JPS61208522A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS61208522A
JPS61208522A JP5087785A JP5087785A JPS61208522A JP S61208522 A JPS61208522 A JP S61208522A JP 5087785 A JP5087785 A JP 5087785A JP 5087785 A JP5087785 A JP 5087785A JP S61208522 A JPS61208522 A JP S61208522A
Authority
JP
Japan
Prior art keywords
temperature
signal
tank
deviation
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5087785A
Other languages
Japanese (ja)
Inventor
Kazuo Hiroi
広井 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5087785A priority Critical patent/JPS61208522A/en
Publication of JPS61208522A publication Critical patent/JPS61208522A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space

Abstract

PURPOSE:To control the temperature of a tank with high accuracy by adding the exit temperature signal to an operating signal obtained by the deviation between the intra-tank temperature signal and the temperature setting signal to obtain the target signal of a jacket entrance temperature controller. CONSTITUTION:The temperature of a reaction tank 1 containing a raw material, etc. is controlled by supplying a heat medium 2 to a jacket. The temperature of the tank 1 is detected by an intra-tank temperature detector 4, and the intra- tank temperature signal S1 is sent to an intra-tank temperature controller 23. Then a cooling water control valve 8 and a steam flow rate control valve 9 are opened and closed by the operating signal M. Here the exit temperature detector 20 of the medium 2 is added together with a target production means 22. This means 22 contains the controller 23 which produces the operating signal m1 from the signal S1 and the temperature setting signal Ts and an adder 24 which adds the signal m1 delivered from the controller 23 to the exit temperature signal (d). Then a controller 21 obtains the deviation between the entrance temperature signal P and the signal M1 and carries out a P arithmetic, etc. so as to set the deviation at zero. Then the operating signal Ma is delivered to both valves 8 and 9 respectively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、反応槽等の槽内温度を熱媒体により加熱およ
び冷却して制御する濃度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a concentration control device that controls the temperature inside a reaction tank or the like by heating and cooling it with a heat medium.

〔発明の技術的背景〕[Technical background of the invention]

第4図は従来の温度制御装置の構成図であって、この装
置は原料または中間製品の入った反応槽1の槽内温度を
反応槽1のジャケットに熱媒体2を供給して制御するも
のである。なお、原料または中間製品は攪拌機3により
攪拌されながら反応が行われる。具体的に槽内濃度の制
御は次のように行われている。すなわち、反応槽1に設
けられた槽内温度検出器4により槽内温度が検出されて
この槽内濃度信号S1が槽内潤度調節計5に送られる。
FIG. 4 is a configuration diagram of a conventional temperature control device, which controls the internal temperature of a reaction tank 1 containing raw materials or intermediate products by supplying a heat medium 2 to the jacket of the reaction tank 1. It is. Note that the reaction is performed while the raw materials or intermediate products are stirred by the stirrer 3. Specifically, the concentration in the tank is controlled as follows. That is, the temperature inside the tank is detected by the temperature detector 4 provided in the reaction tank 1, and the concentration signal S1 in the tank is sent to the humidity controller 5.

この槽内温度調節計5は、槽内温度信号s1と温度設定
信号Tsとの偏差を求め、この偏差を零とするようにP
ID演算(比例、積分、微分の各演算)を行ってジャケ
ット入口温度調節計6に位置型の目標値信号mを出力す
る。そして、このジャケット入口温度調節計6は、ジャ
ケット入口に設けられた入口温度検出器7により検出さ
れた熱媒体の入口温度信号Pが入力され、この入口温度
信号Pと前記調節計5からの目標信号m1との偏差が求
められこの偏差を零とするようにP演算等が行われて操
作信号Mが出力される。かくして、冷却水調節弁8およ
び蒸気流量調節弁9がそれぞれ操作信号Mに応じて開閉
して冷却水10、蒸気流量が調節され、もって冷却器1
2および加熱器13により熱媒体2の温度が調節される
。この結果、反応槽1の槽内温度が制御される。なお、
冷却水調節弁8は、操作信号Mが0%で全開状態となり
操作信号Mの増加とともに開度が減少して操作信号が5
0%以上となると閉状態となる。一方、蒸気流量調節弁
9は、操作信号Mが0〜50%までは0%すなわち閉状
態となり操作信号が50%以上となると操作信号Mの増
加とともに開いて100%で全開状態となる。
This in-tank temperature controller 5 calculates the deviation between the in-tank temperature signal s1 and the temperature setting signal Ts, and adjusts P so as to make this deviation zero.
ID calculations (proportional, integral, and differential calculations) are performed and a position-type target value signal m is output to the jacket inlet temperature controller 6. The jacket inlet temperature controller 6 receives the inlet temperature signal P of the heat medium detected by the inlet temperature detector 7 provided at the jacket inlet, and receives the inlet temperature signal P and the target value from the controller 5. A deviation from the signal m1 is determined, a P calculation, etc. is performed to make this deviation zero, and the operation signal M is output. In this way, the cooling water control valve 8 and the steam flow rate control valve 9 open and close in response to the operation signal M, respectively, and the flow rates of the cooling water 10 and the steam are adjusted.
2 and the heater 13 adjust the temperature of the heat medium 2. As a result, the temperature inside the reaction tank 1 is controlled. In addition,
The cooling water control valve 8 is fully open when the operation signal M is 0%, and as the operation signal M increases, the opening degree decreases and the operation signal becomes 5%.
When it becomes 0% or more, it becomes a closed state. On the other hand, the steam flow rate control valve 9 is in a 0%, ie, closed, state when the operating signal M is 0 to 50%, and when the operating signal is 50% or more, it opens as the operating signal M increases, and becomes fully open at 100%.

ところで、石油化学プロセス等にあっては次のようなこ
とが要求されている。つまり、製品の高品質化、均質化
を達成するために高い制御性、また温度プログラム制御
、吸熱反応、発熱反応等の外乱を伴う場合は、特に連応
性、制御性の高度化が要求される。
By the way, the following requirements are required in petrochemical processes and the like. In other words, high controllability is required to achieve high quality and homogenization of products, and especially when disturbances such as temperature program control, endothermic reactions, and exothermic reactions are involved, high coordination and controllability are required. .

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記装置では次のような欠点がある。す
なわち、熱媒体2の温度調節はジャケットの入口温度と
出口濃度との差の情報によって行うのが最良であるが、
入口温度しか用いていないため出口温度の変化に対して
は考慮されておらず、高精度の温度制御がでない構成と
なっている。また、槽内温度は調節計によるプログラム
制御となついるので若干変動することになる。そこで、
槽内温度を精度高く制御するには槽内温度とジャケット
の出入口温度の平均温度との差により決定する伝熱効率
を変化させるのが最良であるが、上記装置ではこの手段
がなく制御性に限界があり、制御はその状態によって変
化してしまう。したがって、製品の高品質化、均一化に
対する要求が満足されず、また省力化に対しても満足す
るものではなかった。
However, the above device has the following drawbacks. In other words, it is best to adjust the temperature of the heat medium 2 using information on the difference between the jacket inlet temperature and outlet concentration.
Since only the inlet temperature is used, changes in the outlet temperature are not considered, and the configuration does not allow for highly accurate temperature control. In addition, the temperature inside the tank is controlled by a program using a controller, so it will fluctuate slightly. Therefore,
In order to control the temperature inside the tank with high precision, it is best to change the heat transfer efficiency, which is determined by the difference between the inside temperature of the tank and the average temperature at the entrance and exit of the jacket, but the above device does not have this means, and its controllability is limited. The control changes depending on the state. Therefore, the demands for higher quality and uniformity of products have not been satisfied, nor has the demand for labor saving been satisfied.

〔発明の目的〕[Purpose of the invention]

本発明は、上記実情に基づいてなされたもので、その目
的とするところは、ジャケットの出口温度も考慮に入れ
てより精度を向上できる温度制御装置を提供することに
ある。
The present invention has been made based on the above-mentioned circumstances, and its object is to provide a temperature control device that can further improve accuracy by taking into account the outlet temperature of the jacket.

〔発明の概要〕[Summary of the invention]

本発明は、槽から流出される熱媒体の温度を検出する出
口温度検出器を設け、目標作成手段において槽内温度検
出器からの槽内温度信号と設定信号との偏差から得られ
る操作信号を前記出口温度検出器からの出口温度信号の
変化に応じて修正してその信号を目標信号として熱媒体
の温度を調節する温度調節計に出力するようにした温度
制御装置である。
The present invention provides an outlet temperature detector that detects the temperature of the heat medium flowing out from the tank, and generates an operation signal obtained from the deviation between the tank temperature signal from the tank temperature sensor and the set signal in the target creation means. The temperature control device corrects the output temperature signal from the outlet temperature detector according to a change in the output temperature signal and outputs the signal as a target signal to a temperature controller that adjusts the temperature of the heat medium.

〔発明の実施例〕[Embodiments of the invention]

次に実施例を説明する前に熱媒体2のジャケット入口で
の温度T1について説明する。反応槽1で要求される熱
量をQdとすると、この要求熱量Qdは、 Qd−V・ρ・C・ΔTO・・・(1)と表わせる。こ
こで、■は原料投入容積1、ρは比重、Cは比熱、ΔT
Oはジャケット入口温度調節計21の出力である。
Next, before describing the embodiment, the temperature T1 of the heat medium 2 at the jacket inlet will be described. Assuming that the amount of heat required in the reaction tank 1 is Qd, the required amount of heat Qd can be expressed as Qd-V.rho.C.DELTA.TO (1). Here, ■ is the raw material input volume 1, ρ is specific gravity, C is specific heat, ΔT
O is the output of the jacket inlet temperature controller 21.

また、実際の投入熱量Qaは、 Qa−/ Fwdt−pw xCw (T i −To )    ・・・(2)で
表わせ、l”wは熱媒体2の流量、ρWは熱媒体2の比
重、CWは比熱、T1はジャケットの入口温度、Toは
ジャケットの出口温度である。
In addition, the actual input heat amount Qa is expressed as Qa-/Fwdt-pw x Cw (T i -To) (2), where l"w is the flow rate of the heat medium 2, ρW is the specific gravity of the heat medium 2, and CW is the specific heat, T1 is the jacket inlet temperature, and To is the jacket outlet temperature.

ここで、熱交換効率をηとすると、 Qd−Qa/η          ・・・(3)であ
るので、上記第(1)式ないし第(3)式からジャケッ
ト入口温度T1を求めると、 Ti−To+■・S−C・Δ■C ÷ (η・fFwdt・ρw−Qw)・・・(4)とな
る。ここで、Fw=一定であり、所定時間間隔ごととな
るので、 /Fwdt=一定となる。従って、上記第(4)式%式
%(5) 次に本発明の第1の実施例について第1図に示す構成図
を参照して説明する。なお同図において第4図と同一部
分には同一符号を付してその詳しい説明は省略する。こ
の発明装置の特徴とするところはジャケットから流出さ
れる熱媒体2の温度を検出する出口温度検出器20を設
け、かつ槽内温度信号S1と温度設定信号TSとの偏差
から得られた操作信号m1に出口温度信号dを加えてジ
ャケット入口温度検出器21の目標信号M1を出力する
目標作成手段22を設けたことにある。具体的に目標作
成手段22は、槽内濃度信号S1と温度設定信号Tsと
から操作信号m1を作成する槽内湯度調節計23と、こ
の調節計23から出力される操作信号m1に出口温度信
号dを加える加算器24とから構成されている。
Here, if the heat exchange efficiency is η, then Qd-Qa/η (3), so if the jacket inlet temperature T1 is calculated from the above equations (1) to (3), Ti-To+ ■・SC・Δ■C ÷ (η・fFwdt・ρw−Qw) (4). Here, since Fw=constant and every predetermined time interval, /Fwdt=constant. Therefore, the above formula (4) % Formula % (5) Next, a first embodiment of the present invention will be described with reference to the configuration diagram shown in FIG. In this figure, the same parts as in FIG. 4 are given the same reference numerals, and detailed explanation thereof will be omitted. The features of this invention device include an outlet temperature detector 20 that detects the temperature of the heat medium 2 flowing out from the jacket, and an operation signal obtained from the deviation between the tank internal temperature signal S1 and the temperature setting signal TS. The purpose is to provide a target generating means 22 which outputs the target signal M1 of the jacket inlet temperature detector 21 by adding the outlet temperature signal d to m1. Specifically, the target creation means 22 includes an in-tank hot water temperature controller 23 that creates an operation signal m1 from an in-tank concentration signal S1 and a temperature setting signal Ts, and an outlet temperature signal in the operation signal m1 output from this controller 23. and an adder 24 that adds d.

次に上記の如く構成された装置の特に熱媒体2の温度調
節について説明する。熱媒体2は冷却器12または加熱
器13により冷却または加熱されて反応槽1のジャケッ
トに送られる。この反応槽1では熱媒体2により熱交換
が行われて槽内の原料や中間製品に熱が供給されて流出
される。ここで、入口温度検出器7によりジャケット入
口での熱媒体温度が検出され、また出口温度検出器20
によりジャケット出口での熱媒体温度が検出される。一
方、槽内温度検出器4は槽内温度を検出してその槽内温
度検出信号S1を槽内濃度調節計23に出力する。この
槽内濃度調節計23は槽内温度信号S1と温度設定信号
Tsとの偏差を求め、この偏差を零とするようなPID
演算を実行して速度型の操作信号m1を加算器24に出
力する。
Next, the temperature control of the heat medium 2 in the apparatus configured as described above will be explained. The heat medium 2 is cooled or heated by a cooler 12 or a heater 13 and sent to the jacket of the reaction tank 1 . In this reaction tank 1, heat exchange is performed by a heat medium 2, and heat is supplied to the raw materials and intermediate products in the tank and is discharged. Here, the heat medium temperature at the jacket inlet is detected by the inlet temperature detector 7, and the outlet temperature detector 20
The heat medium temperature at the jacket outlet is detected by On the other hand, the tank temperature detector 4 detects the tank temperature and outputs the tank temperature detection signal S1 to the tank concentration controller 23. This in-tank concentration controller 23 determines the deviation between the in-tank temperature signal S1 and the temperature setting signal Ts, and selects a PID that makes this deviation zero.
The calculation is executed and a speed-type operation signal m1 is output to the adder 24.

ここで操作信号m1は第(5)式の(K/η)・ΔTc
に相当する。加算器24は操作信号m1と出口温度検出
器20からの出口温度信号d(すなわち第(5)式のT
oに相当する)とを加算してジャケット入口温度調節計
21に目標信号として出力する。これによりl!節計2
1に送出される目標信号M1は第(5)式に示すジャケ
ット入口温度Tiを示すもの、すなわち出口温度の変化
を基準としたものとなる。かくして調節計21は、入口
温度信号Pと目標信号M1との偏差を求め、この偏差を
零とするようなP演算等を実行して操作信号Maを多弁
8.9に出力する。この結果、熱媒体2の温度が出口濃
度の変動に従って調節されて反応槽1のジャケットに送
られる。
Here, the operation signal m1 is (K/η)・ΔTc of equation (5)
corresponds to The adder 24 combines the operating signal m1 and the outlet temperature signal d from the outlet temperature detector 20 (i.e., T in equation (5)).
(equivalent to o) and output to the jacket inlet temperature controller 21 as a target signal. This allows l! Savings 2
1, the target signal M1 is indicative of the jacket inlet temperature Ti shown in equation (5), that is, it is based on the change in the outlet temperature. Thus, the controller 21 calculates the deviation between the inlet temperature signal P and the target signal M1, performs a P calculation etc. to make this deviation zero, and outputs the operation signal Ma to the multi-valve 8.9. As a result, the temperature of the heat transfer medium 2 is adjusted according to the fluctuation of the outlet concentration and is sent to the jacket of the reaction vessel 1.

このように上記第1の実施例においては、槽内温度信号
S1と温度設定信号TSとの偏差により得られた操作信
号m1に出口温度検出器20により検出された出口温度
信号dを加えてジャケット入口温度調節計21の目標信
号とする構成としたので、出口温度によりフィードフォ
ワード制御すなわちジャケット出口温度を基準として熱
媒体2の冷却、加熱を調節することになり制御系の温度
変化による影響を随時修正してこの変化が現われないう
ちに抑制でき槽内温度を精度高く制御できる。
In this way, in the first embodiment, the outlet temperature signal d detected by the outlet temperature detector 20 is added to the operation signal m1 obtained from the deviation between the tank internal temperature signal S1 and the temperature setting signal TS, and the output temperature signal d detected by the outlet temperature detector 20 is added to Since the configuration uses the target signal of the inlet temperature controller 21, feedforward control is performed based on the outlet temperature, that is, the cooling and heating of the heat medium 2 is adjusted based on the jacket outlet temperature, so that the influence of temperature changes in the control system can be adjusted at any time. By making corrections, this change can be suppressed before it occurs, and the temperature inside the tank can be controlled with high precision.

次に第2の実mttAについて第2図に示す構成図を参
照して説明する。なお、第1図と同一部分には同一符号
を行してその詳しい説明は省略する。
Next, the second real mttA will be explained with reference to the configuration diagram shown in FIG. Note that the same parts as in FIG. 1 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

この装置の第1図に示す装置と異なるところは、出口温
度信号dと入口濃度信号S1とによる平均温度信号を求
めてこの平均温度信号と槽内温度信号S1との偏差を求
め、この後偏差信号の逆数を持って熱交換率を修正して
前記槽内温度信号と濃度設定信号Tsとからジャケット
入口温度調節計21の目標信号を出力する機能を持った
目標作成手段30を設けたことにある。具体的に目標作
成手段30は、入口温度信号pと出口温度信号′dとの
平均温度信号を求める平均演算部31と、平均温度信号
と槽内温度信号$1との偏差を求める減算部32と、こ
の減□算部32からの偏差信号の絶対値を求める絶対値
演算部33と、この絶対値演−1〇− 篩部33からの絶対値の逆数を求めて槽内温度調節計3
5に与える逆数演算部35と、この逆数を受けて比例ゲ
インを修正する機能を持ち、槽内温度信号S1と温度設
定信号Tsとの偏差から目標信号M2を作成して出力す
る速度形の槽内温度調節計34とから構成されている。
The difference between this apparatus and the apparatus shown in FIG. A target generating means 30 is provided which has a function of correcting the heat exchange rate using the reciprocal of the signal and outputting a target signal for the jacket inlet temperature controller 21 from the tank internal temperature signal and the concentration setting signal Ts. be. Specifically, the target creation means 30 includes an average calculation unit 31 that calculates the average temperature signal of the inlet temperature signal p and the outlet temperature signal 'd, and a subtraction unit 32 that calculates the deviation between the average temperature signal and the tank temperature signal $1. , an absolute value calculation unit 33 that calculates the absolute value of the deviation signal from the subtraction unit 32, and an absolute value calculation unit 33 that calculates the reciprocal of the absolute value from the sieve unit 33 and calculates the inverse of the absolute value from the sieve unit 33
5, and a speed type tank which has a function of correcting the proportional gain by receiving the reciprocal number, and generates and outputs a target signal M2 from the deviation between the tank internal temperature signal S1 and the temperature setting signal Ts. It is composed of an internal temperature controller 34.

次に作用を説明する。熱媒体2はジャケットの入口およ
び出口においてそれぞれ入口温度検出器4および出口潤
度検出器20により検出されてその入口温度信号S1、
出口温度信号dが平均演算部31に送られる。この平均
温度演算部31は、入力した各温度信号S1、dから平
均温度信号、すなわち、 (T  i  −To )/2 を演算して減算部32に送出し、この減算部32では槽
内温度信号$1から平均温度信号を減算する。すなわち
、 (Tx −(T i 十To )/2)を求めて絶対値
演算部33に送出し、さらに逆数演算部35に送出され
る。これにより逆数部35からは、 1/ l TX −(T i +To )/2 lが出
力される。かくして槽内温度調節計34に内設されたゲ
イン調節機構により比例ゲインが修正される。そして、
この槽内温度調節計34は、槽内温度信号S1と温度設
定信号TSとの偏差を求め、この偏差を零とするような
PID演算を修正した比例ゲインにより実行してジャケ
ット入口温度調節計21の目標信号M2を出力する。こ
こで、上記比例ゲインを修正することは、上記第(5)
式の熱交換効率ηを修正することになる。したがって、
熱交換効率ηは、 ΔT(平均温度差) = ((TX −T I ) +(Tx −To ) )/2 =Tx −(T I +To )/2 に比例して変化するため、この変化に基づき効率η変化
を近似することができる。
Next, the action will be explained. The heat medium 2 is detected at the inlet and outlet of the jacket by an inlet temperature detector 4 and an outlet moisture detector 20, respectively, and the inlet temperature signals S1,
The outlet temperature signal d is sent to the average calculation section 31. This average temperature calculation unit 31 calculates an average temperature signal, that is, (T i −To )/2 from each input temperature signal S1, d, and sends it to the subtraction unit 32, which calculates the temperature inside the tank. Subtract the average temperature signal from the signal $1. That is, (Tx - (T i + To )/2) is calculated and sent to the absolute value calculation section 33 and further sent to the reciprocal number calculation section 35 . As a result, the reciprocal unit 35 outputs 1/l TX - (T i +To )/2 l. In this way, the proportional gain is corrected by the gain adjustment mechanism installed inside the tank temperature controller 34. and,
This tank temperature controller 34 calculates the deviation between the tank temperature signal S1 and the temperature setting signal TS, and performs PID calculation using a modified proportional gain to make this deviation zero. outputs the target signal M2. Here, modifying the above proportional gain is based on the above (5).
The heat exchange efficiency η in the equation will be corrected. therefore,
The heat exchange efficiency η changes in proportion to ΔT (average temperature difference) = ((TX - T I ) + (Tx - To )/2 = Tx - (T I + To )/2, so this change Based on this, the change in efficiency η can be approximated.

かくして調節計21は、入口温度信号Pと目標信号M1
との偏差を求め、この偏差を零とするようなP演算等を
実行して得られた操作信号Maを合弁8.9に出力する
。この結果、熱媒体2の温度が出口温度の変動に従って
調節されて反応槽1のジャケットに送られる。
Thus, the controller 21 outputs the inlet temperature signal P and the target signal M1.
The operating signal Ma obtained by performing a P calculation or the like to make this deviation zero is output to the joint venture 8.9. As a result, the temperature of the heat transfer medium 2 is adjusted according to the fluctuation of the outlet temperature and is sent to the jacket of the reaction vessel 1.

このように上記第2の実施例においては、出口温度信号
dと入口温度信号S1とによる平均温度信号を求めてこ
の平均温度信号と槽内温度信号S1との偏差を求め、こ
の後偏差信号の逆数を持って熱交換率を修正して前記槽
内温度信号と温度設定信号TSとからジャケット入口温
度調節計21の目標信号を出力する構成の目標作成手段
30を設けたので、入口温度と出口温度と、の差をもっ
て熱伝達効、率を修正することになり上記第1の実施例
同様に槽内温度を精度高く制御できる。
In this way, in the second embodiment, an average temperature signal is obtained from the outlet temperature signal d and the inlet temperature signal S1, the deviation between this average temperature signal and the bath temperature signal S1 is obtained, and then the deviation signal is calculated. Since the target generation means 30 is configured to correct the heat exchange coefficient using a reciprocal and output a target signal for the jacket inlet temperature controller 21 from the tank internal temperature signal and the temperature setting signal TS, the inlet temperature and the outlet temperature can be adjusted. Since the heat transfer efficiency and rate are corrected based on the difference between the temperature and the temperature, the temperature inside the tank can be controlled with high precision as in the first embodiment.

以上、第1および第2の実施例により製品の高品質化、
均一化が図れる。
As described above, the first and second embodiments improve the quality of products,
Uniformity can be achieved.

なお、本発明は上記各実施例に、限定されるものではな
い。例えば、各調節計は位置形演算方式のものにかかわ
らず速度形演算方式のいずれであってもよい。また、比
例ゲインの修正−に予め定められたグラフの折れ線間数
発生方式を用いても良い。
Note that the present invention is not limited to the above embodiments. For example, each controller may be of either a position type calculation type or a velocity type calculation type. Furthermore, a predetermined method for generating numbers between broken lines in a graph may be used to correct the proportional gain.

この場合、第3図に示すような関数を記憶した関数発生
部を設け、これに絶対値演算部33からの絶対値を入力
してゲイン修正の信号を構内温度調節計34に与えるよ
うにすればよい。
In this case, a function generating section storing a function as shown in FIG. 3 may be provided, and the absolute value from the absolute value calculating section 33 may be inputted to the function generating section to provide a gain correction signal to the premises temperature controller 34. Bye.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、ジャケットの出口
温度も考慮に入れてより精度を向上できる温度制御装置
を提供できる。
As described in detail above, according to the present invention, it is possible to provide a temperature control device that can further improve accuracy by taking into account the outlet temperature of the jacket.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる温度制御装置の第1の実施例を
示す構成図、第2図は本発明に係わる温度制御装置の第
2の実施例を示す構成図、第3図は第2の実施例に適用
する開数発生部の動作を説明するための図、第4図は従
来の温度制御装置の構成図である。 1・・・・・・反応槽、2・・・・・・熱媒体、4・・
・・・・槽内温度検出器、7・・・・・・入口温度検出
器、8・・・・・・冷却水調節弁、9・・・・・・蒸気
流量調節弁、12・・・・・・冷却器、13・・・・・
・加熱器、21・・・・・・ジャケット入口温度調節計
、22・・・・・・目標作成手段、23・・・・・・槽
内温度調節t1.24・・・・・・加算器、30・・・
・・・目標作成手段、31・・・・・・平均演算部、3
2・・・・・・減算部、33・・・・・・絶対値演算部
、34・・・・・・槽内温度調節計、35・・・・・・
逆数演算部。 出願人代理人 弁理士 鈴江武彦 第11
1 is a block diagram showing a first embodiment of a temperature control device according to the present invention, FIG. 2 is a block diagram showing a second embodiment of a temperature control device according to the present invention, and FIG. 3 is a block diagram showing a second embodiment of a temperature control device according to the present invention. FIG. 4 is a diagram for explaining the operation of the numerical value generator applied to the embodiment of the present invention, and FIG. 4 is a configuration diagram of a conventional temperature control device. 1... Reaction tank, 2... Heat medium, 4...
... Tank temperature detector, 7 ... Inlet temperature sensor, 8 ... Cooling water control valve, 9 ... Steam flow control valve, 12 ... ...Cooler, 13...
・Heater, 21...Jacket inlet temperature controller, 22...Target creation means, 23...Tank temperature control t1.24...Adder , 30...
... Goal creation means, 31 ... Average calculation section, 3
2... Subtraction section, 33... Absolute value calculation section, 34... Tank temperature controller, 35...
Reciprocal calculation section. Applicant's agent Patent attorney Takehiko Suzue No. 11

Claims (3)

【特許請求の範囲】[Claims] (1)槽に供給する熱媒体の温度を、槽入口で検出した
入口温度信号に基づき温度調節計が操作信号を求めこれ
により槽内温度を制御する温度制御装置において、前記
槽の内部温度を検出する槽内温度検出器と、前記槽から
流出される前記熱媒体の温度を検出する出口温度検出器
と、前記槽内温度検出器からの槽内温度信号と設定信号
との偏差から得られた操作信号を前記出口温度検出器か
らの出口温度信号の変化に応じて修正して前記温度調節
計の目標値信号として出力する目標作成手段とを具備し
たことを特徴とする温度制御装置。
(1) A temperature control device in which a temperature controller generates an operation signal based on an inlet temperature signal detected at the inlet of the tank to control the temperature of the heat medium supplied to the tank, controls the internal temperature of the tank. An in-tank temperature sensor for detecting the temperature, an outlet temperature detector for detecting the temperature of the heat medium flowing out from the tank, and a deviation between the in-tank temperature signal and the setting signal from the in-tank temperature detector. 1. A temperature control device comprising: a target generating means for correcting the operation signal according to a change in the outlet temperature signal from the outlet temperature detector and outputting the corrected operation signal as a target value signal for the temperature controller.
(2)目標作成手段は、槽内温度信号と設定信号との偏
差から得られた操作信号に出口温度信号を加えて目標信
号を得る特許請求の範囲第(1)項記載の温度制御装置
(2) The temperature control device according to claim (1), wherein the target generation means obtains the target signal by adding the outlet temperature signal to the operation signal obtained from the deviation between the tank internal temperature signal and the setting signal.
(3)目標作成手段は、出口温度信号と入口温度信号と
の平均温度信号を求めてこの平均温度信号と槽内温度信
号との偏差信号を求め、この後前記偏差信号の逆数をも
つて熱交換効率を修正して前記槽内温度信号と設定信号
とから目標信号を得る特許請求の範囲第(1)項記載の
温度制御装置。
(3) The target generation means obtains an average temperature signal of the outlet temperature signal and the inlet temperature signal, obtains a deviation signal between this average temperature signal and the tank internal temperature signal, and then calculates the temperature signal using the reciprocal of the deviation signal. The temperature control device according to claim 1, wherein the target signal is obtained from the bath temperature signal and the setting signal by correcting the exchange efficiency.
JP5087785A 1985-03-14 1985-03-14 Temperature controller Pending JPS61208522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5087785A JPS61208522A (en) 1985-03-14 1985-03-14 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5087785A JPS61208522A (en) 1985-03-14 1985-03-14 Temperature controller

Publications (1)

Publication Number Publication Date
JPS61208522A true JPS61208522A (en) 1986-09-16

Family

ID=12870948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5087785A Pending JPS61208522A (en) 1985-03-14 1985-03-14 Temperature controller

Country Status (1)

Country Link
JP (1) JPS61208522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224040A (en) * 2005-02-21 2006-08-31 Hitachi Ltd Method and apparatus for controlling temperature of reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224040A (en) * 2005-02-21 2006-08-31 Hitachi Ltd Method and apparatus for controlling temperature of reactor
JP4710345B2 (en) * 2005-02-21 2011-06-29 株式会社日立製作所 Reactor temperature control method and reactor temperature control apparatus

Similar Documents

Publication Publication Date Title
CN103940094A (en) Hot Water Supply Apparatus And Control Method Thereof
CN110607435B (en) Annealing furnace plate temperature control system and method
JP4710345B2 (en) Reactor temperature control method and reactor temperature control apparatus
JPH08312908A (en) Dryness controller for steam
JPS61208522A (en) Temperature controller
JP3606564B2 (en) Optimal control system for reaction temperature in chemical reactor
JP2004348481A (en) Process control unit and method
JPS6219641A (en) Method of controlling combustion for hot water supplier
JP3056318B2 (en) Temperature control method and apparatus in heat sterilizer
JPH01239602A (en) Process controller
JPH0642161B2 (en) How to modify a feedforward model
JPS62217051A (en) Controller of hot water supplier
JPS6063601A (en) Process controller
JPH0410642B2 (en)
JPH0477614B2 (en)
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JPH0642162B2 (en) How to automatically correct a feedforward model
JPS6117445Y2 (en)
SU874161A1 (en) Method of controlling reactor operation
JPH0336421A (en) Temperature control device of gas water supply device
JP2897638B2 (en) Water heater
JPS62248902A (en) Controller for temperature of steam
JPH0524195B2 (en)
JPS5884303A (en) Process controller of multi-variable system
JPH07219645A (en) Batch reaction controller