JPS61209401A - Incremental reflection mirror - Google Patents

Incremental reflection mirror

Info

Publication number
JPS61209401A
JPS61209401A JP60048377A JP4837785A JPS61209401A JP S61209401 A JPS61209401 A JP S61209401A JP 60048377 A JP60048377 A JP 60048377A JP 4837785 A JP4837785 A JP 4837785A JP S61209401 A JPS61209401 A JP S61209401A
Authority
JP
Japan
Prior art keywords
film
layer
ion plating
high frequency
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60048377A
Other languages
Japanese (ja)
Inventor
Mitsuo Kakehi
筧 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60048377A priority Critical patent/JPS61209401A/en
Publication of JPS61209401A publication Critical patent/JPS61209401A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To obtain the titled mirror having a high reflectivity, a high density and a high hardness which is un-necessary to heat the substrate by using an reactive ion plating method, and by constituting the incremental reflection film of a metal with a metal oxide only, and then by covering the upper most layer with a thin film of SiO2. CONSTITUTION:The Al film 15 is formed on the substrate in a thickness of 700Angstrom as the first layer by a high frequency ion plating method of an argon gas after an ionbom-bardment. The SiO2 film 16 is formed on the first film in a thickness of lambda/4(lambda=400nm) as the second layer by the reactive high frequency ion plating method of an oxygen gas. The vapor-deposited metal titanium film is converted to the titanium dioxide (TiOx 2>=x) film 17 in a thickness of lambda/4(lambda=400nm) by the reactive high frequency ion plating method of the oxygen gas as the third layer. The SiO2 film 18 is formed on the third layer in a thickness of 0.05lambda(lambda=400nm) as the fourth layer by the reactive high frequency ion plating method of the oxygen gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、反射鏡成膜、技術に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to reflective mirror film formation and technology.

〔従来技術〕[Prior art]

金属増反射膜は従来、真空蒸着で作られ、カメラ、複写
機、半導体製造機器等の光学系に多用されている。
Metal reflective coatings have conventionally been made by vacuum evaporation and are widely used in optical systems such as cameras, copying machines, and semiconductor manufacturing equipment.

第6図はそのような従来の金属増反射膜の拡大断面図で
ある。
FIG. 6 is an enlarged cross-sectional view of such a conventional metal reflective coating.

第6図において1は硝子等の基板であシ、2゜3.4は
それぞれ基板1上に順に成膜された薄膜である。
In FIG. 6, 1 is a substrate made of glass or the like, and 2.degree. 3.4 are thin films sequentially formed on the substrate 1, respectively.

この金属増反射膜の成膜にあたっては、まず、低真空で
基板1をイオン?ンパード処理(イオン洗浄)し、その
後高真空にて、アルミ(At)又は銅(Cu )などの
金属膜2を真空蒸着で成膜する。
In forming this metal reflective film, first, the substrate 1 is ionized in a low vacuum. After an impardation process (ion cleaning), a metal film 2 of aluminum (At) or copper (Cu) is formed by vacuum evaporation in a high vacuum.

次に、基板を250℃以上に加熱し弗化マグネシウム(
MgF2 )膜3を成膜し、その上に酸化ジルコニウム
(Zr02)膜又は酸化セリウム(CeO2)膜4を成
膜し、基板1上に3層の積層構成の膜を作る。
Next, the substrate is heated to 250°C or higher and magnesium fluoride (
A MgF2) film 3 is formed, and a zirconium oxide (Zr02) film or a cerium oxide (CeO2) film 4 is formed thereon to form a three-layered film on the substrate 1.

しかし、このような成膜において金属膜2とMgF2膜
3、ZrO2又はCeO□膜4の増反射膜を成膜する関
に基板加熱時間が挿入されるため成膜に要する時間が長
いという欠点があった。
However, in such film formation, the substrate heating time is inserted between the formation of the metal film 2, MgF2 film 3, ZrO2 or CeO□ film 4 to increase the reflection, so there is a drawback that the time required for film formation is long. there were.

またこのような基板加熱方法で成膜した金属増反射膜の
硬度は耐摩耗往復動試験器(レンズ拭き紙で包んだ測定
子使用)を用い、荷重2.5Kg/−で50往復すれば
かなりキズが発生し実際の使用を考えると満足すべき硬
度とは言えなかった。
In addition, the hardness of the metal reflective coating formed by this substrate heating method can be determined by using an abrasion resistance reciprocating motion tester (using a probe wrapped in lens wiping paper) and performing 50 reciprocations at a load of 2.5 kg/-. Scratches occurred and the hardness was not satisfactory considering actual use.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記の如き従来技術の問題点に鑑み、高
温にする必要もなく、従来の基板加熱方法によって成膜
された膜と同じ光学特性を維持し、なおかつ高密着、高
硬度の金属増反射鏡を提供することにある。
In view of the problems of the prior art as described above, an object of the present invention is to create a film that does not require high temperatures, maintains the same optical properties as a film formed by a conventional substrate heating method, and is made of a highly adhesive and highly hard metal film. The object of the present invention is to provide an increased reflector.

〔発明の要旨〕[Summary of the invention]

本発明によれば、以上の様な目的は、反応性イオンプレ
ーティングを用い、金属の増反射膜を金属酸化物のみで
構成し、その最終層に2酸化珪素の(S10□)の薄層
を附加したことを特徴とする増反射膜によシ達成される
According to the present invention, the above-mentioned purpose is achieved by using reactive ion plating, forming a metal reflection-enhancing film only from metal oxide, and adding a thin (S10□) layer of silicon dioxide as the final layer. This is achieved by an enhanced reflection film characterized by adding.

〔実施例〕〔Example〕

以下、図面を用いて本発明の具体的実施例を説明する。 Hereinafter, specific embodiments of the present invention will be described using the drawings.

第1図は本発明の金属増反射膜を成膜する反応性高周波
イオンプレーティング装置(以下、単に成膜装置と称す
)の概略図である。該成膜装置は成膜室5を有し、この
成膜室5は排気導管6を通じて真空源(図示せず)に接
続されている。
FIG. 1 is a schematic diagram of a reactive high frequency ion plating apparatus (hereinafter simply referred to as a film forming apparatus) for forming a metal reflective film of the present invention. The film forming apparatus has a film forming chamber 5, which is connected to a vacuum source (not shown) through an exhaust conduit 6.

成膜室5の底部には、蒸着源7が配置されておシ、該蒸
着源7上には蒸発物質8が収容される。
A vapor deposition source 7 is arranged at the bottom of the film forming chamber 5, and an evaporation substance 8 is accommodated on the vapor deposition source 7.

蒸着源7としては電子ビーム方式を採用している。As the vapor deposition source 7, an electron beam method is adopted.

成膜室5内の頂部附近には、基板支持用ドーム9が設け
られており、該ドーム9上にレンズなどの基板1が支持
固定される。この基板支持用ドーム9は成膜室5の外の
バイアス電源10に接続されており、負に印加されるよ
うになっている。
A substrate supporting dome 9 is provided near the top of the film forming chamber 5, and a substrate 1 such as a lens is supported and fixed on the dome 9. This substrate support dome 9 is connected to a bias power source 10 outside the film forming chamber 5, so that a negative voltage is applied thereto.

また、基板支持用ドーム9の下方には高周波コイル11
が配置されておシ、該コイルは成膜室5外のマツチング
がツクス12を介して高周波電源13に接続されている
Further, a high frequency coil 11 is provided below the substrate support dome 9.
is arranged, and the coil is connected to a high frequency power source 13 via a matching wire 12 outside the film forming chamber 5.

この成膜装置はガス導入管14によシ導入された反応ガ
スを高周波コイル11により高周波放電を発生させ、蒸
着源7からの蒸発分子をイオン化し、基板支持用ドーム
9上の基体1に被膜を形成する装置である。
This film forming apparatus causes a high frequency coil 11 to generate high frequency discharge in a reactive gas introduced through a gas introduction pipe 14, ionizes evaporated molecules from a deposition source 7, and forms a film on a substrate 1 on a substrate support dome 9. This is a device that forms

々お反応後のガスは排気導管6によシ成膜室外に排気さ
れる。
The gas after each reaction is exhausted to the outside of the film forming chamber through an exhaust conduit 6.

次に本発明の金属増反射鏡の成膜について説明する。Next, the film formation of the metal enhanced reflection mirror of the present invention will be explained.

成膜に際しては、まず成膜室5の真空度をI X 10
−’Torr (使用ガス、アルがン又は酸素)にし、
高周波コイル11に高周波プラズマ(印加高周波13.
56bmz 、出力200W)を発生させ、一方基板支
持用ドーム9にバイアス電圧eo、skvを印加シてイ
オンゴンパード(イオン洗浄)を行ない、基板1上の表
面をきれいにする。
When forming a film, first, the degree of vacuum in the film forming chamber 5 is set to I x 10
-'Torr (gas used, argon or oxygen),
High frequency plasma (applied high frequency 13.
56bmz, output 200W), and on the other hand, apply bias voltages eo and skv to the substrate support dome 9 to perform ion gomparding (ion cleaning) and clean the surface on the substrate 1.

第1実施例 第2図は第1実施例のアルミ増反射鏡の一部の拡大断面
図である・ イオンがンパード終了後真空度をI X 10  To
rrとし、第1層にアルがン(Ar)の高周波イオンプ
レーティング(出力100W、真空度8X10  To
rr)によシ、アルミ(At )膜15を基板上に成膜
させる。その時の膜厚は、700Xである。第1層の上
に第2層として、酸素(02)の反応性高周波イオンプ
レーティング(出力100W、真空度lXl0−’To
rr )により、2酸化珪素(SIO2)膜16を成膜
λ させる。その時の膜厚は、τ(λ=400nm)である
。第2層の上に第3層として、酸素(0□)の反応性高
周波イオンプレーティング(出力100W。
1st Embodiment Figure 2 is an enlarged cross-sectional view of a part of the aluminum enhanced reflector of the 1st embodiment. After the ions have been amped up, the degree of vacuum is I x 10 To
rr, and high-frequency ion plating of arganese (Ar) on the first layer (output 100W, vacuum degree 8X10 To
According to (rr), an aluminum (At) film 15 is formed on the substrate. The film thickness at that time was 700X. As a second layer on top of the first layer, reactive high frequency ion plating of oxygen (02) (output 100W, vacuum degree lXl0-'To
A silicon dioxide (SIO2) film 16 is formed by λ rr ). The film thickness at that time is τ (λ=400 nm). A third layer on top of the second layer was reactive high frequency ion plating of oxygen (0□) (output 100W).

真空度2X10  Torr)により、蒸着した金属チ
タン(T1)を2酸化チタン(Tiex2〉X)膜17
λ に変換する。その時の膜厚は7(λ=400nm)であ
る。第3層の上に第4層として、酸素(02)の反応性
高周波イオンプレーティング(出力100W。
The vapor-deposited titanium metal (T1) is transformed into a titanium dioxide (Tiex2〉X) film 17 under a vacuum degree of 2×10 Torr.
Convert to λ. The film thickness at that time is 7 (λ=400 nm). A fourth layer on top of the third layer was reactive high frequency ion plating of oxygen (02) (output 100W).

真空度I X 10  Torr )によシ、2酸化珪
素(Sin2)膜18を成膜させる。その時の膜厚は、
O,OSλ(λ=400nm)である。
A silicon dioxide (Sin2) film 18 is formed under a vacuum degree of I.times.10 Torr. The film thickness at that time is
O, OSλ (λ=400 nm).

第3図はこうして得られたアルミ増反射鏡の分光反射率
特性を示したもので、横軸は波長λ(nm)。
Figure 3 shows the spectral reflectance characteristics of the aluminum enhanced reflector thus obtained, where the horizontal axis represents the wavelength λ (nm).

縦軸は反射率R(%)を示している。図を見てわかるよ
うに該増反射鏡は可視波長域において高反射率を有して
いる。
The vertical axis indicates the reflectance R (%). As can be seen from the figure, the reflector has a high reflectance in the visible wavelength range.

第2実施例 第4図は第2実施例の銅増反射鏡の一部の拡大断面図で
ある。
Second Embodiment FIG. 4 is an enlarged sectional view of a part of the copper-enhanced reflector of the second embodiment.

本実施例の成膜に際しては、まず基板1をイオンが7バ
ード処理(イオン洗浄)を行う。イオンメン・9−ド条
件は第1実施例のときと同じである。
When forming a film in this embodiment, first, the substrate 1 is subjected to 7-bird treatment (ion cleaning) with ions. The ion mending conditions are the same as in the first embodiment.

イオンデレバード終了後真空度をlXl0  Torr
とし、第1層としてアルゴン(Ar)の高周波イオンプ
レーティング(出力100W、真空度8X10  To
rr)により銅(Cu )膜19を基板1上に成膜させ
る。
After completing the ion derivation, the vacuum level is set to 1X10 Torr.
The first layer was argon (Ar) high frequency ion plating (output 100W, vacuum degree 8X10 To
A copper (Cu 2 ) film 19 is formed on the substrate 1 by the following steps.

その時の膜厚は、8001である。第1層の上に第2層
として酸素(0□)の反応性高周波イオンプレーティン
グ(出力100W、真空[lX10  Torr )に
よシ、2酸化珪素(sto2)[20を成膜させる。そ
の時の膜厚は0.33λ(λ=400nm)である。第
2層の上に第3層として、酸素(0□)の反応性高周波
イオンプレーティング(出力100W、真空度8X10
  Torr)により、酸化ジルコニウム(Zr02)
膜21を成膜させる。その時の膜厚は、0.55λ(λ
=400nm)である。第3層の上に第4層として、酸
素(02)の反応性高周波イオンプレーティング(出力
100W。
The film thickness at that time was 8001 mm. A film of silicon dioxide (sto2) [20] is formed as a second layer on the first layer by reactive high frequency ion plating of oxygen (0□) (output 100 W, vacuum [1×10 Torr). The film thickness at that time is 0.33λ (λ=400 nm). As a third layer on top of the second layer, reactive high frequency ion plating of oxygen (0□) (output 100W, vacuum degree 8X10
Torr), zirconium oxide (Zr02)
A film 21 is formed. The film thickness at that time was 0.55λ (λ
= 400 nm). A fourth layer on top of the third layer was reactive high frequency ion plating of oxygen (02) (output 100W).

真空度I X 10−’Torr )により、2酸化珪
素(8102)膜22を成膜させる。その時の膜厚は0
.05λ(λ=400nm)である。
A silicon dioxide (8102) film 22 is formed under a vacuum degree of I x 10-'Torr. At that time, the film thickness is 0
.. 05λ (λ=400nm).

第5図はこうして得られた銅増反射鏡の分光反射率特性
を示したもので、図を見てわかるように該増反射鏡は近
赤外波長域において高反射率を有している。第2実施例
に於いて第3層として、酸素(02)の反応性高周波イ
オンプレーティング(出力100W、真空度2 X 1
0−’Torr )により蒸着した金属チタン(Ti)
を2酸化チタン(TiO工2〉りに変換しても、上記の
分光反射率特性などの光学特性及び後述する強度試験に
ついて変わシなかりた。
FIG. 5 shows the spectral reflectance characteristics of the copper enhanced reflector thus obtained, and as can be seen from the figure, the enhanced reflectance mirror has a high reflectance in the near-infrared wavelength region. In the second example, as the third layer, reactive high frequency ion plating of oxygen (02) (output 100 W, degree of vacuum 2 x 1
Metallic titanium (Ti) deposited by 0-'Torr)
Even when it was converted to titanium dioxide (TiO2), there was no change in the optical properties such as the spectral reflectance characteristics mentioned above and the strength test described below.

以上述べてきたような本発明の反応性イオンデレーティ
ングを用いて作られた2つの金属増反射鏡の強度を調べ
るために、密着性テスト、耐摩耗テスト、耐環境テスト
の3つのテストを行った。
In order to investigate the strength of the two metal enhanced reflectors made using the reactive ion derating of the present invention as described above, three tests were conducted: an adhesion test, an abrasion resistance test, and an environmental resistance test. Ta.

各テストの内容は以下に示すとおりである。The contents of each test are as shown below.

1)密着性テスト;上記反射鏡の表面にセロハンチーf
にチバン)を接着させた後この表面にほぼ垂直な角度で
、すばやくとシのそくテストを50回繰返し、蒸着膜の
剥離が生ずるか調べる。
1) Adhesion test; cellophane f on the surface of the above reflector
After adhering the evaporated film to the surface, a quick wiping test is repeated 50 times at an angle almost perpendicular to the surface to see if the deposited film peels off.

2)耐摩耗テスト;上記反射鏡の表面をレンズ拭き紙(
シルデン紙)で包んだ測定子で耐摩耗往復動試験機を用
い5に4/dの圧で50往復こすり、異状が生ずるか調
べる。
2) Abrasion resistance test: The surface of the above reflector was wiped with lens wiping paper (
Using a reciprocating abrasion tester, rub the measuring tip wrapped in Silden paper 50 times at a pressure of 4/d to see if any abnormalities occur.

3)耐環境テスト;上記反射鏡の成膜基板を温度45℃
、相対湿度95%の恒温恒湿槽中に1000時間放置し
、異常が生ずるか調べる。
3) Environmental resistance test: The film-forming substrate of the above reflector was heated to 45°C.
, leave it in a constant temperature and humidity chamber with a relative humidity of 95% for 1000 hours, and check whether any abnormalities occur.

この3テストの結果はどのテストにおいても異状がみら
れず、従来の高温成膜法で作られた膜に比べて、本発明
の製法による膜は極めて強い膜であることが判明した。
The results of these three tests showed that no abnormalities were observed in any of the tests, and it was found that the film formed by the method of the present invention was extremely strong compared to the film formed by the conventional high-temperature film forming method.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の増反射膜は、従来
の増反射膜に比べて250℃以上の基板加熱が不要であ
るためコストが安く、なおかつ高反射率、高密着、高硬
度である利点がある。
As explained in detail above, the reflection-enhancing film of the present invention is cheaper than conventional reflection-enhancing films because it does not require heating the substrate above 250°C, and has high reflectance, high adhesion, and high hardness. There are certain advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の増反射膜を成膜するための反応性イオ
ンプレーティング装置の概略図である。 第2図、第4図はそれぞれ本発明の増反射膜の拡大断面
図であり、第3図、第5図はそれらの分光反射率特性で
ある。 第6図は従来の増反射膜の拡大断面図である。 代理人  弁理士 山 下 嬢 平 第2図 第3図 λ(nm) 第4図
FIG. 1 is a schematic diagram of a reactive ion plating apparatus for forming the reflective film of the present invention. FIGS. 2 and 4 are enlarged cross-sectional views of the reflection enhancing films of the present invention, and FIGS. 3 and 5 show their spectral reflectance characteristics. FIG. 6 is an enlarged sectional view of a conventional reflection increasing film. Agent Patent Attorney Ms. Yamashita Figure 2 Figure 3 λ (nm) Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)基板上にAr中でのイオンプレーティングによっ
て成膜された機械的膜厚650〜1000ÅのAl又は
Cu膜の第1層を設け、第1層上にO_2中での反応性
イオンプレーティングによって成膜された光学的膜厚0
.25λ(λ=400〜550nm)のSiO_2膜の
第2層を設け、第2層上にO_2中での反応性イオンプ
レーティングによって成膜された光学的膜厚0.25λ
〜0.50λ(λ=400〜550nm)のTiOx(
x≦2)膜、又はZrO_2膜、又はCeO_2膜の第
3層を設け、第3層上にO_2中での反応性イオンプレ
ーティングによって成膜された光学的膜厚0.04λ〜
0.06λ(λ=400〜450nm)のSiO_2膜
の第4層を設けたことを特徴とする増反射膜。
(1) Provide a first layer of Al or Cu film with a mechanical thickness of 650 to 1000 Å formed by ion plating in Ar on the substrate, and reactive ion plating in O_2 on the first layer. Optical film thickness 0
.. A second layer of SiO_2 film with a thickness of 25λ (λ = 400-550 nm) is provided, and an optical film thickness of 0.25λ is deposited on the second layer by reactive ion plating in O_2.
TiOx (
x≦2) film, or a third layer of a ZrO_2 film, or a CeO_2 film, and an optical film thickness of 0.04λ ~ formed by reactive ion plating in O_2 on the third layer.
An increased reflection film characterized by providing a fourth layer of SiO_2 film with a thickness of 0.06λ (λ=400 to 450 nm).
JP60048377A 1985-03-13 1985-03-13 Incremental reflection mirror Pending JPS61209401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048377A JPS61209401A (en) 1985-03-13 1985-03-13 Incremental reflection mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048377A JPS61209401A (en) 1985-03-13 1985-03-13 Incremental reflection mirror

Publications (1)

Publication Number Publication Date
JPS61209401A true JPS61209401A (en) 1986-09-17

Family

ID=12801630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048377A Pending JPS61209401A (en) 1985-03-13 1985-03-13 Incremental reflection mirror

Country Status (1)

Country Link
JP (1) JPS61209401A (en)

Similar Documents

Publication Publication Date Title
JPH0534650B2 (en)
US9815262B2 (en) Method for joining substrates
JP6713485B2 (en) Coated optical object and method for manufacturing coated optical object
JP2002055213A (en) High reflectance mirror
JP2006518809A (en) Titanium oxide transparent film having at least one of aluminum and aluminum oxide and having a rutile structure
JPS63265625A (en) Transparent conductive film having reflection preventive function
Phillips et al. Progress toward high-performance reflective and anti-reflection coatings for astronomical optics
EP3776016A1 (en) Multispectral interference coating with diamond-like carbon (dlc) film
JPS61196201A (en) Formation of film by low temperature vapor deposition
JPS61209401A (en) Incremental reflection mirror
Guenther et al. Corrosion-resistant front surface aluminum mirror coatings
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
CN113151783B (en) Combined reflective film and preparation method thereof
JPS60130704A (en) Antireflection film for plastic substrate
JPH05150105A (en) Metal-surfaced mirror and production thereof
JPS5926704A (en) Multilayered film reflecting mirror
JP3509414B2 (en) Reflector and method of manufacturing the same
CN114196924A (en) Coating method of vacuum ultraviolet aluminum reflector on surface of copper substrate
JPS6363002A (en) Reflecting mirror for laser
JPH04264513A (en) Metallic rotary polygon mirror
JPH077126B2 (en) Synthetic resin reflector
JPS61210175A (en) Electron beam assisted film forming device
JP3320148B2 (en) Manufacturing method of metal mirror
JP2001108802A (en) Antireflection film
JPS61185986A (en) Reflector for laser