JPS61209777A - Manufacture of regulating ring for high-pressure rotor in steam turbine regulating ring - Google Patents

Manufacture of regulating ring for high-pressure rotor in steam turbine regulating ring

Info

Publication number
JPS61209777A
JPS61209777A JP61042038A JP4203886A JPS61209777A JP S61209777 A JPS61209777 A JP S61209777A JP 61042038 A JP61042038 A JP 61042038A JP 4203886 A JP4203886 A JP 4203886A JP S61209777 A JPS61209777 A JP S61209777A
Authority
JP
Japan
Prior art keywords
welding
base plate
cover plate
butt
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61042038A
Other languages
Japanese (ja)
Other versions
JPH0653306B2 (en
Inventor
サンテイーノ・バルセラ
マンフレート・ベーフエルト
グイ・フアーバー
パウル・スレプツエヴイク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
BBC Brown Boveri France SA
Original Assignee
BBC Brown Boveri AG Switzerland
BBC Brown Boveri France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland, BBC Brown Boveri France SA filed Critical BBC Brown Boveri AG Switzerland
Publication of JPS61209777A publication Critical patent/JPS61209777A/en
Publication of JPH0653306B2 publication Critical patent/JPH0653306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3061Fixing blades to rotors; Blade roots ; Blade spacers by welding, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Control Of Turbines (AREA)
  • Arc Welding In General (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービンにおける高圧ロータ用の調整輪
を製造する方法であって、耐熱性の高合金鋼であるCr
MoV 鋼のような中実の材料から成る多くの羽根ユニ
ットを、1つのリング体として組み立てて羽根ユニット
のベースプレートおよびカバープレートにおいて互いに
溶接し、次いでリング体を熱処理および機械加工および
試験の後に高圧ロータの円板上へ溶接する形式のものに
関する。本発明はまたこのようにして製作される調整輪
にも関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a regulating wheel for a high-pressure rotor in a steam turbine.
MoV A number of vane units made of solid material such as steel are assembled as one ring body and welded together at the base plate and cover plate of the vane unit, and then the ring body is mounted on a high pressure rotor after heat treatment and machining and testing. It relates to a type of welding onto a disk. The invention also relates to an adjustment wheel manufactured in this way.

従来の技術 蒸気タービンの良好な部分負荷特性を達成するために、
しばしば高圧タービンの反動ステージに前置して1つの
衝動ステージが調整ステー、りとして使われる。この衝
動ステージは反動度を小さく設計されているため忙部分
流入でも運転することができる。部分流入と共に蒸気流
、ひいてはタービンの出力が調整される。これに対して
後続の反動ステージはすべての負荷の際に全流入を受け
て作業する。
In order to achieve good part load characteristics of conventional technology steam turbines,
Often an impulse stage is used as a regulating stay in front of the reaction stage of the high pressure turbine. This impulse stage is designed to have a small degree of recoil, so it can be operated even in busy areas. With the partial inflow, the steam flow and thus the output of the turbine is regulated. In contrast, the subsequent reaction stages operate with full inflow during all loads.

調整ステージは普通−列の案内羽根と一列の回転羽根と
から成っており、案内羽根列はノズルと呼ばれ、回転羽
根列は所属のロータ部分と共に羽根車と呼ばれる。
The adjustment stage usually consists of a row of guide vanes and a row of rotary vanes, the guide vane row being called a nozzle and the rotating vane row together with the associated rotor section being called an impeller.

羽根車はあらかじめ用意された調整輪を所属のロータ部
分上へ溶接固定することによって製作する。調整輪自体
やはり1つの溶接構造体である。一般に溶接は機械的な
あらゆる結合に比して集中的かつ均質な結合をなす。従
って、羽根と回転軸との結合部は遠心力による静的な力
および間欠的な蒸気流によって惹起される動的な力を最
大温度の際にも安全に受は止めることができる。
The impeller is manufactured by welding a pre-prepared adjustment wheel onto the relevant rotor part. The adjusting wheel itself is also a welded structure. In general, welding creates a more concentrated and homogeneous bond than any other mechanical bond. The connection between the vane and the rotating shaft can therefore safely withstand static forces due to centrifugal forces and dynamic forces caused by intermittent steam flows even at maximum temperatures.

冒頭に述べた形式の調整輪の製造法は既に公知である。A method for manufacturing an adjusting wheel of the type mentioned at the outset is already known.

公知の方法の場合羽根ユニットがその羽根部分、ベース
プレート部分、カッ々−プレート部分と共に棒材から削
り出される。個々の羽根ユニットはそのベースプレート
並びにカバープレートにおいて突合せ溶接されて1つの
リング体にされる。次いで、このリング体が大きなU形
開先でサブマージアーク溶接によ、リロータ上へ溶接さ
れる。応力節なましの後にロータ全体が旋削され、割れ
発生の傾向のあるルート部分が除去される。
In the known method, the vane unit with its vane part, base plate part and bracket part is machined out of a bar stock. The individual vane units are butt-welded at their base plate as well as at their cover plate into a ring body. This ring body is then welded onto the rerotor by submerged arc welding with a large U-shaped groove. After stress moderation, the entire rotor is turned and the root portions prone to cracking are removed.

この公知の方法の場合、ノズルからの蒸気流による振動
励起を避けることを目的として、羽根ユニットのカッマ
ープレートがグループにまとめられて溶接される。この
グループはそれぞれ3つ、4つ又はそれ以上の数の羽根
ユニットから成っている。各グループは力・ぐ−プレー
トにおいて互いに結合されない。
In this known method, the commer plates of the vane unit are welded together in groups in order to avoid vibrational excitation by the steam flow from the nozzle. Each group consists of three, four or more vane units. The groups are not connected to each other in force plates.

1つの閉じられたリング体を構成するには個々の羽根ユ
ニットもしくは羽根ユニットグループをベースプレート
範囲において互いに結合する必要がある。このためベー
スプレートはカバープレートに比して半径方向の寸法が
著しく大きく設計されている。溶接継目はベースプレー
トの、蒸気流に接する壁部までは達してない。
To form a closed ring body, the individual vane units or groups of vane units must be connected to one another in the area of the base plate. For this reason, the base plate is designed to have a significantly larger radial dimension than the cover plate. The weld seam does not extend to the wall of the base plate that is in contact with the steam flow.

その結果ロータの円板外周部の作孔によってベースプレ
ートにおける溶接継目のルート区域が  ・除去され、
このルート区域の除去が溶接された調整輪に特色のある
外観をあたえる。
As a result, the root area of the weld seam in the base plate is removed by drilling holes in the outer circumference of the rotor disk,
Removal of this root area gives the welded adjustment wheel a distinctive appearance.

羽根ユニットの素材は溶接しにくい材料、例えばX22
CrMoV121である。にもかかわらずこの素材同様
の強度および靭性を有する溶接継手を形成しなければな
らない。そのためには溶接金属に調質を施さねばならな
い。しかし、使用される溶接金属、即ち二相にならない
ように炭素含有量を多くされる溶接金属は、低合金鋼の
よう°に約300℃の予熱温度でゆっくり変態しないで
、オーステナイトのままになって冷却によってのみ変態
、を生ぜしめることのできる特性を有している。従って
、所期の変態を生ずるように、溶接済みの調整輪を冷却
するのが普通である。この結果発生したマルテンサイト
を引続く焼なましによって軟化し、かつ靭性化する。
The material of the blade unit is a material that is difficult to weld, such as X22.
It is CrMoV121. Nevertheless, welded joints with similar strength and toughness must be formed from this material. For this purpose, the weld metal must be tempered. However, the weld metal used, that is, the weld metal whose carbon content is increased so as not to become two-phase, does not transform slowly at a preheating temperature of about 300 °C like low alloy steel, but remains austenite. It has the property of being able to undergo transformation only by cooling. Therefore, it is common to cool the welded adjustment wheel so that the desired transformation occurs. The resulting martensite is softened and toughened by subsequent annealing.

このような方法の難点として、溶接済みの調整輪の冷却
位相中に溶接部が割れの危険にさらされるという事実を
あげることができる。即ち、たしかに、より低い温度で
強力に冷却するのに伴い変態は良好になり、引き続く焼
もどしによって良好な靭性が得られるが、逆に割れの危
険も著しく増すことになる。このような理由から従来カ
ッ々−プレートを1つの閉ざされたリング体の形に突合
せ溶接することは不可能だった。
A disadvantage of such a method is the fact that during the cooling phase of the welded adjusting wheel, the weld is exposed to the risk of cracking. Thus, although it is true that with stronger cooling at lower temperatures the transformation becomes better and the subsequent tempering results in better toughness, the risk of cracking increases considerably. For this reason, it has heretofore been impossible to butt-weld the snap plates in the form of a closed ring body.

さらに別の難点として、ベースプレートにおける溶接継
目のルートが制御不能であって、安全性の理由から少な
くとも割れを生じ易いルート部分を旋削除去する必要が
ある点をあげることができる。
A further disadvantage is that the root of the weld seam in the base plate is uncontrollable and, for safety reasons, it is necessary to turn out at least the part of the root that is susceptible to cracking.

本発明が解決しようとする課題 以上の認識のもとに、本発明は、冒頭に述べた形式の調
整輪を製造する方法において、切欠きがある場合にも割
れの危険を最少限にとどめることができ、蒸気力並びに
遠心力による極めて大きな負荷に関しても羽根ジオメト
リ−並びに羽根数に関しても最良である調整輪を製造す
ることができるようにすることを課題とする。
Recognizing more than the problem to be solved by the present invention, the present invention aims to minimize the risk of cracking even in the presence of notches in a method for manufacturing an adjusting wheel of the type mentioned at the beginning. It is an object of the present invention to make it possible to manufacture a regulating wheel which is optimal in terms of blade geometry and number of blades, even when subjected to very large loads due to steam force and centrifugal force.

課題を解決するための手段 このような課題を本発明は次のようにして解決した。即
ち、すべての羽根ユニットをそれぞれ隣接する羽根ユニ
ットとベースプレートおよび力・々−プレー)において
全面にわたって閉ざされた1つのリング体の形に突合せ
溶接するのである。
Means for Solving the Problems The present invention has solved these problems as follows. That is, all the vane units are butt welded to each adjacent vane unit, base plate, and forceps in the form of a ring body that is closed over its entire surface.

このような方法によれば、羽根ユニットのベースプレー
トおよびカッマープレートにおける溶接継目を試験し易
いという特別な利点が得られる。
Such a method offers the particular advantage of facilitating the testing of weld seams in the base plate and the cummer plate of the vane unit.

実施例 次に、図面に示した実施例に従って本発明を詳述する: 第1図にその一部分だけ斜視図で示されている調整輪は
全面にわたって閉ざされたリング体として多数結合され
た羽根ユニットから成っている。羽根1、力A−プレー
ト2、ベースプレート3を有する個個の羽根ユニットは
中実の材料から製作される。図示の実施例の場合材料は
調質可能で耐熱性の高度に合金されたCrMoV鋼、匈
えばDIN規格によるX 22 CrMoV 121で
ある。
Embodiments The present invention will now be described in detail according to embodiments shown in the drawings: The adjustment wheel, only a portion of which is shown in perspective in FIG. It consists of The individual vane units with vanes 1, force A-plates 2 and base plates 3 are manufactured from solid material. In the embodiment shown, the material is a temperable, heat-resistant, highly alloyed CrMoV steel, for example X 22 CrMoV 121 according to DIN standard.

カッマープレート2およびベースプレート3はそれぞれ
2つの溶接開先4を有していて、これらの溶接開先冬は
横継ぎ目5で充てんされている。
The cutter plate 2 and the base plate 3 each have two weld grooves 4 , which are filled with transverse seams 5 .

開先加工について第2図に示されている。溶接開先蛋の
開先面6はU形をなしている。もちろん■形又はその他
の適宜な形の開先面であってよい。開先面6は、突合せ
継目13を形成する溶接リップ7で終っている。溶接リ
ップ7ぽカバープレート2の、羽根1に面する下側8お
よびベースプレート3の上側12に直接設けられている
The beveling process is shown in FIG. The groove face 6 of the weld groove is U-shaped. Of course, the groove surface may have a ■ shape or any other suitable shape. The groove surface 6 terminates in a weld lip 7 forming a butt seam 13 . The welding lip 7 is located directly on the lower side 8 of the cover plate 2 facing the vane 1 and on the upper side 12 of the base plate 3.

底部継目9はいわゆるティグ溶接法(TIG)Kよって
溶加材と共に形成された溶接部から成っている。判り易
くするために溶接リップ7は底部継目の溶接前の状態で
示されている。もちろんこの溶接リップ7は溶接時に少
なくとも部分的には溶融されて溶接ルートとして凝固す
る。
The bottom seam 9 consists of a weld formed with filler metal by the so-called TIG welding method (TIG) K. For clarity, the welding lip 7 is shown before welding the bottom seam. Of course, this weld lip 7 is at least partially melted during welding and solidifies as a weld root.

溶接リップ7がカバープレート2の最外端に配置されて
いることによって、形成された溶接ルートは後加工およ
び検査をし易い。
Due to the arrangement of the welding lip 7 at the outermost end of the cover plate 2, the formed welding route is easy to post-process and inspect.

充てん継目11は被覆溶接棒を使って手溶接によって形
成される。開先面6の一方と他方とへ交互に溶接ビード
を形成することによって両方の開先面6が互いに接合さ
れる。
The fill seam 11 is formed by hand welding using a coated welding rod. Both groove surfaces 6 are joined to each other by forming weld beads alternately on one side and the other.

第3図には、個個の羽根ユニットが溶接によって接合さ
れる道程が示されている。羽根ユニットは1つのリング
体の形に組み立てられる。
FIG. 3 shows the process by which individual blade units are joined by welding. The vane unit is assembled in the form of a ring body.

次いで溶接リング15が羽根ユニットに沿って両側にタ
ック溶接14によって気密に溶接される。というのは底
部継目溶接が保護ガスふん〜1気内で行なわれるからで
ある。
Welding rings 15 are then hermetically welded along the vane unit on both sides by tack welding 14. This is because the bottom seam welding is carried out in ~1 atmosphere of protective gas.

次いで、第2図に示した底部継目溶接並びに充てん継目
溶接が行なわれ、各羽根ユニットがそれぞれ隣り合う羽
根ユニットと共にカバープレート2においてもベースプ
レート3においても閉ざされた1つのリング体と−して
結合される。
The bottom seam welding and the fill seam welding shown in FIG. 2 are then carried out, so that each vane unit is joined together with its adjacent vane unit as a ring body which is closed both at the cover plate 2 and at the base plate 3. be done.

このようにして溶接を完了した調整輪は熱処理を施され
ることになる。即ち、溶接直後に、調速軸は直接溶接熱
から約700℃の軟化焼なまし温度に加熱される。焼な
まし位相の間に溶接金属および熱影響部に恒温変態が生
ずる。この場合に発生した組織は技術的に利用されない
The adjustment wheel that has been welded in this way is then subjected to heat treatment. That is, immediately after welding, the regulating shaft is directly heated from welding heat to a softening annealing temperature of about 700°C. During the annealing phase, isothermal transformations occur in the weld metal and heat affected zone. The tissue generated in this case is not technically available.

その結果この処理工程において割れの危険は生じない。As a result, there is no risk of cracking during this processing step.

とい5のは、700℃での変態応力がわずかであり、溶
接応力が除去されており、靭性がマルテンサイトの靭性
よりも良好であるからである。軟化焼なましの後に調整
輪は空気冷却される。
The reason for this is that the transformation stress at 700°C is slight, welding stress is removed, and the toughness is better than that of martensite. After softening annealing, the adjustment wheel is air cooled.

次いで、高圧ロータ17の円板16上へ調整輪を溶接す
るのに必要なすべての工程を含む機械加工が施される。
Machining is then performed, including all steps necessary to weld the adjustment wheel onto the disk 16 of the high-pressure rotor 17.

先ず、溶接リング15が取りはずされ、調整輪の両端面
が所定寸法に合わせて旋削される。この場合特に、第2
図中に符号10で示されているようにカッマープレート
2並びにベースプレート3における溶接ルートの切除が
行なわれる。即ちこれらの溶接ルート並びに場合によっ
て発生する溶接割れが切削除去されて研摩される。次い
で通例の超音波探傷試験および磁粉探傷試験を行なう。
First, the weld ring 15 is removed, and both end surfaces of the adjustment wheel are turned to a predetermined size. In this case, especially the second
As indicated by reference numeral 10 in the figure, the welding root in the cummer plate 2 and the base plate 3 is cut out. That is, these weld roots and any weld cracks that may occur are cut out and polished. Next, a customary ultrasonic flaw detection test and magnetic particle flaw detection test are performed.

試験後に調質の重要な工程を行なう。このため溶接リン
グ15が改めて気密に取り付けられる。というのは焼な
まし中アルピンのような保護ガスを供給されるからであ
る。調質は第1に1000℃を上回る加熱および圧縮空
気又は噴霧による冷却から成る焼入れ工程と、第2に約
700℃の焼なまし温度の加熱および室温での炉内冷却
から成る焼もどし工程とに分けられる。
After testing, an important process of refining is performed. Therefore, the welding ring 15 is reattached in an airtight manner. This is because during annealing a protective gas such as alpine is supplied. Thermal refining involves firstly a quenching process consisting of heating above 1000°C and cooling with compressed air or spray, and secondly a tempering process consisting of heating to an annealing temperature of about 700°C and cooling in a furnace at room temperature. It can be divided into

調質の終了後、調整輪のベースプレート部分が高圧ロー
タ17の円板16上へ溶接するために仕上げ旋削される
。第4図に概略的に示されている溶接固定はサブマージ
アーク溶接法により大きなU形開先の継ぎ目1゛8によ
って行なう。
After finishing the tempering, the base plate portion of the adjustment wheel is finish turned for welding onto the disc 16 of the high pressure rotor 17. The welding, shown schematically in FIG. 4, is carried out by means of a submerged arc welding process with a large U-groove seam 1'8.

高圧ロータ17から羽根ユニットへの移行部を両側にわ
たって平滑に旋削された加工済みの調整輪が第5図に示
されている。この場合、溶接割れを生ずる傾向のある継
ぎ目18の溶接ルートが旋削除去されている。調整輪お
よび高圧ロータは分離不能な構造ユニットをなしている
FIG. 5 shows a machined adjustment wheel that is turned smoothly on both sides at the transition from the high-pressure rotor 17 to the vane unit. In this case, the weld root of the seam 18, which is prone to weld cracking, has been turned away. The adjusting wheel and the high-pressure rotor form an inseparable structural unit.

第6図に示す実施例は、カッ−プレートおよびベースプ
レートを接合する横継ぎ目を小さくすることができると
いう利点を有する。
The embodiment shown in FIG. 6 has the advantage that the transverse seam joining the cup plate and base plate can be made small.

素材から削り出された羽根ユニットは例えば41m厚の
薄いベースプレート並びにカバープレート2′を有して
いる。ベースプレート2′は互いに突合せ溶接されて狭
いリムをなしている。横継目はティグ溶接による開先底
部継目9と手溶接によって若干の層をなして施した充て
ん継目11′とから成っている。プレート幅全体にわた
って周方向へ溶接層19がサブマージドアーク溶接法に
よって特に自動式に施されている。これによってカッマ
ープレート並びにベースプレートの厚さを任意に増大さ
せることができる。手溶接の範囲を小さくすることによ
って一層良好な8度が得られる。
The blade unit machined from raw material has a thin base plate, for example 41 m thick, as well as a cover plate 2'. The base plates 2' are butt welded together to form a narrow rim. The transverse seam consists of a groove bottom seam 9 by TIG welding and a filler seam 11' applied in several layers by hand welding. A welding layer 19 is applied in the circumferential direction over the entire width of the plate by means of a submerged arc welding method, in particular automatically. This allows the thickness of the cummer plate as well as the base plate to be increased arbitrarily. A better 8 degree is obtained by reducing the range of manual welding.

場合によっては、手溶接によって被覆溶接棒を使って形
成する充てん継目11′を全く省略することもできる。
In some cases, it is also possible to omit the filling seam 11', which is formed by hand welding with a coated welding rod, altogether.

この場合は、外周の溶接層19をティグ溶接による開先
底部継目9の上へ直接形成する。
In this case, the outer weld layer 19 is formed directly on the groove bottom seam 9 by TIG welding.

第2図および第6図の実施例におけるティグ溶接による
開先底部継目9の代りに、カッマープレート並びにベー
スプレートを電子ビーム式、プラズマアーク式又はレー
ザビーム式の溶接法で結合することもできる。このよう
な場合突合せ継目も相応に異なるものにする。
Instead of the TIG welded bottom groove seam 9 in the embodiments of FIGS. 2 and 6, the cummer plate and the base plate can also be joined by electron beam, plasma arc or laser beam welding methods. In such cases, the butt seams should also be correspondingly different.

第7図に示す実施例の場合、カバープレート2およびベ
ースプレート3′がその半径方向の全域にわたって突合
せ継目13において電子ビーム溶接によって結合されて
いる。著しく大きな厚さのベースプレート3′はサブマ
ージドアーク溶接法による内周の溶接層19を有してい
る。
In the embodiment shown in FIG. 7, cover plate 2 and base plate 3' are joined over their entire radial area at a butt joint 13 by electron beam welding. The significantly thicker base plate 3' has an inner circumferential weld layer 19 produced by submerged arc welding.

ベースプレート3′は第6図の実施例のカッマープレー
ト2′と同様に小さな厚さのリム体であってもよい。
The base plate 3' may be a rim body of small thickness, similar to the cummer plate 2' of the embodiment of FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による調整輪の一部の斜視図、第2図は
個個の羽根ユニットの突合せ溶接部を示す端面図、第3
図は調整輪なロータ上ヘタツク溶接した状態で示す斜視
図、第4図は調整輪をロータ上へ溶接固定した状態で示
す斜視図、第5図はロータ上の調整輪を仕上げ加工済み
の状態で示す斜視図、第6図は第2図の例とは異なる突
合せ溶接部を示す端面図、第7図はさらに異なる突合せ
溶接部を示す斜視図である。 1・・・羽根、2・・・カバーフレート、3・・・ベー
スプレート、4・・・溶接開先、5・・・横継目、6・
・・開先面、7・・・溶接リップ、9・・・開先底部継
目、11・・・充てん継目、13・・・突合せ継目、1
4・・・タック溶接継目、15・・・溶接リング、16
・・・円板、17・・・ロータ、18・・・U形開先継
目、19・・・溶接層 −N CQ +JP
FIG. 1 is a perspective view of a part of the adjustment wheel according to the present invention, FIG. 2 is an end view showing the butt welds of individual vane units, and FIG.
The figure shows a perspective view of the adjustment wheel welded onto the rotor, Figure 4 is a perspective view of the adjustment wheel welded and fixed onto the rotor, and Figure 5 shows the adjustment wheel on the rotor with finished processing. FIG. 6 is an end view showing a butt weld portion different from the example shown in FIG. 2, and FIG. 7 is a perspective view showing a still different butt weld portion. DESCRIPTION OF SYMBOLS 1...Blade, 2...Cover plate, 3...Base plate, 4...Welding groove, 5...Horizontal joint, 6...
... Groove surface, 7... Welding lip, 9... Groove bottom joint, 11... Filling joint, 13... Butt joint, 1
4... Tack welding seam, 15... Welding ring, 16
... Disc, 17... Rotor, 18... U-shaped groove joint, 19... Weld layer -N CQ +JP

Claims (1)

【特許請求の範囲】 1、蒸気タービンにおける高圧ロータ用の調整輪を製造
する方法であつて、耐熱性の高合金鋼であるCrMoV
鋼のような中実の材料から成る多くの羽根ユニットを、
1つのリング体として組み立てて羽根ユニットのベース
プレート(3)およびカバープレート(2)において互
いに溶接し、次いでリング体を熱処理および機械加工お
よび試験の後に高圧ロータ(17)の円板(16)上へ
溶接する形式のものにおいて、すべての羽根ユニットを
それぞれ隣接する羽根ユニットに、ベースプレート(3
)およびカバープレート(2)において、全面にわたつ
て閉ざされた1つのリング体の形に突合せ溶接すること
を特徴とする、高圧ロータ用の調整輪を製造する方法。 2、溶接後に、リング体を冷却することなく軟化焼なま
し温度に加熱して、溶接金属および熱影響部に恒温変態
を生ぜしめ、機械加工および試験の後にリング体を調質
して、溶接継手に母材と同じ性質をあたえる、特許請求
の範囲第1項に記載の方法。 3、羽根ユニットを突合せ継目(13)において、溶加
材と共にか又は溶加材なしに電子ビーム式、プラズマ式
、レーザビーム式又はアルゴンアーク式の溶接法によつ
て形成する開先底部継目(9)によつて溶接し、次いで
、溶接開先(4)によつて形成した両方の開先面(6)
を、一方の開先面と他方の開先面とに交互に施して充て
ん継目(11)を形成するビードによつて接合する、特
許請求の範囲第1項に記載の方法。 4、羽根ユニットを突合せ継目(13)において溶加材
と共にか又は溶加材なしに電子ビーム式、プラズマ式又
はレーザビーム式の溶接法によつて互いに溶接する、特
許請求の範囲第1項に記載の方法。 5、ベースプレートおよびカバープレートの突合せ溶接
の後に、調整輪の周方向に延びるビードをサブマージド
アーク溶接法によつて多層に施すことによつて、ベース
プレートおよびカバープレートの半径方向の寸法を増大
する、特許請求の範囲第3項又は第4項に記載の方法。 6、蒸気タービンの高圧ロータ上へ溶接される調整輪で
あつて、多数の羽根ユニットを組み立てた1つのリング
体から成つていて、羽根ユニットはそのカバープレート
(2)およびベースプレート(3)に突合せ継目(13
)を有している形式のものにおいて、各羽根ユニットが
それぞれ隣接の羽根ユニットにカバープレート(2)に
おいてもベースプレート(3)においても突合せ溶接さ
れていることを特徴とする、調整輪。 7、蒸気タービンの高圧ロータ上へ溶接される調整輪で
あつて、多数の羽根ユニットを組み立てた1つのリング
体から成つていて、羽根ユニットはそのカバープレート
(2)およびベースプレート(3)に溶接開先(4)を
有しており、カバープレート(2)における溶接開先が
V形開先又はU形開先から成つていて、1つの突合せ継
目(13)を形成する溶接リップ(7)へ移行しており
、溶接リップ(7)はカバープレート(2)の、羽根(
1)に面する側(8)に直接設けられている形式のもの
において、ベースプレート(3)における溶接開先もV
形開先又はU形開先から成つていて、1つの突合せ継目
(13)を形成する溶接リップ(7)へ移行しており、
溶接リップ(7)はベースプレート(3)の、羽根(1
)に面する側(12)に直接設けられており、各羽根ユ
ニットがそれぞれ隣接する羽根ユニットにカバープレー
ト(2)においてもベースプレート(3)においても突
合せ溶接されていることを特徴とする、調整輪。 8、各羽根ユニットのカバープレート(2)およびベー
スプレート(3)の両方の少なくとも一方は、羽根(1
)と一緒に中実の素材から加工された狭いリム片から成
つていて、このリム片へ、リング体として突合せ溶接さ
れた後に、任意な厚さの溶接層(19)が形成されてい
る、特許請求の範囲第6項記載の調整輪。 9、各羽根ユニットのカバープレート(2)およびベー
スプレート(3)の両方の内少なくとも一方は、羽根(
1)と一緒に中実の素材から加工された狭いリム片から
成つていて、このリム片へ、リング体として突合せ溶接
された後に、任意の厚さの溶接層(19)が形成されて
いる、特許請求の範囲第7項に記載の調整輪。
[Claims] 1. A method for manufacturing an adjustment wheel for a high-pressure rotor in a steam turbine, the method comprising CrMoV, which is a heat-resistant high-alloy steel.
Many vane units made of solid materials such as steel,
Assembled as one ring body and welded together at the base plate (3) and cover plate (2) of the vane unit, then the ring body is placed on the disc (16) of the high pressure rotor (17) after heat treatment and machining and testing. In the welding type, all blade units are attached to the base plate (3
) and the cover plate (2) are butt-welded in the form of a ring body closed over the entire surface. 2. After welding, the ring body is heated to a softening annealing temperature without cooling to cause isothermal transformation in the weld metal and heat affected zone, and after machining and testing, the ring body is tempered and welded. 2. A method according to claim 1, which provides the joint with the same properties as the base material. 3. At the butt joint (13) of the blade unit, a groove bottom seam (13) is formed by electron beam, plasma, laser beam or argon arc welding with or without filler metal. 9) and then both groove surfaces (6) formed by the weld groove (4)
2. A method as claimed in claim 1, in which the beads are joined by means of beads which are applied alternately to one grooved surface and to the other grooved surface to form a filled seam (11). 4. The vane units are welded together at the butt joint (13) with or without filler metal by an electron beam, plasma or laser beam welding method, according to claim 1. Method described. 5. After butt welding the base plate and cover plate, the radial dimensions of the base plate and cover plate are increased by applying beads extending in the circumferential direction of the adjustment wheel in multiple layers by submerged arc welding. A method according to claim 3 or 4. 6. An adjustment wheel welded onto the high-pressure rotor of a steam turbine, consisting of one ring body assembled with a number of vane units, and the vane unit is attached to its cover plate (2) and base plate (3). Butt seam (13
), characterized in that each vane unit is butt-welded to the respective adjacent vane unit both at the cover plate (2) and at the base plate (3). 7. An adjustment wheel welded onto the high-pressure rotor of a steam turbine, consisting of one ring body assembled with a number of vane units, and the vane unit is attached to its cover plate (2) and base plate (3). a welding lip (4) with a welding groove (4), the welding groove in the cover plate (2) consisting of a V-shaped groove or a U-shaped groove, forming one butt seam (13); 7), and the welding lip (7) is attached to the blade (2) of the cover plate (2).
1), the welding groove in the base plate (3) is also V.
consisting of a shaped bevel or U-shaped bevel, transitioning into a welding lip (7) forming a butt seam (13);
The welding lip (7) is attached to the vane (1) of the base plate (3).
), characterized in that each vane unit is butt-welded to the respective adjacent vane unit both at the cover plate (2) and at the base plate (3). ring. 8. At least one of both the cover plate (2) and the base plate (3) of each blade unit has a blade (1).
) consists of a narrow rim piece machined from a solid material, to which a welding layer (19) of arbitrary thickness is formed after being butt-welded as a ring body. , an adjustment wheel according to claim 6. 9. At least one of both the cover plate (2) and the base plate (3) of each blade unit has a blade (
1) together with a narrow rim piece machined from a solid material, onto which a welding layer (19) of arbitrary thickness is formed after being butt-welded as a ring body. The adjustment wheel according to claim 7.
JP61042038A 1985-02-28 1986-02-28 Method and wheel for manufacturing a tuning wheel for a high pressure rotor in a steam turbine Expired - Lifetime JPH0653306B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH910/85-2 1985-02-28
CH910/85A CH667611A5 (en) 1985-02-28 1985-02-28 METHOD FOR PRODUCING A CONTROL WHEEL FOR THE HIGH PRESSURE ROTOR OF A STEAM TURBINE.

Publications (2)

Publication Number Publication Date
JPS61209777A true JPS61209777A (en) 1986-09-18
JPH0653306B2 JPH0653306B2 (en) 1994-07-20

Family

ID=4198022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61042038A Expired - Lifetime JPH0653306B2 (en) 1985-02-28 1986-02-28 Method and wheel for manufacturing a tuning wheel for a high pressure rotor in a steam turbine

Country Status (17)

Country Link
US (1) US4812107A (en)
EP (1) EP0197268B1 (en)
JP (1) JPH0653306B2 (en)
KR (1) KR930003532B1 (en)
CN (1) CN1009471B (en)
AT (1) ATE43272T1 (en)
CA (1) CA1253810A (en)
CH (1) CH667611A5 (en)
CS (1) CS274273B2 (en)
DE (1) DE3663468D1 (en)
HU (1) HU198317B (en)
IN (1) IN167043B (en)
MX (1) MX164608B (en)
PL (1) PL258142A1 (en)
PT (1) PT82094B (en)
YU (1) YU45306B (en)
ZA (1) ZA861430B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263002A (en) * 2000-03-08 2001-09-26 General Electric Co <Ge> Stator vane assembly for turbine and method for forming assembly
US7798433B2 (en) 2005-10-27 2010-09-21 Mitsubishi Denki Kabushiki Kaisha Fuel injection valve device
JP2014083579A (en) * 2012-10-26 2014-05-12 Hitachi Ltd Welding method for steam turbine rotor

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619330B1 (en) * 1987-08-12 1994-03-11 Snecma PROCESS FOR PRODUCING STATOR STAGES OF COMPRESSOR OR TURBINE, BLADES AND GRIDS OF BLADES THUS OBTAINED
US4962586A (en) * 1989-11-29 1990-10-16 Westinghouse Electric Corp. Method of making a high temperature - low temperature rotor for turbines
DE4226272C1 (en) * 1992-08-08 1994-02-10 Mtu Muenchen Gmbh Process for treating MCrAlZ layers and components produced using the process
GB2271524B (en) * 1992-10-16 1994-11-09 Rolls Royce Plc Bladed disc assembly by hip diffusion bonding
US5248240A (en) * 1993-02-08 1993-09-28 General Electric Company Turbine stator vane assembly
US5797725A (en) * 1997-05-23 1998-08-25 Allison Advanced Development Company Gas turbine engine vane and method of manufacture
DE59808650D1 (en) 1998-12-16 2003-07-10 Alstom Switzerland Ltd Modular steam turbine with standard blading
DE10053770A1 (en) * 2000-10-30 2002-05-02 Alstom Switzerland Ltd Steam turbine regulating wheel producing process involves using entire rotor or part rotor piece as full material
GB0112876D0 (en) 2001-05-26 2001-07-18 Rolls Royce Plc A method of manufacturing an article
SE519781C2 (en) * 2001-08-29 2003-04-08 Volvo Aero Corp Process for producing a stator or rotor component
JP3753641B2 (en) * 2001-09-25 2006-03-08 株式会社日立製作所 Nondestructive inspection method
SE523075C2 (en) * 2001-11-22 2004-03-23 Volvo Aero Corp Process for producing a stator or rotor component
CN1323224C (en) * 2003-07-16 2007-06-27 沈阳黎明航空发动机(集团)有限责任公司 Adjusting method for realizing large area adjustment for grouped gurbine guide blade
JP2007231868A (en) * 2006-03-02 2007-09-13 Hitachi Ltd Steam turbine bucket, steam turbine using the same and steam turbine power generation plant
US20090119919A1 (en) * 2007-11-12 2009-05-14 Honeywell International, Inc. Components for gas turbine engines and methods for manufacturing components for gas turbine engines
DE102007055379A1 (en) * 2007-11-19 2009-05-20 Alstom Technology Ltd. Manufacturing process for a rotor
DE102008008049A1 (en) * 2008-02-08 2009-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Heating device for a turbine blade and a method for welding
DE102008051934A1 (en) 2008-10-09 2010-04-15 Mtu Aero Engines Gmbh Method of manufacturing a rotor and rotor
WO2012041645A1 (en) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Control wheel arrangement for a steam turbine
CN102615394A (en) * 2012-04-23 2012-08-01 杭州泽军机电有限公司 Method for welding chromium molybdenum vanadium steel
EP2787167B1 (en) 2013-04-04 2018-12-26 Ansaldo Energia IP UK Limited Method for welding rotors for power generation
US9724780B2 (en) 2014-06-05 2017-08-08 Honeywell International Inc. Dual alloy turbine rotors and methods for manufacturing the same
US9938834B2 (en) * 2015-04-30 2018-04-10 Honeywell International Inc. Bladed gas turbine engine rotors having deposited transition rings and methods for the manufacture thereof
CN106321449A (en) * 2015-06-16 2017-01-11 周先明 Totally-sealed integral turbine
US10294804B2 (en) 2015-08-11 2019-05-21 Honeywell International Inc. Dual alloy gas turbine engine rotors and methods for the manufacture thereof
US10036254B2 (en) 2015-11-12 2018-07-31 Honeywell International Inc. Dual alloy bladed rotors suitable for usage in gas turbine engines and methods for the manufacture thereof
US11098729B2 (en) 2016-08-04 2021-08-24 General Electric Company Gas turbine wheel assembly, method of modifying a compressor wheel, and method of mounting a blade to a gas turbine wheel
RU205426U1 (en) * 2020-08-18 2021-07-14 Общество с ограниченной ответственностью "Газпром трансгаз Санкт-Петербург" SEGMENTED NOZZLE DEVICE OF LOW-FLOW STEAM TURBINE ON ORGANIC WORKING BODY

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1247400A (en) * 1914-02-24 1917-11-20 Westinghouse Electric & Mfg Co Blading for elastic-fluid turbines.
US2242308A (en) * 1939-03-23 1941-05-20 Westinghouse Electric & Mfg Co Shroud fastening for turbine blades
US2392281A (en) * 1941-07-10 1946-01-01 Allis Chalmers Mfg Co Method of making welded blade structures
NL64042C (en) * 1944-02-25
US2423165A (en) * 1945-07-12 1947-07-01 Allis Chalmers Mfg Co Welded blade structure
US2620554A (en) * 1948-09-29 1952-12-09 Westinghouse Electric Corp Method of manufacturing turbine blades
US2961748A (en) * 1955-01-10 1960-11-29 Allis Chalmers Mfg Co Method of making turbine diaphragm element having a hub and shroud formed from a single piece
GB964592A (en) * 1960-02-26
US3292245A (en) * 1962-02-20 1966-12-20 Demag Ag Process and apparatus for making rotors
GB938189A (en) * 1960-10-29 1963-10-02 Ruston & Hornsby Ltd Improvements in the construction of turbine and compressor blade elements
US3617685A (en) * 1970-08-19 1971-11-02 Chromalloy American Corp Method of producing crack-free electron beam welds of jet engine components
JPS5143982B2 (en) * 1973-10-08 1976-11-25
US4096615A (en) * 1977-05-31 1978-06-27 General Motors Corporation Turbine rotor fabrication
US4186473A (en) * 1978-08-14 1980-02-05 General Motors Corporation Turbine rotor fabrication by thermal methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263002A (en) * 2000-03-08 2001-09-26 General Electric Co <Ge> Stator vane assembly for turbine and method for forming assembly
JP4503164B2 (en) * 2000-03-08 2010-07-14 ゼネラル・エレクトリック・カンパニイ Turbine vane assembly and method of forming the assembly
US7798433B2 (en) 2005-10-27 2010-09-21 Mitsubishi Denki Kabushiki Kaisha Fuel injection valve device
JP2014083579A (en) * 2012-10-26 2014-05-12 Hitachi Ltd Welding method for steam turbine rotor

Also Published As

Publication number Publication date
YU29086A (en) 1989-02-28
PL258142A1 (en) 1987-01-26
ZA861430B (en) 1986-10-29
EP0197268A1 (en) 1986-10-15
IN167043B (en) 1990-08-25
MX164608B (en) 1992-09-08
YU45306B (en) 1992-05-28
CN1009471B (en) 1990-09-05
CA1253810A (en) 1989-05-09
CS139786A2 (en) 1990-09-12
JPH0653306B2 (en) 1994-07-20
DE3663468D1 (en) 1989-06-29
US4812107A (en) 1989-03-14
HUT43519A (en) 1987-11-30
HU198317B (en) 1989-09-28
PT82094A (en) 1986-03-01
PT82094B (en) 1992-05-29
CN86101204A (en) 1986-09-10
ATE43272T1 (en) 1989-06-15
EP0197268B1 (en) 1989-05-24
CS274273B2 (en) 1991-04-11
KR930003532B1 (en) 1993-05-03
KR860006558A (en) 1986-09-13
CH667611A5 (en) 1988-10-31

Similar Documents

Publication Publication Date Title
JPS61209777A (en) Manufacture of regulating ring for high-pressure rotor in steam turbine regulating ring
US7624909B2 (en) Welded component
RU2397847C2 (en) Procedure for extension of service life of welded connections of alloyed steel by elimination or restriction of thermal influence zone
US20020172587A1 (en) Method for welding together two parts which are exposed to different temperatures, and turbomachine produced using a method of this type
JP3175109B2 (en) Repair methods for turbine component wear surfaces.
JP2818947B2 (en) Repair methods for turbine component wear surfaces.
US9863249B2 (en) Pre-sintered preform repair of turbine blades
US6767649B2 (en) Rotor for a turbomachine, and process for producing a rotor of this type
US4962586A (en) Method of making a high temperature - low temperature rotor for turbines
JP4353981B2 (en) Method of joining a blade to a blade root or rotor disk when manufacturing or repairing a gas turbine blade or blade-integrated gas turbine rotor
US4940390A (en) Turbine system having more failure resistant rotors and repair welding of low alloy ferrous turbine components by controlled weld build-up
US5211327A (en) Method of welding
US20070189894A1 (en) Methods and apparatus for turbine engine rotors
JP3293712B2 (en) Electron beam joining method for turbine rotor shaft
EP2540963A2 (en) Turbine disk preform, welded turbine rotor made therewith and methods of making the same
GB2344549A (en) Welding method for two different types of steel
EP1512482B1 (en) Method for Improved weld penetration by means of the formation of a surface oxide layer, and the resulting article.
JPS5838602A (en) Hot rolling roll made of composite sintered hard alloy
JPH01182505A (en) Manufacture of turbine blade
JP2003145271A (en) Method for welding different kinds of steel grades
SU948527A2 (en) Method of producing impellers of centrifugal machine
JPS6142493A (en) Welded structure of main steam pipe and casing of steam turbine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term