JPS61209004A - Separation membrane and its preparation - Google Patents

Separation membrane and its preparation

Info

Publication number
JPS61209004A
JPS61209004A JP5008085A JP5008085A JPS61209004A JP S61209004 A JPS61209004 A JP S61209004A JP 5008085 A JP5008085 A JP 5008085A JP 5008085 A JP5008085 A JP 5008085A JP S61209004 A JPS61209004 A JP S61209004A
Authority
JP
Japan
Prior art keywords
phase
glass
separation
porous body
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5008085A
Other languages
Japanese (ja)
Inventor
Fumio Abe
文夫 安部
Yasushi Fujita
藤田 恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5008085A priority Critical patent/JPS61209004A/en
Priority to US06/832,218 priority patent/US4689150A/en
Priority to DE8686301512T priority patent/DE3675961D1/en
Priority to EP86301512A priority patent/EP0195549B1/en
Publication of JPS61209004A publication Critical patent/JPS61209004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a separation membrane excellent in heat resistance, chemical resistance and durability, generating no crack and suitable for the separation of gas, by forming a metallic or ceramic membrane having fine pores with a specific pore size to the surface of a vitreous porous body obtained by the phase splitting treatment of glass. CONSTITUTION:Phase splittable glass of a Na2O-B2O3-SiO2 system is applied to a flat plate 2 comprising a ceramic porous body and melted under heating to form a glass layer 3 while the coated flat plate is treated in a reaction tube by a gaseous phase method to form a membrane having uniform fine pores with a pore size of 5-2,000Angstrom comprising Al2O3 to the surface of the glass layer 3. Next, the glass layer 3 is subjected to phase splitting treatment so as to a adjust the cross sectional area of the glass phase rich in alkali to 10-5,000Angstrom under a regulated phase splitting treatment condition. Thereafter, elution treatment is performed to elute the glass phase rich in alkali to obtain a separation membrane comprising a vitreous porous body 8 rich in silica having a reticulated fine pores 7 with a pore size of 10-5,000Angstrom while the membrane 4 is left on the surface thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガス分離をはじめ、精密濾過、限界濾過、逆浸
透法等の広範な用途に用いられる分離膜とその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a separation membrane used in a wide range of applications such as gas separation, precision filtration, ultrafiltration, and reverse osmosis, and a method for manufacturing the same.

(従来の技術) 混合ガスから特定ガスをガス拡散法によって分離するガ
ス分離等の分野においては、ガス分子の平均自由行程よ
りもはるかに小さい孔径数十〜数百人の細孔を持つ分離
膜が用いられている。従来のこの種の分離膜としては通
常はを機高分子膜が使用されているが、100℃以上の
温度で使用することができないうえに耐薬品性、耐久性
に劣り、実用上に種々の問題が残されている。一方、耐
熱性を向上させる目的で金属粉末やセラミック粉末を焼
結して多孔質の分離膜を製造する方法も知られているが
、この方法による分離膜は強度上の問題から1龍以下の
膜厚とすることは困難であり、可能な限り膜厚を薄(し
て分離効率を向上させることが望まれるガス分離用の分
離膜としてはやはり実用性に欠ける面があった。そこで
、特開昭59−59223号公報に示されるように、セ
ラミック焼結体のような多孔体に溶液状のアルミニウム
アルコラード又はアルミニウムキレート等の隔膜形成成
分を含浸させ、加水分解後に乾燥、焼成して多層の多孔
質体よりなる隔膜を得る試みもなされているが、この方
法では溶液中の水分や有機バインダーが飛散する際に隔
膜中にクランクや気泡を残し易く、隔膜中の細孔を孔径
数十〜数百人にコントロールしてもクランクによる数十
μの貫通孔を通って大部分のガスが拡散してしまい、望
ましいガス分離を行わせ難い欠点があった。
(Prior art) In the field of gas separation, which separates a specific gas from a mixed gas by the gas diffusion method, separation membranes with pores of several tens to hundreds of pores, which are much smaller than the mean free path of gas molecules, are used. is used. Conventional separation membranes of this type usually use mechanical polymer membranes, but they cannot be used at temperatures above 100°C and have poor chemical resistance and durability. Problems remain. On the other hand, it is also known to manufacture porous separation membranes by sintering metal powders or ceramic powders for the purpose of improving heat resistance, but separation membranes made by this method have a strength of less than 1 dragon. It is difficult to make the film thick enough, and it is still impractical as a separation membrane for gas separation, where it is desired to make the film as thin as possible to improve separation efficiency. As shown in Japanese Patent Publication No. 59-59223, a porous body such as a ceramic sintered body is impregnated with a diaphragm-forming component such as aluminum alcoholade or aluminum chelate in the form of a solution, and after hydrolysis, it is dried and fired to form a multilayered body. Attempts have also been made to obtain a diaphragm made of a porous material, but this method tends to leave cracks and air bubbles in the diaphragm when the water in the solution and the organic binder scatter, and the pores in the diaphragm are reduced to tens of pores in diameter. Even if controlled by ~100 people, most of the gas would diffuse through the through holes of several tens of microns created by the crank, making it difficult to achieve desired gas separation.

(発明が解決しようとする問題点) 本発明はこのような従来の問題点を解決して、耐熱性、
耐薬品性、耐久性に優れ、膜厚を極めて薄くシた場合に
もクランク等を生ずる虞れがない孔径が5〜2000人
の多数の細孔を備えた分離膜とその製造方法を目的とし
て完成されたものである。
(Problems to be solved by the invention) The present invention solves these conventional problems and improves heat resistance,
A separation membrane with a large number of pores of 5 to 2,000 pores in diameter, which has excellent chemical resistance and durability, and which does not cause cracks even when the membrane is extremely thin, and a method for manufacturing the same. It is complete.

(問題点を解決するための手段) 本発明はガラスを分相処理して得られた孔径が10〜5
000Åの網状細孔を持つガラス質の多孔体の表面に、
孔径5〜2000人の細孔を持つ気相から生成された金
属質又はセラミックス質の薄膜を形成したことを特徴と
する分離膜に関する第1の発明と、分相可能なガラス層
の表面に気相法によって5〜2000人の孔径の細孔を
持つ金属又はセラミックス質の薄膜を形成するとともに
該ガラス層に分権処理を施し、その後分相したガラス層
に溶出処理を施してガラス層を10〜5000人の網状
細孔を持つガラス質の多孔体とすることを特徴とする分
離膜の製造方法に関する第2の発明とから成るものであ
る。
(Means for Solving the Problems) The present invention is characterized in that the pore size obtained by phase separation treatment of glass is 10 to 5.
On the surface of a glassy porous body with 000 Å network pores,
A first invention relating to a separation membrane characterized in that a thin film of metal or ceramic is formed from a gas phase having pores with a pore size of 5 to 2000 people, and A metal or ceramic thin film having pores with a pore diameter of 5 to 2,000 is formed by a phase method, and the glass layer is subjected to a decentralization treatment, and then the phase-separated glass layer is subjected to an elution treatment to form a glass layer of 10 to 2,000. This invention also consists of a second invention relating to a method for manufacturing a separation membrane characterized in that it is a glassy porous body having 5,000 net-like pores.

ガラスの分相はガラス相の内部に2種類以上のガラスを
分離させたものであって、一般的にはシリカリッチなガ
ラス相とアルカリリッチなガラス相との分離を利用する
0分相可能なガラスとしてはN a go −BzOs
  S i Os系、Nato−BIOs  Sing
 −重金属酸化物系、Na、O−B。
Phase separation of glass is the separation of two or more types of glass inside the glass phase, and generally, 0-separation is possible, which utilizes the separation of a silica-rich glass phase and an alkali-rich glass phase. As for glass, Na go -BzOs
S i Os system, Nato-BIOs Sing
- Heavy metal oxide system, Na, O-B.

02  Ce Ol  ・3 N 1)gos系、Na
、O−P。
02 Ce Ol ・3 N 1) gos system, Na
, O-P.

0、−3t0.系、N a tOBtus  S i 
0H−GeO,系等のガラスが用いられる0代表的なN
 a to  BzOs −S L Ol系のガラスは
均質な硼珪酸塩ガラスの内部に熱処理によってほとんど
5i01のみからなるシリカガラス相と、NagO−B
、O,を主成分とするガラス相とを数十人のオーダーで
分相させるもので、分相し易いようにN a z O/
 B t O3はモル比で175の近傍とし、また溶出
処理後の強度保持上、5tatを50%以上含有させて
おくことが望ましい。このような分相可能なガラスは加
熱溶融されて薄板や円筒等の任意形状のガラス層に成形
される。この場合にはハンドリングのために十分な強度
を得るために0.5fi以上の厚さを持たせることが好
ましい。
0, -3t0. system, N a tOBtus S i
0H-GeO, etc. glasses are used.
a to BzOs -S L O1 glass is a homogeneous borosilicate glass with a silica glass phase consisting almost only of 5i01 and NagO-B by heat treatment.
, O, and the glass phase mainly composed of N a z O/ to facilitate phase separation.
B t O3 should be in the vicinity of 175 in molar ratio, and in order to maintain strength after elution treatment, it is desirable to contain 5tat in an amount of 50% or more. Such phase-separable glass is heated and melted to form a glass layer of any shape such as a thin plate or cylinder. In this case, it is preferable to have a thickness of 0.5 fi or more in order to obtain sufficient strength for handling.

なお、実用的には第1図に模式的に示すように0゜5〜
30μの孔径の連続孔+1)を持つアルミナ、ムライト
、コージライトのようなセラミック多孔体(2)の表面
に分相可能なガラス層(3)を被覆したものとして、ガ
ラス層(3)のみのものよりも更に大きい強度を持たせ
ることが好ましい0次に、これらの分相可能なガラス層
(3)の表面に気相法によって第2図のように金属質又
はセラミックス質の薄膜(4)が形成される。気相法は
薄膜を形成させようとする物質もしくはその原材料から
なる物質に熱又は運動量を加えて原子、分子又は集合体
に分解したうえ別の場所の基体上に結合あるいはS縮さ
せる方法として定義され、化学反応法(CVD法)と物
理蒸着法(PVD法)とに大別される。化学反応法は狭
義の化学反応法、化学輸送法、基板反応法、スプレー法
等に更に分類されるが、いずれも薄膜となる素材を気化
し易い化合物に変え、気相を通して運搬したうえで基板
表面で化学反応を行わせて膜を形成する方法である。ま
た、物理蒸着法は真空蒸着法、イオンブレーティング法
、スパッタリング法、プラズマ法のような真空中で素材
に物理的なエネルギを加えて蒸発させたうえ基板上へ蒸
着させて膜を形成する方法である。これらの気相法によ
り基板上に生成される薄膜(4)は基板 ・の温度及び
雰囲気圧等を適当な値に制御しつつ処理を行えば、生成
過程における核成長あるいは自己陰影効果によって多孔
性の柱状構造を持ち、5〜2000人の孔径の均一な細
孔を持つ薄膜(4)となる。孔径が5人未満であるとガ
スの透過速度が小さくなって実用性が失われ、2000
人を試すとガスの分離性能の低下が生ずるので、孔径が
5〜2000人となるように制御を行うものとする。そ
の膜厚は10Å〜100μが適当であり、またその材質
としては酸化物、炭化物、窒化物のほか金属、金属間化
合物を用いることもできる。このようにして分相可能な
ガラス層(3)の表面に気相法により薄膜(4)を形成
したのち、ガラス層(3)を加熱して分相処理すると、
第3図に示されるようにガラス層(3)中に分権が生じ
、シリカリッチなガラス相(5)とアルカリリッチなガ
ラス相(6)とに分離する0分相処理は一般的には15
0〜800℃で0゜5時間以上、分相可能なガラスとし
てN a 重0−BtOs −3i O1系のガラスを
用いた場合には400〜700℃で行われる。低温で短
時間の分権処理を行うと分相は微細であり、高温で長時
間となるほど分相が進行するので、アルカリリッチなガ
ラス相(6)の断面積が10〜5000人となるように
分相処理の条件を設定する。その後、90℃以上の熱水
あるいは60〜100℃の0.01〜0゜INの塩酸、
硫酸、硝酸等を用いて溶出処理を行えば、第4図に示す
ようにアルカリリッチなガラス相(6)は溶出して気相
法によるFII膜(4)を表面に残したまま10〜50
00人の網状細孔(ηを持つシリカリッチなガラス質の
多孔体(8)となる、細孔径が10人未満であるとやは
りガスの透過速度が低下し、5000人を越すとガスの
分離性能が低下する。
In addition, in practice, as schematically shown in Figure 1, the temperature is 0°5~
Assuming that the surface of a ceramic porous body (2) such as alumina, mullite, or cordierite having continuous pores with a pore diameter of 30μ (+1) is coated with a phase-separable glass layer (3), only the glass layer (3) is coated. It is preferable to give the glass layer (3) a strength even greater than that of the glass layer (3). Next, a thin film (4) of metal or ceramic is applied to the surface of the phase-separable glass layer (3) by a vapor phase method as shown in Fig. 2. is formed. The vapor phase method is defined as a method of applying heat or momentum to a substance to be formed into a thin film or a substance consisting of its raw materials, decomposing it into atoms, molecules, or aggregates, and then bonding or S-contracting them onto a substrate in another location. It is broadly divided into chemical reaction method (CVD method) and physical vapor deposition method (PVD method). Chemical reaction methods are further classified into chemical reaction methods in a narrow sense, chemical transport methods, substrate reaction methods, spray methods, etc., but all of them involve changing the material that will form a thin film into a compound that easily vaporizes, transporting it through a gas phase, and then applying it to a substrate. This method involves forming a film by causing a chemical reaction on the surface. In addition, physical vapor deposition is a method such as vacuum evaporation, ion blasting, sputtering, and plasma that applies physical energy to a material in a vacuum to evaporate it, and then deposits it onto a substrate to form a film. It is. If the thin film (4) produced on the substrate by these vapor phase methods is processed while controlling the temperature and atmospheric pressure of the substrate to appropriate values, the thin film (4) will become porous due to nucleation or self-shading effect during the formation process. The thin film (4) has a columnar structure and has uniform pores with a pore diameter of 5 to 2,000. If the pore size is less than 5, the gas permeation rate will be low and practicality will be lost.
Since the gas separation performance will deteriorate if the pore size is tested using pores, the pore diameter is controlled to be 5 to 2,000 pores. The film thickness is suitably 10 Å to 100 μm, and the material may be oxides, carbides, nitrides, metals, or intermetallic compounds. After forming a thin film (4) on the surface of the phase-separable glass layer (3) in this way by a vapor phase method, when the glass layer (3) is heated and subjected to phase-separation treatment,
As shown in Figure 3, the 0 minute phase treatment, in which decentralization occurs in the glass layer (3) and separates into a silica-rich glass phase (5) and an alkali-rich glass phase (6), is generally performed at 15 min.
The heating is carried out at 0°C to 800°C for 0°5 hours or more, and when Na weight 0-BtOs -3i O1 type glass is used as the phase-separable glass, it is carried out at 400°C to 700°C. If decentralized treatment is carried out for a short time at low temperature, the phase separation will be fine, and the longer the time at high temperature, the more phase separation will occur. Set the conditions for phase separation processing. After that, hot water at 90°C or higher or 0.01-0°IN hydrochloric acid at 60-100°C,
If elution treatment is performed using sulfuric acid, nitric acid, etc., the alkali-rich glass phase (6) will be eluted, leaving the FII film (4) formed by the gas phase method on the surface, as shown in Figure 4.
A silica-rich glassy porous body (8) with a net-like pore size of 0.00 mm (η) results. If the pore size is less than 10 mm, the gas permeation rate will decrease, and if it exceeds 5000 mm, the gas separation will occur. Performance decreases.

(作用) このように本発明においては気相法による薄膜形成に適
する平坦平滑である程度の強度を有する分相可能なガラ
ス層(3)の表面に薄膜形成を行わせるので、孔径5〜
2000人の均一かつ微小な細孔を持つ薄膜(4)を安
定して形成することができる、しかもmH形成後にガラ
ス相の分相処理及び溶出処理を行うことにより薄膜(4
)を表面に残したままでガラス層(3)のみを10〜5
000人の網状細孔(7)を持つガス透過性の高いシリ
カリッチなガラス質の多孔体(8)とすることができる
、従ってガス透過性の高いガラス質の多孔体(8)の表
面に均一かつ微小な細孔を持つ薄膜(4)を形成した分
離膜を安定して製造することができ、また、気相法によ
る薄膜形成条件やガラス層(3)の分相処理条件の調整
によって任意の孔径及び膜厚の分離膜を製造することが
できる0本発明の分離膜は従来の有機高分子膜とは異な
り、ガラス質とセラミック賞あるいは金属質からなるも
のであるので耐熱性、耐薬品性、耐久性に優れ、また従
来のセラミック焼結体等にアルミニウムアルコラード等
を含浸させ加水分解後に乾燥、焼成して得られた多層の
多孔体のようにクランクが存在することもな(、効率良
くガス分離を行わせるに適したものである。
(Function) In this way, in the present invention, a thin film is formed on the surface of the glass layer (3) which is flat and smooth and has a certain degree of strength and is suitable for forming a thin film by a vapor phase method, so that the pore size is 5 to 5.
A thin film (4) with uniform and minute pores of 2,000 pores can be stably formed. Moreover, by performing phase separation treatment and elution treatment of the glass phase after mH formation, the thin film (4) can be stably formed.
) while leaving the glass layer (3) on the surface.
The surface of the vitreous porous body (8) with high gas permeability can be made into a silica-rich porous body (8) with high gas permeability having 0.000 reticular pores (7). It is possible to stably produce a separation membrane in which a thin film (4) with uniform and minute pores is formed, and by adjusting the thin film formation conditions by the vapor phase method and the phase separation treatment conditions of the glass layer (3). Unlike conventional organic polymer membranes, the separation membrane of the present invention is made of glass, ceramic, or metal, so it has excellent heat resistance and resistance. It has excellent chemical resistance and durability, and does not have cranks like the multilayered porous bodies obtained by impregnating conventional ceramic sintered bodies with aluminum Alcolade, etc., and drying and firing after hydrolysis. , which is suitable for efficient gas separation.

(実施例) 実施例I N a to  Btus −S i Ox系の分相可
能なガラスを溶融して厚さ1fiの平板を成形し、これ
を反応管中で気相化学反応法により処理して平板の表面
にAltos質からなる平均細孔径200人の細孔を持
つ膜厚10μの薄膜を形成した。原料ガスはAlCl5
、HgOであり、キャリアガスはAr%O!で反応温度
は900℃とした。その後500℃、12時間の分相処
理を行ったうえ、90℃、0.1Nの塩酸により溶出処
理を施し、ガラス層をシリカリッチな平均細孔径200
0人の網状細孔を持つガラス質の多孔体とした。この結
果、ガラス質の多孔体の表面に気相法による膜厚10μ
の薄膜が形成された分離膜が得られた。
(Example) Example I N a to Btus - Si Ox system phase-separable glass was melted to form a flat plate with a thickness of 1 fi, and this was treated in a reaction tube by a gas phase chemical reaction method. A thin film made of Altos and having a thickness of 10 μm and having pores having an average pore diameter of 200 μm was formed on the surface of the flat plate. Raw material gas is AlCl5
, HgO, and the carrier gas is Ar%O! The reaction temperature was 900°C. After that, phase separation treatment was performed at 500℃ for 12 hours, and elution treatment was performed with 0.1N hydrochloric acid at 90℃ to form a silica-rich glass layer with an average pore diameter of 200℃.
A glassy porous body with 0 net-like pores was obtained. As a result, a film with a thickness of 10 μm was formed on the surface of the glassy porous body by the vapor phase method.
A separation membrane was obtained in which a thin film was formed.

実施例2 N a !OBtus −S i Os系の分相可能な
ガラスを溶融して厚さ1mの平板を成形し、これを反応
管中で真空蒸着法により平板の表面に平均細孔径50人
の細孔を持つ膜厚2μのAt1o3質の薄膜を形成した
。蒸発源はAI、雰囲気は0雪、圧力は1G−’tor
rであり、分相可能なガラスからなる平板の温度を40
0℃に保ったところ、薄膜形成と同時に分相が進行した
。冷却後、90℃、0.INの塩酸により溶出処理して
ガラス層を平均細孔径1000人の網状細孔を持っシリ
カ分によりなるガラス質の多孔体とした。この結果、ガ
ラス質の多孔体の表面に気相法にょる膜厚2μの薄膜が
形成された分離膜が得られた。
Example 2 Na! A 1 m thick flat plate is formed by melting OBtus-SiOs type phase-separable glass, and this is coated in a reaction tube with a vacuum evaporation method to form a membrane having pores with an average pore size of 50 pores on the surface of the flat plate. A thin film of At1o3 having a thickness of 2 μm was formed. The evaporation source is AI, the atmosphere is 0 snow, and the pressure is 1G-'tor.
r, and the temperature of the flat plate made of phase-separable glass is 40
When the temperature was maintained at 0°C, phase separation proceeded simultaneously with the formation of a thin film. After cooling, 90°C, 0. The glass layer was subjected to elution treatment with IN hydrochloric acid to form a glassy porous body having network pores with an average pore diameter of 1,000 pores and consisting of silica. As a result, a separation membrane was obtained in which a thin film having a thickness of 2 μm was formed on the surface of a glassy porous body by a vapor phase method.

実施例3 アルミナ質の粒状体を焼成して平均細孔径1μ、厚さl
鶴のセラミック多孔体よりなる平板上にN a to 
 B冨Os −S i Ox系の分相可能なガラスを厚
さ300μになるように塗布し、加熱溶融後これを反応
管中でスパッタリング法により分相可能なガラスの表面
に平均細孔径100人の細孔を持つ膜厚0.1 μのA
INの薄膜を形成した。陰極材料はAIで、Ar5X1
0−”torr、Nz2X10弓torrの雰囲気下で
、平板温度2゜0℃として放電させた。その後、500
℃12時間の分相処理を行い、冷却後90’C1O,l
Nの塩酸により溶出処理し、アルミナ質の多孔体上のガ
ラス層を平均細孔径2000人の網状細孔を持つ多孔体
とした。この結果、ガラス質の多孔体の表面に気相法に
よる膜厚O01μの薄膜が形成された分離膜が得られた
Example 3 Alumina granules were fired to have an average pore diameter of 1 μm and a thickness of 1 μm.
Na to on a flat plate made of Tsuru's porous ceramic material.
A phase-separable glass of Os-S i Ox system was applied to a thickness of 300μ, and after heating and melting, it was sputtered in a reaction tube to form an average pore size of 100 on the surface of the phase-separable glass. A with a film thickness of 0.1 μ with pores of
A thin film of IN was formed. The cathode material is AI, Ar5X1
The discharge was carried out in an atmosphere of 0-" torr and Nz2
℃ 12 hours of phase separation treatment, and after cooling 90'C1O,l
Elution treatment was carried out with N hydrochloric acid, and the glass layer on the alumina porous body was made into a porous body having network pores with an average pore diameter of 2,000 pores. As a result, a separation membrane was obtained in which a thin film having a thickness of 001 μm was formed on the surface of a glassy porous body by a vapor phase method.

上記の実施例1〜3の分離膜のほか、比較例としてガラ
スを分相処理して厚さ1fl、平均細孔径50人のガラ
ス質のみからなる分離膜を作成し、流通式ガス分離装置
を用いてHg50(体積)%、N150%の混合ガスの
分離テストを行った。
In addition to the separation membranes of Examples 1 to 3 above, as a comparative example, glass was subjected to phase separation treatment to create a separation membrane consisting only of glass with a thickness of 1 fl and an average pore diameter of 50 mm, and a flow-through gas separation device was constructed. A separation test was conducted on a mixed gas containing 50% (by volume) Hg and 150% N.

供給側圧力5.0鎗/−1流出側圧力1 kg/cd、
温度300℃の条件でテストした結果、次表のとおりの
結果が得られた。
Supply side pressure 5.0 yen/-1 Outlet side pressure 1 kg/cd,
As a result of testing at a temperature of 300°C, the results shown in the following table were obtained.

(発明の効果) 本発明は以上の説明からも明らかなように、表面が平滑
である程度の強度のある分相可能なガラス層の表面に気
相法により孔径5〜2000人の均一かつ微小な細孔を
持つ薄膜を形成したうえで、ガラス層の分権処理及び溶
出処理を行うことにより薄膜を残したままガラス層をガ
、ス透過性の高い多孔体とすることによって、ガス分離
に適した細孔を持つ薄膜と、ガス透過性の高い多孔体と
からなる分離膜を安定して得ることができるものである
0本発明の分離膜は、細孔の均一性、耐熱性、耐薬品性
、耐久性、機械的強度に優れたもので、特に図示のよう
にガラス層をセラミック多孔体の表面に被覆形成したも
のは実用的に優れた強度を示すものである。また本発明
の分離膜は任意の膜厚や細孔径のものを製造することが
できるうえに、クラックのないものであるがら、特に効
率良くガス分離を行わせるに好適なものである。このよ
うに本発明は製鉄所の副生ガスからのH,回収% CI
 化学における合成ガス(Co−Hz)の混合比調整、
天然ガスからのHeの濃縮等のガス分離の分野に有益で
あるが、このほか、本発明の分離膜は水溶液や有機溶媒
の濾過、酵母やかび類の濾過、細菌やウィルスの濾過の
ような精密濾過の分野、およびタンパク質の濃縮、回収
、精製、ワクチン、酵素、ビールス、核酸等の生理活性
物質の濃縮、回収、精製等の限界濾過の分野のほか、海
水、塩水等の淡水化、純水、無菌水の製造等の逆浸透法
の分野にも有効に利用することができるものである。よ
って本発明は従来のこの種の分離膜の問題点を一掃した
ものとして、産業の発展に寄与するところは極めて大で
ある。
(Effects of the Invention) As is clear from the above description, the present invention provides uniform and fine pores with a diameter of 5 to 2000 by a vapor phase method on the surface of a glass layer with a smooth surface and a certain degree of strength that can be phase separated. After forming a thin film with pores, the glass layer is decentralized and eluted to make the glass layer a porous material with high gas and gas permeability while leaving the thin film, making it suitable for gas separation. It is possible to stably obtain a separation membrane consisting of a thin film with pores and a porous body with high gas permeability.The separation membrane of the present invention has uniformity of pores, heat resistance, and chemical resistance. It has excellent durability and mechanical strength, and in particular, a ceramic porous body whose surface is coated with a glass layer as shown in the figure shows excellent strength for practical use. Furthermore, the separation membrane of the present invention can be manufactured to any thickness and pore size, and is crack-free, making it suitable for particularly efficient gas separation. In this way, the present invention improves H, recovery % CI from by-product gas of steel works.
Mixing ratio adjustment of synthesis gas (Co-Hz) in chemistry,
In addition to being useful in the field of gas separation, such as concentrating He from natural gas, the separation membrane of the present invention can also be used in other applications such as filtration of aqueous solutions and organic solvents, filtration of yeast and molds, and filtration of bacteria and viruses. In addition to the fields of ultrafiltration, such as the concentration, recovery, and purification of proteins, concentration, recovery, and purification of physiologically active substances such as vaccines, enzymes, viruses, and nucleic acids, we also apply desalination and purification of seawater, salt water, etc. It can also be effectively used in the field of reverse osmosis, such as the production of water and sterile water. Therefore, the present invention eliminates the problems of conventional separation membranes of this type and greatly contributes to the development of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の分離膜の製造工程を模式的に
示す部分拡大断面図である。 (2):セラミック多孔体、(4)二薄膜、+71 :
 N4状細孔、(…ニガラス賞の多孔層。 第4図
1 to 4 are partially enlarged sectional views schematically showing the manufacturing process of the separation membrane of the present invention. (2): Ceramic porous body, (4) Bithin film, +71:
N4-like pores (...porous layer of the Nigarasu Prize. Figure 4)

Claims (1)

【特許請求の範囲】 1、ガラスを分相処理して得られた孔径が10〜500
0Åの網状細孔(7)を持つガラス質の多孔体(8)の
表面に、孔径5〜2000Åの細孔を持つ気相から生成
された金属質又はセラミックス質の薄膜(4)を形成し
たことを特徴とする分離膜。 2、ガラス質の多孔体(8)がセラミック多孔体(2)
上に10〜500μの膜厚に形成されたものである特許
請求の範囲第1項記載の分離膜。 3、薄膜(4)が10Å〜100μの膜厚のものである
特許請求の範囲第1項又は第2項記載の分離膜。 4、分相可能なガラス層の表面に気相法によって5〜2
000Åの孔径の細孔を持つ金属又はセラミックス質の
薄膜を形成するとともに該ガラス層に分相処理を施し、
その後分相したガラス層に溶出処理を施してガラス層を
10〜5000Åの網状細孔を持つガラス質の多孔体と
することを特徴とする分離膜の製造方法。
[Claims] 1. The pore size obtained by phase separation treatment of glass is 10 to 500.
A metallic or ceramic thin film (4) produced from a gas phase and having pores of 5 to 2000 Å in diameter was formed on the surface of a glassy porous body (8) having 0 Å network pores (7). A separation membrane characterized by: 2. Glassy porous body (8) is ceramic porous body (2)
2. The separation membrane according to claim 1, wherein the separation membrane is formed to have a thickness of 10 to 500 microns. 3. The separation membrane according to claim 1 or 2, wherein the thin film (4) has a thickness of 10 Å to 100 μ. 4. On the surface of the phase-separable glass layer, 5 to 2
Forming a metal or ceramic thin film having pores with a pore diameter of 000 Å and subjecting the glass layer to phase separation treatment,
A method for producing a separation membrane, comprising the steps of: thereafter subjecting the phase-separated glass layer to an elution treatment to form the glass layer into a glassy porous body having network pores of 10 to 5000 Å.
JP5008085A 1985-03-07 1985-03-13 Separation membrane and its preparation Pending JPS61209004A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5008085A JPS61209004A (en) 1985-03-13 1985-03-13 Separation membrane and its preparation
US06/832,218 US4689150A (en) 1985-03-07 1986-02-24 Separation membrane and process for manufacturing the same
DE8686301512T DE3675961D1 (en) 1985-03-07 1986-03-04 SEPARATION MEMBRANE AND METHOD FOR THEIR PRODUCTION.
EP86301512A EP0195549B1 (en) 1985-03-07 1986-03-04 A separation membrane and process for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5008085A JPS61209004A (en) 1985-03-13 1985-03-13 Separation membrane and its preparation

Publications (1)

Publication Number Publication Date
JPS61209004A true JPS61209004A (en) 1986-09-17

Family

ID=12849031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5008085A Pending JPS61209004A (en) 1985-03-07 1985-03-13 Separation membrane and its preparation

Country Status (1)

Country Link
JP (1) JPS61209004A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931843A (en) * 1972-07-21 1974-03-22
JPS56164035A (en) * 1980-04-28 1981-12-16 Nat Res Dev Porous glass membrane for reverse osmosis desalination
JPS57166342A (en) * 1981-03-31 1982-10-13 Toyobo Co Ltd Porous glass fiber
JPS58199745A (en) * 1982-05-14 1983-11-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of tubular porous glass film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931843A (en) * 1972-07-21 1974-03-22
JPS56164035A (en) * 1980-04-28 1981-12-16 Nat Res Dev Porous glass membrane for reverse osmosis desalination
JPS57166342A (en) * 1981-03-31 1982-10-13 Toyobo Co Ltd Porous glass fiber
JPS58199745A (en) * 1982-05-14 1983-11-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of tubular porous glass film

Similar Documents

Publication Publication Date Title
EP0195549B1 (en) A separation membrane and process for manufacturing the same
US5250184A (en) Procedure for the preparation of microporous ceramic membranes for the separation of gas and liquid mixtures
EP0039179B1 (en) Improvements in or relating to porous glass
KR100460450B1 (en) Preparation of the silica composite membranes with thermal stability by Soaking-Rolling method
JPS61209005A (en) Separation membrane and its preparation
WO2011118469A1 (en) Carbon film and method for pervaporation separation
RU2093495C1 (en) Method of preparing carbon material
Averina et al. Development of nanofiltration ceramic membrane production technology
US8016924B2 (en) Device for gas separation and method for producing such a system
US7655277B2 (en) Titania composite membrane for water/alcohol separation, and preparation thereof
JP2002066280A (en) Gas separation filter and method for manufacturing the same
JPS61209004A (en) Separation membrane and its preparation
JPS61209013A (en) Preparation of separation membrane
CN106861460B (en) Preparation method of amino acid @ LDH/sodium alginate composite membrane for pervaporation
JPS61209012A (en) Preparation of separation membrane
US3692087A (en) Metallic porous plates
JPH0582B2 (en)
US4661138A (en) Method of strengthening the alkali resistance of a porous glass
CN1150060A (en) Process for preparing metal-ceramic composite film by chemical plating
RU2616474C1 (en) Filtering material and its manufacturing method
JP4522761B2 (en) Method for producing inorganic porous body
JP2002249311A (en) Zeolite molded product, zeolite laminated intermediate body, zeolite laminated composite and method for producing these
JPH07213877A (en) Inorganic xerogel film, its production and gas separating membrane made of the same
JPH0717780A (en) Production of porous ceramic film
JPH0977572A (en) Porous ceramic film member