japan
Prior art keywords
turbine
exhaust
passage
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60050120A
Other languages
Japanese (ja)
Inventor
Osatoshi Handa
半田 統敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60050120A priority Critical patent/JPS61210223A/en
Publication of JPS61210223A publication Critical patent/JPS61210223A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To obtain good turbocharging response by causing the rotation of a downstream turbine preliminarily on an exhaust after its actuation of an upstream turbine, and increasing the turbine speed through throttling an exhaust introduced to the downstream turbine at the start of acceleration. CONSTITUTION:Turbines 9a and 10a each for two turbochargers 9 and 10 are arranged in series in the exhaust passage 11 of an engine. And a passage 12 is branched from the exhaust passage 11 at the upstream of a primary turbine 9a, continuously to the upstream of a secondary turbine 10a, and a flow control valve 13 is provided in way of the said passage 12. On the other hand, a variable capacity mechanism 18 is provided for the secondary turbine 10a and so made that a variable vane 20 will throttle the throat of a scroll housing 19, depending upon pressure working on a diaphragm device 21 via a pressure regulating valve 22. And pressure regulating valves 17 and 22 are actuated by a control circuit 29, according to detected signals from a speed sensor 27 and a turbocharged pressure sensor 28, thereby controlling the opening of the flow control valve 13 and the variable vane 20.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、複数のターボチャージャを備える排気ター
ボ過給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust turbocharging device including a plurality of turbochargers.

(従来の技術) 機関出力や燃費の向上を1指してターボチr −ジャが
備えられるが、va関の加速性能を改善するために複数
のターボチャージャを設けたものがある。このような装
置では、第1ターボチヤージヤの過給圧の立上りが重要
であり、このため第1ターボチヤージVを小型化し、低
速回転域ではこの第1ターボチヤージヤにてまず過給圧
を設定過給圧まで応答良く上昇させ、設゛定過給圧に達
した後は比較的大型の第2ターボチヤージヤを作動させ
て中高速回転域での過給効果を確保するようにしている
(特開昭59−134327号公報参照)。
(Prior Art) A turbocharger is provided in order to improve engine output and fuel efficiency, but some engines are equipped with a plurality of turbochargers in order to improve the acceleration performance of the VA system. In such a device, the rise of the supercharging pressure of the first turbocharger is important, so the first turbocharger V is downsized, and in the low speed range, the first turbocharger first increases the supercharging pressure to the set supercharging pressure. After increasing the pressure in a responsive manner and reaching the set supercharging pressure, a relatively large second turbocharger is operated to ensure supercharging effect in the medium and high speed range (Japanese Patent Laid-Open No. 59-134327). (see publication).

これを第6図に示すと、図中第1ターボヂヤージヤ2は
機関本体1の燃焼室に連通ずる排気通路3に介装される
第1タービン2aと、第1吸気通路4aに介装される第
1コンプレツサ2bと、これらを直結する回転軸2Cと
から構成される。
This is shown in FIG. 6. In the figure, the first turbocharger 2 includes a first turbine 2a installed in an exhaust passage 3 communicating with the combustion chamber of the engine body 1, and a first turbine 2a installed in a first intake passage 4a. 1 compressor 2b and a rotating shaft 2C that directly connects them.

第1タービン2a上流の排気通路3からは第1タービン
2aを迂回して排気を流すバイパス通路5が分岐され、
この分岐部には排気切換弁6が介装される。
A bypass passage 5 is branched from the exhaust passage 3 upstream of the first turbine 2a, through which exhaust gas flows bypassing the first turbine 2a.
An exhaust switching valve 6 is installed in this branch portion.

第2ターボチヤージヤ7はバイパス通路5に介装される
第2タービン7aと、第2吸気通路4bに介装される第
2コンプレツサ7bと、これらを直結する回転軸7Cと
から構成される。
The second turbocharger 7 includes a second turbine 7a installed in the bypass passage 5, a second compressor 7b installed in the second intake passage 4b, and a rotating shaft 7C directly connecting these.

第1、第2吸気通路4a 、4bは吸気通路4の上流で
合流しており、その合流部には吸気切換弁8が介装され
る。
The first and second intake passages 4a and 4b merge upstream of the intake passage 4, and an intake switching valve 8 is interposed at the junction.

前記排気切換弁6は第1コンプレツサ2bの吐出圧が規
定値に達すると、バイパス通路5を開きり1気を第2タ
ービン7aに導入する。また、吸気切換弁8は第2コン
プレツサ7bの吐出圧が規定値に達すると、第2吸気通
路4bを開くようになっている。
When the discharge pressure of the first compressor 2b reaches a specified value, the exhaust switching valve 6 opens the bypass passage 5 and introduces 1 air into the second turbine 7a. Further, the intake switching valve 8 opens the second intake passage 4b when the discharge pressure of the second compressor 7b reaches a specified value.

したがって、機関の排気流mが少ない低速運転域では、
燃焼室からの排気は排気通路3を介して第1タービン2
aに供給され、この排気エネルギにより第1タービン2
aが回転駆動される。このタービン2aの回転力により
第1コンプレツサ2bが駆動され、これにより第1吸気
通路4aの空気が加圧され吸気通路4を介して燃焼室に
圧送される。
Therefore, in the low speed operating range where the engine exhaust flow m is small,
Exhaust from the combustion chamber passes through the exhaust passage 3 to the first turbine 2.
This exhaust energy is supplied to the first turbine 2
a is rotationally driven. The first compressor 2b is driven by the rotational force of the turbine 2a, whereby the air in the first intake passage 4a is pressurized and sent under pressure to the combustion chamber via the intake passage 4.

この状態では第1コンプレツサ2bの吐出圧は低く排気
切換弁6はバイパス通路5を閉じており、このため第2
タービン7aには排気が供給されず:第2ターボチせ−
ジャ7は作動を休止している。
In this state, the discharge pressure of the first compressor 2b is low and the exhaust switching valve 6 closes the bypass passage 5.
Exhaust gas is not supplied to the turbine 7a: 2nd turbo
Ja7 is out of operation.

また、第2ターボチヤージヤ7の作動体止ににり第2コ
ンプレツサ7bの吐出圧は○であり、吸気切換弁8は第
2吸気通路4bを閉じている。
Further, when the operating body of the second turbocharger 7 is stopped, the discharge pressure of the second compressor 7b is ◯, and the intake switching valve 8 closes the second intake passage 4b.

この状態から機関回転数の上昇により排気流量が増すと
第1コンプレツサ2bの回転数の増大により吐出圧が高
くなり、これが規定値に達すると排気切換弁6が開いて
排気の一部をバイパス通路5に流し始める。この排気は
第2タービン7aに供給され、第2タービン7a、第2
コンプレツサ7bを回転駆動させる。このため、第2コ
ンプレツサ7bは吐出圧を高める。
From this state, when the exhaust flow rate increases due to an increase in the engine speed, the discharge pressure increases due to the increase in the rotation speed of the first compressor 2b, and when this reaches a specified value, the exhaust switching valve 6 opens and a part of the exhaust gas is transferred to the bypass passage. Start running at 5. This exhaust gas is supplied to the second turbine 7a, the second turbine 7a, the second
The compressor 7b is driven to rotate. Therefore, the second compressor 7b increases the discharge pressure.

そして、これにより第2コンプレツサ7bの吐出圧が規
定値に達すると、吸気切換弁8が第2吸気通路4bを開
き、第2コンプレツサ7bにて加圧された空気が燃焼室
に供給される。
When the discharge pressure of the second compressor 7b reaches the specified value, the intake switching valve 8 opens the second intake passage 4b, and the air pressurized by the second compressor 7b is supplied to the combustion chamber.

このようにして、低速回転域では比較的少ない排気流量
で高い効率を示す第1ターボチヤージヤ2を作動させ、
中高速回転域では比較的大容量の第2ターボチヤージヤ
7を作動させることにより、全運転域で十分な過給効果
を確保するようにしている。
In this way, the first turbocharger 2, which exhibits high efficiency with a relatively small exhaust flow rate in the low speed rotation range, is operated,
By operating the second turbocharger 7, which has a relatively large capacity, in the medium to high speed rotation range, a sufficient supercharging effect is ensured in the entire operating range.

(発明が解決しようとする問題点) しかしながら、このような装置にあっては、第1タービ
ン2aと第2タービン7aが並列に接続され、第1コン
プレツサ2bの吐出圧が規定値に達した後に、第2ター
ビン7aに排気を導き第2コンプレツサ7bを駆動する
ようになっているため、第1コンプレツサ2bの吐出圧
が規定値に達してから機関の排気流量がかなり増加しな
いと第2コンプレツサ7bの吐出圧は高まらない。
(Problems to be Solved by the Invention) However, in such a device, the first turbine 2a and the second turbine 7a are connected in parallel, and after the discharge pressure of the first compressor 2b reaches a specified value, Since the exhaust gas is guided to the second turbine 7a and drives the second compressor 7b, if the exhaust flow rate of the engine does not increase considerably after the discharge pressure of the first compressor 2b reaches a specified value, the second compressor 7b will be activated. The discharge pressure does not increase.

このため、第2コンプレツサ7bの吐出圧が規定値に上
昇するまで時間がかかり、その分加速応答性を悪化させ
るという問題があった。
For this reason, there is a problem in that it takes time for the discharge pressure of the second compressor 7b to rise to the specified value, and the acceleration responsiveness deteriorates accordingly.

また、加速応答性を高めるため、第2ターボチヤージヤ
7の容量を下げると、全体的な吐出空気量が不足しかね
ず、第5図の[イ]に示すように過給が切換る中速領域
で機関のトルクが低下し、また最高出力も低下するとい
う問題があった。
In addition, if the capacity of the second turbocharger 7 is lowered in order to improve acceleration response, the overall amount of discharged air may be insufficient, and as shown in [A] in Fig. 5, the medium speed region where supercharging is switched There was a problem that the engine torque decreased and the maximum output also decreased.

(問題点を解決するための手段) この発明は、コンプレッサを駆動するタービンを機関の
排気通路に直列に配置し、この上流側のタービンをバイ
パスして下流側のタービンに排気を導入する分岐通路を
形成し、この通路に流量制御弁を設置すると共に、下流
側のタービンに容量可変機構を備え、この容量可変機構
と前記流聞制御弁を機関の運転条件に応じて駆動制御す
る手段を設【プる。
(Means for Solving the Problems) This invention provides a branch passageway in which a turbine that drives a compressor is arranged in series in an exhaust passage of an engine, and a branch passage bypasses the turbine on the upstream side and introduces exhaust gas into the turbine on the downstream side. A flow control valve is installed in this passage, a variable capacity mechanism is provided in the turbine on the downstream side, and a means is provided for controlling the drive of the variable capacity mechanism and the control valve according to the operating conditions of the engine. [Puru.

(作用) 上流側のタービンを駆動した排気により下流側のタービ
ンを予め回転させると共に、下流側のタービンに容量可
変機構を備えるため、加速時に下流側のコンプレッサの
吐出圧の立上りは十分に早められる。
(Operation) The downstream turbine is rotated in advance by the exhaust gas that drives the upstream turbine, and the downstream turbine is equipped with a variable capacity mechanism, so the rise in the discharge pressure of the downstream compressor is sufficiently accelerated during acceleration. .

したがって、ターボ容量を下げずども良好な応答性が得
られ、機関の高い加速性を確保しつつ最高出力を向上す
ることが可能となる。
Therefore, good responsiveness can be obtained without reducing the turbo capacity, and it is possible to improve the maximum output while ensuring high engine acceleration.

(実施例) 第1図、第2図は本発明の実論例を示すプロツり図と制
御系を含めた構成図で、1は機関本体、9は小容量の第
1ターボチヤージヤ、10は比較的大客用の第2ターボ
チV−ジi・である。
(Example) Figures 1 and 2 are block diagrams including a plot diagram and a control system showing practical examples of the present invention, where 1 is the engine body, 9 is the small-capacity first turbocharger, and 10 is a comparison diagram. This is a second turbo bench for large customers.

第1ターボチヤージヤ9のタービン(第1タービン)9
aと第2ターボデtF−ジ1710のタービン(第2タ
ービン)10aとは機関の排気通路11に直列に配買さ
れる。
Turbine (first turbine) 9 of first turbocharger 9
a and the turbine (second turbine) 10a of the second turbo digital engine 1710 are arranged in series in the exhaust passage 11 of the engine.

第1タービン9a上流の排気通路11からは第1タービ
ン9aをバイパスして第2タービン10a上流に接続す
る分岐通路12が形成され、その途中に流量制御弁13
が介装される。
A branch passage 12 is formed from the exhaust passage 11 upstream of the first turbine 9a to bypass the first turbine 9a and connect to the upstream side of the second turbine 10a, and a flow control valve 13 is formed in the middle of the branch passage 12.
is interposed.

分岐通路12は、この場合第2図のように排気マニホー
ルド14に直接接続しても良い。
In this case, the branch passage 12 may be directly connected to the exhaust manifold 14 as shown in FIG.

流ffi ill tit弁13はバタフライ型の弁体
15がダイヤフラム装置16に連結され、圧力調節弁1
7を介してダイヤフラム装置16に供給される作動圧に
応じて開度を切換える。
The flow ffi ill tit valve 13 has a butterfly type valve body 15 connected to a diaphragm device 16, and a pressure regulating valve 1.
The opening degree is changed according to the operating pressure supplied to the diaphragm device 16 via the diaphragm device 7.

そして、第2タービン10aには容置可変機構18が備
えられる。
The second turbine 10a is equipped with a variable displacement mechanism 18.

各歯可変機構18はタービン10aのブレード外周上に
可変ノズルを配設するらのもあるが、この場合そのスク
ロールハウジング19にスロート部を絞る可変ベーン2
0が取付けられ、可変ベーン20がダイヤフラム装置2
1に連結される。可変ベーン20は圧力調節弁22を介
してダイヤフラム装置21に供給される作動圧に応じて
ハウジング19のスロート部を絞る。
Each variable tooth mechanism 18 may have a variable nozzle disposed on the outer circumference of the blade of the turbine 10a, but in this case, a variable vane 2 that narrows the throat portion is installed in the scroll housing 19.
0 is attached, and the variable vane 20 is connected to the diaphragm device 2.
1. The variable vane 20 throttles the throat portion of the housing 19 in accordance with the operating pressure supplied to the diaphragm device 21 via the pressure regulating valve 22.

なお、ダイヤフラム装置16.21の作動圧には吸気通
路23内の圧力が使用される。
Note that the pressure within the intake passage 23 is used as the operating pressure of the diaphragm device 16.21.

第1タービン9aにより駆動されるコンプレッサ(第1
コンプレツサ)9bは第1吸気通路23aに、第2ター
ビン10aにより駆動されるコンプレッサ(第2コンプ
レツサ)10bは第2吸気通路23bに介装される。
A compressor (first
A compressor (compressor) 9b is installed in the first intake passage 23a, and a compressor (second compressor) 10b driven by the second turbine 10a is installed in the second intake passage 23b.

第1、第2吸気通路23a 、23bは途中で合流して
吸気通路23に接続し、その合流部手前にはそれぞれ逆
流を防止する一方向弁24.25が介装される。26は
インタクーラである。
The first and second intake passages 23a and 23b merge in the middle and are connected to the intake passage 23, and one-way valves 24 and 25 are interposed in front of the junction to prevent backflow, respectively. 26 is an intercooler.

一方、機関の運転条件を検出する手段として機関の回転
数を検出する回転数センサ27と、吸気通路23内の圧
力つまり過給圧を検出する圧力センサ28が設けられ、
これらの検出信号は制御手段としての制御回路29に送
られる。
On the other hand, a rotation speed sensor 27 for detecting the rotation speed of the engine and a pressure sensor 28 for detecting the pressure in the intake passage 23, that is, the supercharging pressure, are provided as means for detecting the operating conditions of the engine.
These detection signals are sent to a control circuit 29 as a control means.

制御回路2つはこれらの検出信号に基づいて前記圧力調
節弁17.22を駆動し、過給圧が第3図(a )、(
b)の[イ]に示すような値となるように機関回転数に
応じて前記流山制御弁13と可変ベーン20を第4図に
示す開度に制御する。
The two control circuits drive the pressure regulating valves 17 and 22 based on these detection signals, and the supercharging pressure increases as shown in FIGS. 3(a) and 3(a).
The drift control valve 13 and the variable vane 20 are controlled to the opening degrees shown in FIG. 4 according to the engine speed so that the values shown in [a] of b) are obtained.

ただし、第3図の(a )、(b)の[口]は第1コン
プレツサ9bの吐出圧、[ハ]は第2コンプレツサ10
bの吐出圧、[1]、[I[]はそれぞれ単体の特性を
示す。また、図では機関回転数の代わりに修正流量で表
わしている。
However, in (a) and (b) of FIG. 3, [port] is the discharge pressure of the first compressor 9b, and [c] is the discharge pressure of the second compressor 10.
The discharge pressure of b, [1], and [I[] each represent the characteristics of a single unit. Also, in the figure, the corrected flow rate is shown instead of the engine speed.

なお、第1図中30は排気の一部をリリーフ通路31に
逃がすウェストゲート弁で(第2図では図示してない)
、制御回路29により過給圧が上限値を越えたとき等に
開かれる。
Note that 30 in Fig. 1 is a waste gate valve that releases part of the exhaust gas to the relief passage 31 (not shown in Fig. 2).
, is opened by the control circuit 29 when the boost pressure exceeds the upper limit value.

次に作用を説明する。Next, the effect will be explained.

機関低速回転状態からスロットルを開いていくと、排気
通路11を介して導入される排気により、まず第1ター
ビン9aの回転が応答良く加速され、そのコンプレッサ
9bの吐出圧が速やかに立上る(第3図(a )、(b
 )のA−+8)。
When the throttle is opened from a low-speed engine rotation state, the exhaust gas introduced through the exhaust passage 11 first accelerates the rotation of the first turbine 9a in a responsive manner, and the discharge pressure of the compressor 9b quickly rises. Figure 3 (a), (b)
) of A-+8).

このとき、第2タービン10aの可変ベーン20は全開
しており(第4図参照)、第2タービン10aは第1タ
ービン9aを駆動した排気により回転を始める。
At this time, the variable vane 20 of the second turbine 10a is fully opened (see FIG. 4), and the second turbine 10a starts rotating due to the exhaust gas that has driven the first turbine 9a.

加速の経過に伴って排気流歴が増加し、第1コンプレツ
サ9bの吐出圧が設定値P、に達すると、可変ベーン2
0が徐々に閉じられる(第4図のC→D)。
The exhaust flow history increases with the progress of acceleration, and when the discharge pressure of the first compressor 9b reaches the set value P, the variable vane 2
0 is gradually closed (from C to D in Figure 4).

すると、第1タービン9aの背圧の#上昇と共に、第2
タービン10aに導入される排気が増速されるので、第
1コンプレツサ9bの吐出圧がほぼP、を維持しながら
(B−E)’、第2タービン10aの回転が徐々に上界
する。
Then, as the back pressure of the first turbine 9a increases, the second
Since the speed of the exhaust gas introduced into the turbine 10a is increased, the rotation of the second turbine 10a gradually increases while the discharge pressure of the first compressor 9b is maintained at approximately P (BE)'.

そして、可変ベーン20が全開(最小面積状態)すると
、分岐通路12の流量制御弁13が徐々に開かれ(F−
+G)、第1タービン9aをバイパスした排気が第2タ
ービン10aに導入される。
When the variable vane 20 is fully opened (minimum area state), the flow control valve 13 of the branch passage 12 is gradually opened (F-
+G), the exhaust gas that has bypassed the first turbine 9a is introduced into the second turbine 10a.

このため、第1コプレツli 9 bの吐出圧が同じ<
P、を維持すると共に(E→1」)、第2タービン10
aの回転が速やかに上昇される。これにより、第2コン
プレツサ10bの吐出圧も急速に高まっていくが(r−
J)、この上昇途中では第1コンプレツサ9bの吐出圧
よりも低いため、第2コンプレツサ10bの吐出空気が
機関に供給されることはない。
Therefore, the discharge pressure of the first couplet li 9 b is the same <
P, and (E→1''), the second turbine 10
The rotation of a is quickly increased. As a result, the discharge pressure of the second compressor 10b also increases rapidly (r-
J) During this upward movement, the discharge pressure of the second compressor 10b is lower than the discharge pressure of the first compressor 9b, so that the discharge air of the second compressor 10b is not supplied to the engine.

そして、流量制御弁13がある程度開かれ第2コンプレ
ツサ10bの吐出圧が設定値P2に達すると、可変ベー
ン20が最小開度から徐々に間かれ〈L以後)ると共に
、流量制御弁13が全開される(G→K)。
Then, when the flow rate control valve 13 is opened to a certain extent and the discharge pressure of the second compressor 10b reaches the set value P2, the variable vane 20 is gradually opened from the minimum opening degree (after L), and the flow rate control valve 13 is fully opened. (G→K).

すると、分岐通路12の抵抗がなくなるため、機関の排
気はほとんど第1タービン9a側には流れなくなり、は
ぼ全色が第2タービン10a側に導入される。
Then, since the resistance in the branch passage 12 is eliminated, almost no exhaust gas from the engine flows toward the first turbine 9a, and almost all of the exhaust gas is introduced into the second turbine 10a.

このため、第1コンプレツサ9bの吐出圧が低下し、低
下と同時に第2コンプレツサ10bの吐出空気が機関に
供給されるようになる。
Therefore, the discharge pressure of the first compressor 9b decreases, and at the same time as the decrease, the discharge air of the second compressor 10b comes to be supplied to the engine.

この後、第2タービン10aの回転がざらに上背すると
、第2コンプレツサ10bの吐出圧がP、を越えないよ
うに、可変ベーン2oがさらに開かれ、第2タービン1
0aに導入される排気の流速を低下させる。なお、この
ときウェストゲート弁30を開いて排気を逃がしても良
く、またこれらによりP2を任意に設定しても良い。
After that, when the rotation of the second turbine 10a increases, the variable vane 2o is further opened so that the discharge pressure of the second compressor 10b does not exceed P.
Decrease the flow rate of exhaust gas introduced into 0a. Incidentally, at this time, the waste gate valve 30 may be opened to release the exhaust gas, or P2 may be arbitrarily set by these.

このようにして、第1、第2ターボチV−ジャ9.10
による過給が行なわれるのであり、第1タービン9aを
駆動した排気を第2タービン10aに導くと共に、第2
タービン10aに導入される排気の流速が可変ベーン2
0によって増速されるので、第2ターボチヤージtr 
10による過給圧の立上りが十分に早められ、したがっ
て第1ターボチヤージv9による過給圧が設定圧に達し
た後、すぐに第2ターボチヤージヤ1oによる過給に入
ることができる。
In this way, the first and second turbo V-jars 9.10
The exhaust gas that drove the first turbine 9a is guided to the second turbine 10a, and the
The flow velocity of the exhaust gas introduced into the turbine 10a is variable by the vane 2.
Since the speed is increased by 0, the second turbo charge tr
10 is sufficiently accelerated, and therefore, after the supercharging pressure by the first turbocharger v9 reaches the set pressure, supercharging by the second turbocharger 1o can begin immediately.

この結果、第2ターボチヤージヤ10の容量を下げずど
も良好な応答性が確保され、機関の高い加速性能を得る
ことができると共に、第2ターボチヤージヤ10の容量
を大型化できることから、十分な過給量を確保でき、第
5図の[口]に示すように機関の全運転域で最高出力を
向上することができる。ただし、第5図の[ハ]は単一
のターボチャージャによる出力特性を示す。
As a result, good responsiveness is ensured without reducing the capacity of the second turbocharger 10, high acceleration performance of the engine can be obtained, and since the capacity of the second turbocharger 10 can be increased, a sufficient amount of supercharging can be achieved. As shown in Figure 5, the maximum output can be improved over the entire operating range of the engine. However, [C] in FIG. 5 shows the output characteristics of a single turbocharger.

なΔ3、第2ターボチヤージヤ10による過給時は第1
ターボデV−ジty9がほぼ停止するため、排気の圧倶
はなくなり、より出力が向上する。
Δ3, when supercharging by the second turbocharger 10, the first
Since the turbo engine V-di ty9 almost stops, there is no exhaust pressure and the output is further improved.

また、分岐通路12を第2図のように形成すれば、ター
ボチャージャ9.10の配置の自由度が高められると共
に、流路損失が低減され、より良好な加速性が得られる
Moreover, if the branch passage 12 is formed as shown in FIG. 2, the degree of freedom in arranging the turbochargers 9 and 10 is increased, flow path loss is reduced, and better acceleration performance can be obtained.

(発明の効果) 以上のように本発明によれば、上流側のタービンを駆動
した排気で下流側のタービンを予回転させると共に、加
速の立上時に下流側タービンに導入される排気を絞り込
んで増速させるので、過度的に良好な過給応答が得られ
、機関の加速性能と最高出力の向上が図れる。
(Effects of the Invention) As described above, according to the present invention, the exhaust gas that drives the upstream turbine is used to pre-rotate the downstream turbine, and at the same time, the exhaust gas introduced into the downstream turbine at the time of acceleration is throttled. Since the engine speed is increased, an excessively good supercharging response can be obtained, and the acceleration performance and maximum output of the engine can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例を示すブロック図と制
御系を含めた構成図、第3図(a )、(b)は過給圧
の制御例を示すグラフ、第4図は流量制御弁と可変ベー
ンの動作例を示すグラフ、第5図は出力特性図、第6図
は従来例の構成図である。 9a 、 10a ・・・タービン、9b、10b・・
・コンプレッサ、11・・・排気通路、12・・・分岐
通路、13・・・流ffiυ1n弁、18・・・容母可
変機構、20・・・可変ベーン、23・・・吸気通路、
24.25・・・一方向弁、27・・・回転数センサ、
28・・・圧力センサ、29・・・制御回路。 第1図 9σ、10σ−一−9−ごン 9b、 10h−一−コシデム・Vプ 11−−一神気1語 12−分岐通路 13−−一茨量JFIJ御井 18−一一詐量f7を機構 第2図 2/      z1釣J!mgJ浴 第3図 件正3友1 第4図 倚正茨量 第5図 〔口〕 工ンジシ回転富χ
Figures 1 and 2 are block diagrams showing embodiments of the present invention and configuration diagrams including the control system, Figures 3 (a) and (b) are graphs showing examples of supercharging pressure control, and Figure 4 5 is a graph showing an example of the operation of a flow control valve and a variable vane, FIG. 5 is an output characteristic diagram, and FIG. 6 is a configuration diagram of a conventional example. 9a, 10a...Turbine, 9b, 10b...
- Compressor, 11... Exhaust passage, 12... Branch passage, 13... Flow ffiυ1n valve, 18... Variable housing mechanism, 20... Variable vane, 23... Intake passage,
24.25... One-way valve, 27... Rotation speed sensor,
28...Pressure sensor, 29...Control circuit. Fig. 1 9σ, 10σ-1-9-gon 9b, 10h-1-Cosidem Vpu 11--Ichigoki 1 word 12-branch passage 13--Ichibara amount JFIJ Mii 18-11 Fraud amount f7 The mechanism Figure 2 2/Z1 Fishing J! mgJ bath 3rd figure 3 friends 1 4th figure 4th figure 5th figure 5 [mouth] Rotary wealth χ

Claims (1)

【特許請求の範囲】[Claims] コンプレッサを駆動するタービンを機関の排気通路に直
列に配置しかつこの上流側のタービンをバイパスして下
流側のタービンに排気を導入する分岐通路を形成し、こ
の通路に流量制御弁を設置すると共に、下流側のタービ
ンに容量可変機構を備え、この容量可変機構と前記流量
制御弁を機関の運転条件に応じて駆動制御する手段を設
けたことを特徴とする排気ターボ過給装置。
A turbine that drives a compressor is arranged in series in the exhaust passage of the engine, and a branch passage is formed that bypasses the turbine on the upstream side and introduces exhaust gas into the turbine on the downstream side, and a flow control valve is installed in this passage. An exhaust turbo supercharging device, characterized in that a downstream turbine is provided with a variable capacity mechanism, and means for controlling the drive of the variable capacity mechanism and the flow rate control valve according to engine operating conditions.
JP60050120A 1985-03-13 1985-03-13 Exhaust turbosupercharging device Pending JPS61210223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050120A JPS61210223A (en) 1985-03-13 1985-03-13 Exhaust turbosupercharging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050120A JPS61210223A (en) 1985-03-13 1985-03-13 Exhaust turbosupercharging device

Publications (1)

Publication Number Publication Date
JPS61210223A true JPS61210223A (en) 1986-09-18

Family

ID=12850257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050120A Pending JPS61210223A (en) 1985-03-13 1985-03-13 Exhaust turbosupercharging device

Country Status (1)

Country Link
JP (1) JPS61210223A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163294A (en) * 1990-05-17 1992-11-17 Aisin Seiki Kabushiki Kaisha Turbocharger with coupling between compressor rotors
US7607302B2 (en) * 2003-09-08 2009-10-27 Ricardo Uk Limited Automotive turbocharger systems
ITCO20100043A1 (en) * 2010-08-11 2012-02-12 Nuovo Pignone Spa METHODS AND DEVICES USED TO AUTOMATICALLY CONTROL THE SPEED OF AN EXPANDER
ITCO20100044A1 (en) * 2010-08-11 2012-02-12 Nuovo Pignone Spa METHODS AND DEVICES USED TO AUTOMATICALLY CONTROL THE SPEED OF AN EXPANDER
US20120090320A1 (en) * 2010-10-14 2012-04-19 Ford Global Technologies, Llc Turbocharged Combustion System
US9181855B2 (en) 2013-01-31 2015-11-10 Electro-Motive Diesel, Inc. Turbocharger with axial turbine stage
CN105484854A (en) * 2014-10-07 2016-04-13 通用汽车环球科技运作有限责任公司 Control of internal combustion engine with two-stage turbocharging
US9347367B2 (en) 2013-07-10 2016-05-24 Electro-Motive Diesel, Inc. System having dual-volute axial turbine turbocharger
US20190120128A1 (en) * 2017-10-23 2019-04-25 Mazda Motor Corporation Control device and method for turbocharged engine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163294A (en) * 1990-05-17 1992-11-17 Aisin Seiki Kabushiki Kaisha Turbocharger with coupling between compressor rotors
US7607302B2 (en) * 2003-09-08 2009-10-27 Ricardo Uk Limited Automotive turbocharger systems
US8761957B2 (en) 2010-08-11 2014-06-24 Nuovo Pignone S.P.A. Methods and devices used for automatically controlling speed of an expander
US8761958B2 (en) 2010-08-11 2014-06-24 Nuovo Pignone S.P.A. Methods and devices used for automatically controlling speed of an expander
CN102373969A (en) * 2010-08-11 2012-03-14 诺沃皮尼奥内有限公司 Methods and devices used for automatically controlling speed of an expander
ITCO20100044A1 (en) * 2010-08-11 2012-02-12 Nuovo Pignone Spa METHODS AND DEVICES USED TO AUTOMATICALLY CONTROL THE SPEED OF AN EXPANDER
EP2447628A1 (en) * 2010-08-11 2012-05-02 Nuovo Pignone S.p.A. Methods and devices used for automatically controlling speed of an expander
EP2447629A1 (en) * 2010-08-11 2012-05-02 Nuovo Pignone S.p.A. Methods and devices used for automatically controlling speed of an expander
ITCO20100043A1 (en) * 2010-08-11 2012-02-12 Nuovo Pignone Spa METHODS AND DEVICES USED TO AUTOMATICALLY CONTROL THE SPEED OF AN EXPANDER
US20120090320A1 (en) * 2010-10-14 2012-04-19 Ford Global Technologies, Llc Turbocharged Combustion System
US10316741B2 (en) * 2010-10-14 2019-06-11 Ford Global Technologies, Llc Turbocharged combustion system
US9181855B2 (en) 2013-01-31 2015-11-10 Electro-Motive Diesel, Inc. Turbocharger with axial turbine stage
US9347367B2 (en) 2013-07-10 2016-05-24 Electro-Motive Diesel, Inc. System having dual-volute axial turbine turbocharger
CN105484854A (en) * 2014-10-07 2016-04-13 通用汽车环球科技运作有限责任公司 Control of internal combustion engine with two-stage turbocharging
US9453435B2 (en) * 2014-10-07 2016-09-27 GM Global Technology Operations LLC Control of internal combustion engine with two-stage turbocharging
US20190120128A1 (en) * 2017-10-23 2019-04-25 Mazda Motor Corporation Control device and method for turbocharged engine
JP2019078197A (en) * 2017-10-23 2019-05-23 マツダ株式会社 Controller and control method for engine with turbocharger
US10731547B2 (en) * 2017-10-23 2020-08-04 Mazda Motor Corporation Control device and method for turbocharged engine

Similar Documents

Publication Publication Date Title
JPS61210223A (en) Exhaust turbosupercharging device
JPS60169630A (en) Supercharger for internal-combustion engine
JPS61265331A (en) Control device for supercharging pressure of internal combustion engine
JPH1182036A (en) Exhaust turbo-charger
JPH0478818B2 (en)
JPS62625A (en) Exhaust turbosupercharger
JPS61182421A (en) Engine equipped with a plurality of turbosupercharger
JPS61291725A (en) S-step type superchaging device
JPS6316130A (en) Exhaust turbo supercharger for internal combustion engine
JP2522422B2 (en) Supercharging control method for supercharged engine
JPS62131923A (en) Engine with exhaust turbo-supercharger
JPS5968521A (en) Multi-turbo charger device for internal-combustion engine
JPS61277817A (en) Engine equipped with exhaust turbosupercharger
JPS61164041A (en) Internal-combustion engine with turbo charger
JPS61190121A (en) Exhaust turbo-supercharger
JPH065019B2 (en) Exhaust turbocharged engine
JPH0326826A (en) Supercharger for engine and device therefor
JPS61112734A (en) Multiple turbo-supercharger for internal-combustion engine
JP3379112B2 (en) Supercharger for internal combustion engine
JPS63140821A (en) Supercharger for engine
JP2001115847A (en) Supercharging system
JPS5843568B2 (en) Internal combustion engine exhaust turbocharger
JPS6291626A (en) Compound supercharger of internal combustion engine
JPH02256830A (en) Internal combustion engine with supercharger
JP2710951B2 (en) Exhaust system structure of turbocharged engine