JP3320148B2 - Manufacturing method of metal mirror - Google Patents

Manufacturing method of metal mirror

Info

Publication number
JP3320148B2
JP3320148B2 JP14570393A JP14570393A JP3320148B2 JP 3320148 B2 JP3320148 B2 JP 3320148B2 JP 14570393 A JP14570393 A JP 14570393A JP 14570393 A JP14570393 A JP 14570393A JP 3320148 B2 JP3320148 B2 JP 3320148B2
Authority
JP
Japan
Prior art keywords
film
protective film
metal mirror
substrate
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14570393A
Other languages
Japanese (ja)
Other versions
JPH06331809A (en
Inventor
征徳 塚本
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14570393A priority Critical patent/JP3320148B2/en
Publication of JPH06331809A publication Critical patent/JPH06331809A/en
Application granted granted Critical
Publication of JP3320148B2 publication Critical patent/JP3320148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カメラ、複写機、プリ
ンタ等の光学機械に用いられる金属ミラー製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a metal mirror used for an optical machine such as a camera, a copying machine, a printer and the like.

【0002】[0002]

【従来の技術】従来、カメラ、複写機、プリンタ等の光
学機械に用いられる金属ミラーは、プラスチック等で作
られた基体の表面にAl,Cu,Au,Ag等の高反射
率を有する金属の反射膜を成膜し、その上に誘電体材料
の保護膜や増反射膜を設けたものが一般的である。特
に、Al等の腐蝕しやすい金属からなる反射膜は、時間
とともに反射率が低下する性質(以下、「経時的劣化特
性」という。)や膜強度および耐薬品性が低い点を補う
ために、酸化処理による酸化層の形成あるいはSiO2
やSiOの保護膜を積層するなどの工夫がなされてお
り、例えば以下の例が公知である。
2. Description of the Related Art Conventionally, a metal mirror used for an optical machine such as a camera, a copying machine, a printer or the like is made of a metal having a high reflectance such as Al, Cu, Au, Ag or the like on a surface of a base made of plastic or the like. In general, a reflection film is formed, and a protective film of a dielectric material and a reflection-enhancing film are provided thereon. In particular, a reflective film made of a metal that easily corrodes, such as Al, is used in order to compensate for the property that the reflectance decreases with time (hereinafter referred to as “deterioration characteristic”) and the low film strength and chemical resistance. Formation of oxide layer by oxidation treatment or SiO 2
For example, the following examples are known, such as laminating a protective film of SiO2 or SiO.

【0003】1)プラスチック基体の表面に真空蒸着等
によってAl,Au,Ag,Ni,Cr等の反射膜を蒸
着し、その上に膜厚3〜8nmのSiOの保護膜を設け
る(特開昭56−110904号公報参照)。
1) A reflective film of Al, Au, Ag, Ni, Cr or the like is deposited on the surface of a plastic substrate by vacuum deposition or the like, and a protective film of SiO having a thickness of 3 to 8 nm is provided thereon. No. 56-110904).

【0004】2)透明基体の表面にAlの反射膜を成膜
し、次いでSiO2 膜とTiO2 膜からなる増反射膜を
加熱することなく積層したうえで大気中で加熱してAl
の反射膜の表面を酸化させる(特開昭58−43402
号公報参照)。
2) A reflective film of Al is formed on the surface of the transparent substrate, and a reflection-enhancing film composed of a SiO 2 film and a TiO 2 film is laminated without heating, and then heated in the air to form an Al reflection film.
Oxidizes the surface of the reflective film (see JP-A-58-43402).
Reference).

【0005】3)基体の表面にAlの反射膜を成膜し、
酸素ガスの雰囲気中でAlの反射膜の表面を酸化させた
うえで、SiO2 膜と、TiO2 膜からなる増反射膜を
設ける(特開昭58−55901号公報参照)。
3) A reflective film of Al is formed on the surface of the substrate,
After oxidizing the surface of the Al reflection film in an atmosphere of oxygen gas, an enhanced reflection film composed of a SiO 2 film and a TiO 2 film is provided (see Japanese Patent Application Laid-Open No. 58-55901).

【0006】4)Alの反射膜の表面を酸化させて10
nm〜20nmのAl23 層を形成し、その上にSi
2 の保護膜を設ける(特開昭58−72106号公報
参照)。
4) Oxidizing the surface of the Al reflection film to reduce
to form an Al 2 O 3 layer having a thickness of
An O 2 protective film is provided (see Japanese Patent Application Laid-Open No. 58-72106).

【0007】5)基体の表面にAlの反射膜を蒸着した
のち、光学膜厚0.03λ0 〜0.15λ0 (λ0 は設
計波長)の珪素酸化物あるいはフッ化マグネシウムの保
護膜を設ける(特開平2−50104号公報参照)。
[0007] 5) After depositing a reflective film of Al on the surface of the substrate, the optical film thickness 0.03λ 0 ~0.15λ 00 is a protective film of silicon oxide or magnesium fluoride design wavelength) (See JP-A-2-50104).

【0008】6)合成樹脂の基体の表面にSiOの保護
膜を設け、その上に反射膜を蒸着したのち、さらに膜厚
0.05〜1.0μmのSiOの保護膜を設ける(特開
平4−235502号公報参照)。
6) A protective film of SiO is provided on the surface of a synthetic resin substrate, a reflective film is deposited thereon, and then a protective film of SiO having a thickness of 0.05 to 1.0 μm is provided. -235502).

【0009】7)合成樹脂裏面反射鏡において、基板側
から珪素酸化物の保護膜、Al反射膜、膜厚10〜10
0nmのSiO2 の保護膜を積層する(特開平4−24
0802号公報参照)。
7) In the back reflector of synthetic resin, a protective film of silicon oxide, an Al reflective film, and a film thickness of 10 to 10 from the substrate side.
A protective layer of 0 nm SiO 2 is laminated (Japanese Patent Laid-Open No.
No. 0802).

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、SiO2 やSiO等を主成分とする保
護膜のみでは水分の透過を完全に防ぐことができないた
めに反射膜の経時的劣化特性の改善が充分ではない。ま
た、反射膜の表面を酸化する方法は、酸化する工程が複
雑であったり、反射膜の反射率が初めから低いという難
点があった。すなわち、1)の方法は単にSiOの保護
膜を設けただけであるため、水分の透過によるAlの反
射膜の経時的劣化特性を充分に改質できず、2)ないし
4)の方法は、Alの反射膜の表面に水分に対して高い
不透過性を有するAlの酸化膜を形成させることで経時
的劣化特性を改質するものであるが、Alの反射膜の表
面を酸化するために加熱またはプラズマ処理を必要とし
たり、あるいはAlの反射膜の表面を酸化するために酸
素を導入したのちに保護膜の成膜のために再び成膜室を
減圧する工程を要し、生産性が低いうえに、基体の材料
が限定されたり、プラズマ処理によるダメージや汚染等
のおそれもある。5)の方法は珪素酸化物やフッ化マグ
ネシウムの保護膜の膜厚を薄くすることによってAlの
反射膜との境界面にAlの酸化膜を形成させるものであ
り、2)ないし4)の方法と同じく経時的劣化特性の改
質は充分であるが、保護膜の膜厚が設計波長(650n
m)から算出すると13〜65nmであり、このために
反射率が初めから低いという難点がある。また、6)お
よび7)の方法は珪素酸化物の保護膜のみでは水分に対
する不透過性が充分ではないために、時間がたつとAl
の反射膜の腐蝕が進み反射率が低下する。
However, according to the above-mentioned prior art, since the transmission of moisture cannot be completely prevented only by the protective film mainly composed of SiO 2 or SiO, the deterioration of the reflective film with the passage of time. The improvement of characteristics is not enough. In addition, the method of oxidizing the surface of the reflective film has the disadvantage that the oxidizing step is complicated and the reflectance of the reflective film is low from the beginning. That is, since the method 1) merely provides the protective film of SiO, the time-dependent deterioration characteristics of the Al reflection film due to the permeation of moisture cannot be sufficiently modified, and the methods 2) to 4) require By forming an Al oxide film having high impermeability to moisture on the surface of the Al reflective film, the deterioration characteristics with the passage of time are improved, but in order to oxidize the surface of the Al reflective film, Heating or plasma treatment is required, or a step of depressurizing the film formation chamber again for forming a protective film after introducing oxygen to oxidize the surface of the Al reflective film is required, and productivity is reduced. In addition to being low, the material of the base is limited, and there is a risk of damage or contamination due to the plasma treatment. The method 5) is to form an Al oxide film on the interface with the Al reflection film by reducing the thickness of the protective film of silicon oxide or magnesium fluoride. The methods 2) to 4) Similarly to the above, the modification of the deterioration characteristics with time is sufficient, but the thickness of the protective film is changed to the design wavelength (650 nm).
m) is 13 to 65 nm, which has a drawback that the reflectance is low from the beginning. In the methods 6) and 7), the silicon oxide protective film alone does not have sufficient impermeability to moisture.
Corrosion of the reflective film proceeds, and the reflectance decreases.

【0011】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであり、極めて高い反射率を有
し、該反射率が時間とともに低下するおそれがないうえ
に、製造工程が簡単で安価である金属ミラー製造方法
を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, has an extremely high reflectance, does not cause the reflectance to decrease with time, and has a simple manufacturing process. it is an object to provide a method for producing a metal mirror is in inexpensive.

【0012】[0012]

【0013】[0013]

【課題を解決するための手段】 発明の金属ミラーの製
方法は、減圧された成膜室で基体の表面に金属の反射
膜を成膜する工程と、前記反射膜の表面に0.1から1
0nmの範囲の膜厚と所定のパッキング密度を有する保
護膜を成膜する工程と、前記保護膜の成膜後から前記成
膜室に酸素を導入して前記反射膜の表面を酸化させる工
程からなることを特徴とする。
SUMMARY OF THE INVENTION The manufacture of the metal mirror of the present invention .
The fabrication method includes the steps of forming a metal reflective film on the surface of the substrate in a reduced-pressure film forming chamber;
A process of forming a protective film having a thickness in the range of 0 nm and a predetermined packing density, and a process of oxidizing the surface of the reflective film by introducing oxygen into the film forming chamber after forming the protective film. It is characterized by becoming.

【0014】[0014]

【作用】上記方法によって製造された金属ミラー、反
射膜の表面が酸化されて水分を透過しない酸化層が形成
されているため、反射膜の腐蝕を防ぐことができる。ま
た、保護膜の膜厚が0.1から10nmの範囲であるた
め、反射膜の表面硬度を向上させるには充分であり、し
かも反射膜の反射率が保護膜によって大幅に損なわれる
おそれがない。保護膜の膜厚が0.1nmより小さい場
合は強度が不十分であり、保護膜の膜厚が10nmより
大きい場合は反射率が低下する。また、保護膜の膜厚が
薄いため、これを透過する酸素によって速やかに反射膜
の表面を酸化させることができ、従って、酸化層が形成
される前に水分が反射膜に侵入するのを防ぐことができ
る。その結果、酸化膜が形成される前に水分が侵入し反
射膜の腐蝕が進むおそれもない。また、保護膜を成膜後
に成膜室に酸素を導入し、反射膜の表面を酸化させたう
えでそのまま大気に開放できるため、製造工程が簡単で
ある。
In the metal mirror manufactured by the above method, since the surface of the reflection film is oxidized to form an oxide layer that does not transmit moisture, corrosion of the reflection film can be prevented. Further, since the thickness of the protective film is in the range of 0.1 to 10 nm, it is sufficient to improve the surface hardness of the reflective film, and there is no possibility that the reflectance of the reflective film is significantly impaired by the protective film. . When the thickness of the protective film is less than 0.1 nm, the strength is insufficient, and when the thickness of the protective film is more than 10 nm, the reflectance is reduced. Further, since the thickness of the protective film is thin, the surface of the reflective film can be quickly oxidized by oxygen passing through the protective film, and therefore, it is possible to prevent moisture from entering the reflective film before the oxide layer is formed. be able to. As a result, there is no possibility that moisture may enter before the oxide film is formed, and the corrosion of the reflection film may proceed. In addition, after the protective film is formed, oxygen can be introduced into the film forming chamber to oxidize the surface of the reflective film and then be directly exposed to the atmosphere, so that the manufacturing process is simple.

【0015】また、上記方法によれば、保護膜の成膜中
にパッキング密度が所定の値になるように堆積速度を制
御し、保護膜の成膜後に成膜室に酸素を導入する。パッ
キング密度を0.6ないし0.9に制御することで反射
膜の表面を極めて迅速に酸化することができる。この
後、成膜室をそのまま大気に解放し、製品を取りだすこ
とができる。
According to the above method, the deposition rate is controlled so that the packing density becomes a predetermined value during the formation of the protective film, and oxygen is introduced into the film forming chamber after the formation of the protective film. By controlling the packing density to 0.6 to 0.9, the surface of the reflection film can be oxidized very quickly. Thereafter, the film formation chamber is released to the atmosphere as it is, and the product can be taken out.

【0016】[0016]

【実施例】本発明の実施例を図面に基づいて説明する。An embodiment of the present invention will be described with reference to the drawings.

【0017】第1実施例 図1は、第1実施例に用いる蒸着装置を示すもので、該
蒸着装置は、排気口1aを有する成膜室である真空槽1
と、これに酸素ガス等の反応ガスを導入するための反応
ガス導入ライン1bと、真空槽1内において図示しない
回転装置によって回転される傘形の基板ホルダ2と、こ
れに保持された基体である基板Wに向かってそれぞれ蒸
気を発生させる第1および第2の蒸発源3,4と、基板
Wに蒸着される薄膜の堆積速度をモニタする水晶センサ
からなる膜厚モニタ5を有する。なお、第1の蒸発源3
は電子銃によって加熱されてAlの蒸気を発生し、第2
の蒸発源4は抵抗加熱によって加熱されて珪素酸化物S
iOx (1<x<2)(以下、「不飽和珪素酸化物」と
いう。)の蒸気を発生する。また、排気口1aは図示し
ない真空ポンプおよび大気導入ライン1cに交互に接続
される。
First Embodiment FIG. 1 shows a vapor deposition apparatus used in the first embodiment. The vapor deposition apparatus is a vacuum chamber 1 which is a film forming chamber having an exhaust port 1a.
And a reaction gas introduction line 1b for introducing a reaction gas such as oxygen gas into this, an umbrella-shaped substrate holder 2 rotated by a rotating device (not shown) in the vacuum chamber 1, and a substrate held by this. It has first and second evaporation sources 3 and 4 for generating vapor toward a certain substrate W, respectively, and a film thickness monitor 5 composed of a quartz sensor for monitoring the deposition rate of a thin film deposited on the substrate W. The first evaporation source 3
Is heated by an electron gun to generate Al vapor,
Of the silicon oxide S is heated by resistance heating.
iO x (1 <x <2) (hereinafter referred to as “unsaturated silicon oxide”) is generated. The exhaust port 1a is alternately connected to a vacuum pump (not shown) and an atmosphere introduction line 1c.

【0018】第1実施例の金属ミラーは以下のように製
作される。
The metal mirror of the first embodiment is manufactured as follows.

【0019】ポリカーボネート製の基板Wを基板ホルダ
2へ装着して真空槽1を1×10-3Pa以下の圧力に排
気したのち、反応ガス導入ライン1bから酸素ガスを導
入して1×10-2Paの圧力に調整し、この真空度で第
2の蒸発源4を加熱して膜厚85nmの不飽和珪素酸化
物のアンダーコートを成膜し、次いで、1×10-3Pa
の真空度で第1の蒸発源3を加熱して膜厚100nmの
Alの反射膜を積層し、続いて、前述と同様に酸素ガス
を導入して1.5×10-2Paの真空度に調整し、この
真空度で第2の蒸発源4を加熱して膜厚5nmの不飽和
珪素酸化物の保護膜を積層した。これらのアンダーコー
ト、反射膜および保護膜の蒸着はすべて基板Wを加熱す
ることなく連続的に行われ、保護膜の堆積速度は膜厚モ
ニタ5でモニタし、ほぼ0.5nm/秒に制御された。
保護膜の成膜後、反応ガス導入ライン1bから酸素ガス
を導入し、真空槽1の圧力を約100Paまで上昇させ
たうえで大気導入ライン1cを開放し、空気を導入し
た。なお、前述の堆積速度で成膜された保護膜のパッキ
ング密度は0.88以下であり、また、屈折率は400
nmの波長でほぼ1.48であった。
[0019] After the vacuum chamber was evacuated 1 to a pressure below 1 × 10 -3 Pa wearing the polycarbonate substrate W to the substrate holder 2, by introducing oxygen gas from the reaction gas inlet line 1b 1 × 10 - The pressure is adjusted to 2 Pa, and the second evaporation source 4 is heated at this degree of vacuum to form an undercoat of unsaturated silicon oxide with a thickness of 85 nm, and then 1 × 10 −3 Pa
The first evaporation source 3 is heated at a degree of vacuum to form an Al reflective film having a thickness of 100 nm, and then an oxygen gas is introduced in the same manner as described above to introduce a degree of vacuum of 1.5 × 10 −2 Pa. The second evaporation source 4 was heated at this degree of vacuum to deposit a 5 nm-thick protective film of unsaturated silicon oxide. The deposition of the undercoat, the reflective film, and the protective film are all performed continuously without heating the substrate W. The deposition rate of the protective film is monitored by the film thickness monitor 5 and is controlled to approximately 0.5 nm / sec. Was.
After the formation of the protective film, oxygen gas was introduced from the reaction gas introduction line 1b, the pressure in the vacuum chamber 1 was increased to about 100 Pa, and the atmosphere introduction line 1c was opened to introduce air. The packing density of the protective film formed at the above-mentioned deposition rate is 0.88 or less, and the refractive index is 400
It was approximately 1.48 at the wavelength of nm.

【0020】図2は本実施例の金属ミラーの入射角45
度における分光反射率を示すグラフである。この図から
解るように、本実施例の金属ミラーの製造直後の反射率
(以下、「初期反射率」という。)は波長400nmに
おいて極めて高くかつ広い波長領域において均一であ
る。また後述する製造直後の品質評価テスト(以下、
「初期評価テスト」という。)の結果、本実施例の金属
ミラーは、製造直後の状態において外観、耐薬品性、耐
環境性のすべてにおいて良好であり、また、外観および
反射率の経時的変化を評価する品質評価テスト(以下、
「経時評価テスト」という。)の結果、外観および反射
率のいずれも大きく変化するおそれがないことが判明し
た。
FIG. 2 shows an incident angle 45 of the metal mirror of this embodiment.
9 is a graph showing spectral reflectance in degrees. As can be seen from this figure, the reflectance (hereinafter, referred to as “initial reflectance”) immediately after the manufacture of the metal mirror of this embodiment is extremely high at a wavelength of 400 nm and uniform over a wide wavelength range. In addition, a quality evaluation test immediately after production described below (hereinafter,
"Initial evaluation test". As a result, the metal mirror of this example has good external appearance, chemical resistance, and environmental resistance in a state immediately after production, and a quality evaluation test (evaluating the change over time in appearance and reflectance). Less than,
This is called "aging evaluation test." As a result, it was found that there was no possibility that both the appearance and the reflectance would change significantly.

【0021】なお、パッキング密度とは、真空槽で成膜
された薄膜の単位体積当りの質量とこれを大気中に取り
だしたときの同薄膜の質量との比で表わされるものであ
り、予め、真空槽の膜厚モニタによる堆積速度とパッキ
ング密度の関係を調べておき、前述のように、成膜中の
堆積速度を制御することでパッキング密度を所定の値に
制御するのが一般的である。
The packing density is represented by the ratio of the mass per unit volume of a thin film formed in a vacuum chamber to the mass of the thin film when taken out into the atmosphere. In general, the relationship between the deposition rate and the packing density is checked by a film thickness monitor in a vacuum chamber, and the packing density is generally controlled to a predetermined value by controlling the deposition rate during film formation as described above. .

【0022】次に実験によれば、保護膜の膜厚が0.1
から10nmの範囲でパッキング密度が0.6ないし
0.9であれば、酸素の浸透が極めて迅速に行われ、真
空槽の残留水分が保護膜を通って反射膜の表面に到達す
る前に、該表面が酸化されて水分に対して不透過性を有
する酸化層が形成されることが判明した。また、保護膜
が珪素の酸化物、窒化物あるいは炭化物で作られていれ
ば、これらは水分との親和性がよいために水分を吸収
し、水分が反射膜の表面に到達するのを防ぐのに役立
つ。なお、これらが不飽和化合物であればより一層水分
との親和性が増す。さらに、前記アンダーコート、反射
膜および保護膜の成膜はすべて基板を加熱することなく
行われるのが望ましい。その理由は、加熱によって真空
槽内の残留水分が活性化して反射膜と結合しやすくなる
からである。
Next, according to an experiment, the thickness of the protective film was 0.1%.
If the packing density is from 0.6 to 0.9 in the range from 10 to 10 nm, the penetration of oxygen takes place very quickly, and before the residual moisture in the vacuum chamber reaches the surface of the reflective film through the protective film, It has been found that the surface is oxidized to form an oxide layer impermeable to moisture. Also, if the protective film is made of silicon oxide, nitride or carbide, these have good affinity for water, so they absorb water and prevent water from reaching the surface of the reflective film. Help. If these are unsaturated compounds, the affinity with water is further increased. Further, it is desirable that the formation of the undercoat, the reflective film, and the protective film is all performed without heating the substrate. The reason is that the residual water in the vacuum chamber is activated by the heating and is easily bonded to the reflection film.

【0023】次に比較のために以下の金属ミラーを製作
した。
Next, the following metal mirror was manufactured for comparison.

【0024】第1比較例 保護膜の膜厚をほぼ15nmにするとともに保護膜の成
膜後直ちに大気導入ライン1cを開放して空気を導入し
た以外は、すべて第1実施例と同様の方法でアンダーコ
ートと反射膜と保護膜を成膜した。初期評価テストの結
果、初期反射率がやや劣り、加えて、経時評価テストの
結果、反射率の低下が著しいうえに反射膜の腐蝕による
数μ程度の斑点が現れる等、外観の劣化もみられた。
COMPARATIVE EXAMPLE 1 The same method as in the first embodiment was adopted except that the thickness of the protective film was set to approximately 15 nm, and the air introduction line 1c was opened and air was introduced immediately after the protective film was formed. An undercoat, a reflective film, and a protective film were formed. As a result of the initial evaluation test, the initial reflectance was slightly inferior, and in addition, as a result of the aging evaluation test, deterioration of the external appearance was observed, such as a significant decrease in the reflectance and spots of about several μ due to corrosion of the reflective film. .

【0025】第2比較例 保護膜の膜厚をほぼ5nmにするとともにその成膜中に
酸素ガスを導入することなく、真空槽内の圧力を1×1
-3Paに調整し、また成膜後直ちに空気を導入した以
外すべて第1実施例と同様の方法で金属ミラーを製作し
た。保護膜の屈折率はほぼ1.8、パッキング密度はほ
ぼ0.96であった。初期評価テストの結果は良好であ
ったが、経時評価テストの結果、Alの反射膜の腐蝕の
ために斑点状のクモリが発生し、外観および反射率の劣
化が著しいことが判明した。この理由は、保護膜のパッ
キング密度が高いために反射膜の酸化が遅く、水分が侵
入したためと推測される。
Second Comparative Example The thickness of the protective film was set to approximately 5 nm, and the pressure in the vacuum chamber was reduced to 1 × 1 without introducing oxygen gas during the film formation.
A metal mirror was manufactured in the same manner as in the first embodiment except that the pressure was adjusted to 0 −3 Pa and air was introduced immediately after the film formation. The refractive index of the protective film was approximately 1.8, and the packing density was approximately 0.96. Although the results of the initial evaluation test were good, the results of the time evaluation test revealed that spot-like clouding was generated due to corrosion of the Al reflection film, and that the appearance and the reflectance were significantly deteriorated. The reason is presumed to be that oxidation of the reflective film was slow due to the high packing density of the protective film, and that moisture entered.

【0026】第3比較例 保護膜の材料をSiO2 、膜厚を約5nmにするととも
にその成膜中に酸素ガスを導入することなく、真空槽内
の圧力を1×10-3Paに調整し、また成膜後直ちに空
気を導入した以外すべて第1実施例と同様の方法で金属
ミラーを製作した。保護膜の屈折率はほぼ1.45、パ
ッキング密度はほぼ0.94であった。初期評価テスト
の結果は良好であったが経時評価テストの結果、Alの
反射膜の腐蝕によるクモリが発生し、外観および反射率
の劣化が著しいことが判明した。この理由は、保護膜の
材料が飽和酸化物のSiO2 であるうえにパッキング密
度が高いために反射膜の酸化が遅く、水分が侵入したた
めと考えられる。
Third Comparative Example The material of the protective film was SiO 2 , the film thickness was about 5 nm, and the pressure in the vacuum chamber was adjusted to 1 × 10 −3 Pa without introducing oxygen gas during the film formation. A metal mirror was manufactured in the same manner as in the first embodiment except that air was introduced immediately after the film formation. The refractive index of the protective film was approximately 1.45, and the packing density was approximately 0.94. Although the results of the initial evaluation test were good, the temporal evaluation test revealed that clouding occurred due to corrosion of the Al reflection film, and that the appearance and the reflectance were significantly deteriorated. It is considered that the reason for this is that the material of the protective film is a saturated oxide, SiO 2 , and the packing density is high, so that the oxidation of the reflective film is slow and water has entered.

【0027】第4比較例 保護膜の膜厚の成膜中に真空槽の圧力を1×10-2Pa
に調整した以外は第1実施例と同様の方法で金属ミラー
を製作した。保護膜の屈折率は400nmの波長で約
1.55、パッキング密度は0.88以下であった。初
期評価テストおよび経時評価テストの結果は第1実施例
とほぼ同様であったが、反射率の経時的劣化がやや大き
いという欠点がある。保護膜の屈折率が1.50を越え
ていることが原因であると見られる。
Fourth Comparative Example During the deposition of the protective film, the pressure in the vacuum chamber was set to 1 × 10 -2 Pa.
A metal mirror was manufactured in the same manner as in the first embodiment except that the adjustment was made as follows. The refractive index of the protective film was about 1.55 at a wavelength of 400 nm, and the packing density was 0.88 or less. Although the results of the initial evaluation test and the aging evaluation test were almost the same as those of the first embodiment, there was a disadvantage that the aging of the reflectance was slightly large. This is considered to be caused by the refractive index of the protective film exceeding 1.50.

【0028】第2実施例 第1実施例の膜厚5nmの不飽和珪素酸化物の保護膜に
替えて、膜厚5nmの不飽和珪素窒化物SiNx の保護
膜を有する金属ミラーを製作した。アンダーコートと反
射膜の成膜方法は第1実施例と同様であり、保護膜は、
真空槽内に酸素ガスを導入して1.5×10-2Paの真
空度に調整し、蒸発材料を電子銃によって加熱気化させ
て成膜し、その後酸素ガスを導入して真空槽の圧力を1
2 Paまで上昇させたうえで大気開放を行った。保護
膜の屈折率は400nmの波長で約2.05、パッキン
グ密度は0.86以下であった。初期評価テストおよび
経時評価テストの結果はすべて第1実施例と同様に良好
であった。
Second Example A metal mirror having a 5 nm-thick unsaturated silicon nitride SiN x protective film was manufactured in place of the 5 nm-thick unsaturated silicon oxide protective film of the first embodiment. The method of forming the undercoat and the reflection film is the same as that of the first embodiment.
Oxygen gas is introduced into the vacuum chamber to adjust the degree of vacuum to 1.5 × 10 -2 Pa, and the evaporation material is heated and vaporized by an electron gun to form a film. 1
After the pressure was increased to 0 2 Pa, the atmosphere was released. The refractive index of the protective film was about 2.05 at a wavelength of 400 nm, and the packing density was 0.86 or less. The results of the initial evaluation test and the aging evaluation test were all good as in the first example.

【0029】第3実施例 第1実施例の膜厚5nmの不飽和珪素酸化物の保護膜に
替えて、膜厚5nmの不飽和珪素炭化物SiCの保護膜
を有する金属ミラーを製作した。アンダーコートと反射
膜の成膜方法は第1実施例と同様であり、保護膜は、真
空槽内に酸素ガスを導入して1.5×10-2Paの真空
度に調整し、蒸発材料を電子銃によって加熱気化させて
成膜し、その後酸素ガスを導入して102 Paまで昇圧
させたうえで大気開放を行った。保護膜の屈折率は40
0nmの波長で約2.07、パッキング密度は0.85
以下であった。初期評価テストおよび経時評価テストの
結果は良好であった。
Third Example A metal mirror having a 5 nm-thick protective film of unsaturated silicon carbide SiC was manufactured in place of the 5 nm-thick unsaturated silicon oxide protective film of the first example. The method of forming the undercoat and the reflective film is the same as in the first embodiment. The protective film is adjusted to a vacuum of 1.5 × 10 −2 Pa by introducing oxygen gas into the vacuum chamber, Was heated and vaporized by an electron gun to form a film. Thereafter, the pressure was increased to 10 2 Pa by introducing oxygen gas, and then the atmosphere was released. The refractive index of the protective film is 40
About 2.07 at 0 nm wavelength, packing density is 0.85
It was below. The results of the initial evaluation test and the aging evaluation test were good.

【0030】次に、ポリカーボネート基板に替えて、B
K7光学用ガラスの基板、アクリル樹脂の基板、ポリオ
レフィン樹脂の基板を用いて第1実施例と同様の金属ミ
ラーを製作し、それぞれについて初期評価テストおよび
経時評価テストを行った。BK7光学用ガラスの基板を
用いた金属ミラーを第4実施例、アクリル樹脂の基板を
用いたものを第5実施例、ポリオレフィン樹脂の基板を
用いたものを第6実施例として、第1ないし第6実施例
の金属ミラーおよび第1ないし第4の比較例の金属ミラ
ーについて行った初期評価テストおよび経時評価テスト
の結果を表1に示す。
Next, B is replaced with a polycarbonate substrate.
Using the K7 optical glass substrate, the acrylic resin substrate, and the polyolefin resin substrate, metal mirrors similar to those of the first example were manufactured, and an initial evaluation test and a time evaluation test were performed on each of them. A metal mirror using a BK7 optical glass substrate as a fourth embodiment, a fifth embodiment using an acrylic resin substrate as a fifth embodiment, and a sixth embodiment using a polyolefin resin substrate as a first to a fifth embodiment. Table 1 shows the results of the initial evaluation test and the aging evaluation test performed on the metal mirror of Example 6 and the metal mirrors of the first to fourth comparative examples.

【0031】[0031]

【表1】 なお、外観の評価は、目視によるクモリ、膜ワレ、膜ハ
ガレ等の異常の有無を調べることによって行い、耐薬品
性は、アルコールとフロンソルブの混合液に浸したシル
ボン紙を用いて500g/cm2 の荷重で10往復した
ときの外観の異常を調べたものであり、耐環境性は−3
0度から60度までの温度変化を10工程連続して繰返
したときの外観の異常を調べたものである。経時評価テ
ストは、温度60度、湿度90%の環境で500時間経
過後に外観の異常および反射率を調べたものである。
[Table 1] The appearance was evaluated by visually inspecting for abnormalities such as clouding, film cracking, film peeling, etc., and the chemical resistance was measured at 500 g / cm 2 using silbon paper immersed in a mixed solution of alcohol and Freonsolve. The results were obtained by examining the external appearance abnormality after 10 reciprocations with a load of 3.
This is to examine abnormalities in appearance when the temperature change from 0 degrees to 60 degrees is repeated for 10 consecutive steps. The aging evaluation test was conducted to examine abnormalities in appearance and reflectance after 500 hours in an environment at a temperature of 60 ° C. and a humidity of 90%.

【0032】[0032]

【発明の効果】本発明は、上述のように構成されている
ので、以下に記載するような効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0033】極めて高い反射率を有し、該反射率が時間
とともに低下するおそれがないうえに、製造工程が簡単
で安価である金属ミラーを実現できる。
It is possible to realize a metal mirror which has an extremely high reflectivity, does not have the possibility that the reflectivity decreases with time, and has a simple manufacturing process and is inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の金属ミラーを製作するための蒸着
装置を説明する説明図である。
FIG. 1 is an explanatory diagram for explaining a vapor deposition apparatus for manufacturing a metal mirror of a first embodiment.

【図2】第1実施例の金属ミラーの反射率特性を示すグ
ラフである。
FIG. 2 is a graph showing the reflectance characteristics of the metal mirror of the first embodiment.

【符号の説明】[Explanation of symbols]

1 真空槽 1b 反応ガス導入ライン 2 基板ホルダ 3 第1の蒸発源 4 第2の蒸発源 5 膜厚モニタ DESCRIPTION OF SYMBOLS 1 Vacuum tank 1b Reaction gas introduction line 2 Substrate holder 3 First evaporation source 4 Second evaporation source 5 Film thickness monitor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 5/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 5/08

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 減圧された成膜室で基体の表面に金属の
反射膜を成膜する工程と、前記反射膜の表面に0.1か
ら10nmの範囲の膜厚と所定のパッキング密度を有す
る保護膜を成膜する工程と、前記保護膜の成膜後から前
記成膜室に酸素を導入して前記反射膜の表面を酸化させ
る工程からなる金属ミラーの製造方法。
1. A step of forming a metal reflective film on a surface of a substrate in a reduced-pressure film forming chamber, and having a film thickness in the range of 0.1 to 10 nm and a predetermined packing density on the surface of the reflective film. A method for manufacturing a metal mirror, comprising: forming a protective film; and introducing oxygen into the film forming chamber to oxidize the surface of the reflective film after the formation of the protective film .
【請求項2】 前記保護膜のパッキング密度が0.6な
いし0.9であることを特徴とする請求項記載の金属
ミラーの製造方法。
2. A method for producing a metal mirror of claim 1, wherein the packing density of the protective layer is 0.9 to 0.6 to.
【請求項3】 すべての工程が基体を加熱することなく
連続的に行われることを特徴とする請求項または
載の金属ミラーの製造方法。
3. A process according to claim 1 or 2 method for producing a metal mirror according to wherein all steps are performed continuously without heating the substrate.
【請求項4】 前記反射膜をAlから形成したことを特
徴とする請求項1ないし3いずれか1項記載の金属ミラ
ーの製造方法。
4. A method according to claim 1, wherein said reflection film is formed of Al.
The metal mirror according to any one of claims 1 to 3, characterized in that:
Manufacturing method.
【請求項5】 前記保護膜を、不飽和珪素酸化物、不飽
和珪素窒化物、不飽和珪素炭化物のうちのいずれか1つ
から形成したことを特徴とする請求項1ないし4いずれ
か1項記載の金属ミラーの製造方法。
5. The method according to claim 1, wherein said protective film is made of an unsaturated silicon oxide,
Any one of Japanese silicon nitride and unsaturated silicon carbide
5. The method according to claim 1, wherein the first member is formed from
The method for producing a metal mirror according to claim 1.
【請求項6】 前記保護膜を、波長400nmの光に対
する屈折率が1.48の不飽和珪素酸化物から形成した
ことを特徴とする請求項1ないし4いずれか1項記載の
金属ミラーの製造方法。
6. The protective film according to claim 1, wherein said protective film is adapted for light having a wavelength of 400 nm.
Formed from unsaturated silicon oxide having a refractive index of 1.48
The method according to any one of claims 1 to 4, wherein
Manufacturing method of metal mirror.
JP14570393A 1993-05-25 1993-05-25 Manufacturing method of metal mirror Expired - Fee Related JP3320148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14570393A JP3320148B2 (en) 1993-05-25 1993-05-25 Manufacturing method of metal mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14570393A JP3320148B2 (en) 1993-05-25 1993-05-25 Manufacturing method of metal mirror

Publications (2)

Publication Number Publication Date
JPH06331809A JPH06331809A (en) 1994-12-02
JP3320148B2 true JP3320148B2 (en) 2002-09-03

Family

ID=15391167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14570393A Expired - Fee Related JP3320148B2 (en) 1993-05-25 1993-05-25 Manufacturing method of metal mirror

Country Status (1)

Country Link
JP (1) JP3320148B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112734A (en) * 1997-06-19 1999-01-19 Mitsui Chem Inc Thin metallic film, and optical recording medium using same
JP4635939B2 (en) * 2006-03-30 2011-02-23 株式会社ニコン Surface inspection device

Also Published As

Publication number Publication date
JPH06331809A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
CN113204066B (en) Optical filter
CH679579A5 (en)
CN104090312A (en) Infrared metal reflecting film with high adhesive force and manufacturing method thereof
CN111679347A (en) High damage threshold laser film process technology method
EP1232407A2 (en) Heat-absorbing filter and method for making same
US20110003125A1 (en) Glass product and a method for manufacturing a glass product
EP0650938A1 (en) Transparent substrate coated with a metallic nitride layer
JP2020523642A (en) Expanding the reflection bandwidth of silver-coated laminates for high reflectors
JPH08254612A (en) Multilayer film optical component and manufacture thereof
JPS5860701A (en) Reflection preventing film
JP2006317603A (en) Front surface mirror
JP3320148B2 (en) Manufacturing method of metal mirror
JP4351678B2 (en) Silver mirror and manufacturing method thereof
US20020080843A1 (en) Infrared laser optical element and manufacturing method therefor
EP0723273B1 (en) Multilayer film structure for soft X-ray optical elements
JP2000171622A (en) Internal reflection type optical element and its production
JP3689923B2 (en) Method for producing plastic film having antireflection film
CN114196924A (en) Coating method of vacuum ultraviolet aluminum reflector on surface of copper substrate
JP3399004B2 (en) Water and oil repellent heat ray shielding glass
JP3509414B2 (en) Reflector and method of manufacturing the same
JP3352172B2 (en) Optical thin film of plastic optical component and method of forming the same
JP2780174B2 (en) Manufacturing method of metal reflector
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JPH08269691A (en) Metal coated film
JP2003121623A (en) High reflective mirror and high reflective mirror optical system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees