JPS61208306A - Surface acoustic wave resonator - Google Patents

Surface acoustic wave resonator

Info

Publication number
JPS61208306A
JPS61208306A JP4963985A JP4963985A JPS61208306A JP S61208306 A JPS61208306 A JP S61208306A JP 4963985 A JP4963985 A JP 4963985A JP 4963985 A JP4963985 A JP 4963985A JP S61208306 A JPS61208306 A JP S61208306A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
pitch
reflector
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4963985A
Other languages
Japanese (ja)
Inventor
Yoshihiro Goto
芳宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP4963985A priority Critical patent/JPS61208306A/en
Publication of JPS61208306A publication Critical patent/JPS61208306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To attain ease of design and manufacture of a high Q SAW resonator by forming most of reflecting electrodes arranged in a reed screen form of grating electrodes of a reflector type SAW resonator with the same width and pitch and increasing the remaining prescribed reflection electrode width or pitch than the others. CONSTITUTION:The width of two among lots of reflector electrodes 9, 9 of the reed screen shape in a couple of reflectors 7 is selected to d2 and the width of the other most electrodes is selected to d1 which is smaller than the d2 to form the reflector electrodes 9, 9 at a prescribed pitch P3. Thus, denoting the electrodes from the inside of the electrode 9 to the electrode 9' in a pitch d2 as the 1st electrode group M1, the electrodes from the electrode 9' to the electrode 9'' by a pitch d2 as the 2nd electrode group M2, and the remaining electrodes as the 3rd electrode group M3, then the wave propagating speed in the 1st-3rd electrode groups M1-M3 is the fastest at the 1st electrode group M1 and the slowest at the 3rd electrode group M3 because of the speed reduction at the reflecting electrodes 9', 9'' by the width d2.

Description

【発明の詳細な説明】 産1上坐且1豆! この発明は各種通信機器における発振器の発振子などに
利用される弾性表面波共振子で、詳しくは圧電基板上の
中央にII)T(インタディジタルトランスジューサ)
をその両側にグレーティング反射器を配した反射器型弾
性表面波共振子に関する。
[Detailed description of the invention] One joza and one bean! This invention is a surface acoustic wave resonator used as an oscillator in various communication devices.
This invention relates to a reflector-type surface acoustic wave resonator with grating reflectors arranged on both sides.

従米坐孜血 反射器型弾性表面波共振子は水晶の圧電基板上の中央に
数10対のIDTを配し、その両側に数100対のグレ
ーティング反射器を配した構造□が一般的で、その従来
の基本構造例を第5図及び第6゛図を参照し・□て説明
すると次の通りである。
A reflector-type surface acoustic wave resonator generally has a structure □ in which several ten pairs of IDTs are placed in the center of a crystal piezoelectric substrate, and several hundred pairs of grating reflectors are placed on both sides of the IDT. An example of the conventional basic structure will be explained below with reference to FIGS. 5 and 6.

図において、(1)は圧電基板である水晶基板、(2)
は水晶基板(1)土中央部に形成されたIDT;  (
3)、(3)はIDT(2)に・より励起された弾性表
面波(SAW)の反射器で、IDT(2)の両側の水晶
基板(1)上に形成した反射電極(4)、(4)から成
る回折格子である。
In the figure, (1) is a crystal substrate which is a piezoelectric substrate, (2)
is the IDT formed in the center of the crystal substrate (1); (
3), (3) is a reflector for surface acoustic waves (SAW) excited by the IDT (2), which includes reflective electrodes (4) formed on the crystal substrate (1) on both sides of the IDT (2), (4).

このSAW共振子におけるIDT(2)にパルス電圧を
印加すると圧電効果によりIDT。
When a pulse voltage is applied to the IDT (2) in this SAW resonator, the IDT is activated due to the piezoelectric effect.

(2)の対になった電極間の基板表面に歪みが生じて弾
性表面波が励起され、この表面波は反射器(3)、(3
)側に伝搬して反射電極(4)、(4)で反射する。こ
の表面波の波長と反射電極(4)、(4)の電極ピッチ
P1を合わせておくと表面波は効率良く反射して定在波
が生じてIDT(2)の電極ピッチP2に合う周波数の
定在波だけがIDT (2)で受信されてSAW共振子
特有の共振周波数信号として取出される。
Distortion occurs on the substrate surface between the pair of electrodes in (2), and a surface acoustic wave is excited, and this surface wave is transmitted to the reflectors (3) and (3).
) side and is reflected by the reflective electrodes (4), (4). If the wavelength of this surface wave is matched with the electrode pitch P1 of the reflective electrodes (4), (4), the surface wave will be reflected efficiently and a standing wave will be generated, with a frequency that matches the electrode pitch P2 of the IDT (2). Only the standing wave is received by the IDT (2) and extracted as a resonant frequency signal specific to the SAW resonator.

ここでSAW共振子のIDT (2)の励起する表面波
の周波数−放射コンダクタンス特性は第7図の曲線aで
示すように中心周波数f1で急激に立上り、また反射器
(3)、(3)からの反射波の周波数−反射率特性は第
7図の曲線すに示すように所定の帯域幅りを有する。こ
の帯域幅りはストップバンドと呼ばれ、このストップバ
ンドDの中にIDT(2)の中心周波数f1が入ること
がSAW共振子の高Q化に必要であり、望ましくはスト
ップバンドDの中心周波数f2とIDT(2)の中心周
波数f1を合致させて両度対量(3)、(3)で波を完
全に反射させ、水晶基板(1)表面にSAW振動エネル
ギーを閉じ込めて振動損失を極力少なくすることが必要
である。
Here, the frequency-radiation conductance characteristic of the surface wave excited by the IDT (2) of the SAW resonator rises sharply at the center frequency f1, as shown by curve a in Figure 7, and the reflector (3), (3) The frequency-reflectance characteristic of the reflected wave from the laser beam has a predetermined bandwidth as shown by the curve in FIG. This bandwidth is called a stop band, and it is necessary for the center frequency f1 of the IDT (2) to fall within this stop band D to increase the Q of the SAW resonator. By matching f2 with the center frequency f1 of the IDT (2), the waves are completely reflected by the two-wavelengths (3) and (3), and the SAW vibration energy is confined on the surface of the crystal substrate (1) to minimize vibration loss. It is necessary to reduce the amount.

ところでIDT (2) 、反射器(3)、(3)にお
ける表面波、反射波の共振周波数fはf=’A(但し■
は波の伝搬速度、λは波長)で与えられ、波長λは電極
間ピンチP、、P2で決まり、伝搬速度■は波が金属(
電極)のある部所で遅く無い部分で速く伝わる周期摂動
効果と波が金属(電極)で反射する時に速度が低下する
反射効果の2つで大きく決定される。ここでIDT(2
)における波伝搬速度は周期摂動効果と反射効果で決ま
り、反射器(3)、(3)における波伝搬速度は反射効
果だけでほぼ決まり、従ってIDT (2)と反射器(
3)、(3)の両者の電極の厚さ、材質、ピッチp、 
、p2を同一にすると自ずと両者での波伝搬速度に差が
生じて両者の中心周波数f!、f2を一致させること乃
(できなくなり、SAW共振子のQが低下する。
By the way, the resonant frequency f of the surface waves and reflected waves in the IDT (2) and the reflectors (3) and (3) is f='A (however, ■
is given by the propagation speed of the wave, λ is the wavelength), the wavelength λ is determined by the pinch between the electrodes P, , P2, and the propagation speed
It is largely determined by two factors: the periodic perturbation effect, in which the wave propagates faster in certain parts (the electrode) and not slower in some parts, and the reflection effect, in which the speed decreases when the wave is reflected by the metal (electrode). Here IDT(2
) is determined by the periodic perturbation effect and the reflection effect, and the wave propagation speed in the reflectors (3) and (3) is almost determined only by the reflection effect, so the IDT (2) and the reflector (
3) Thickness, material, pitch p of both electrodes in (3),
, p2 are made the same, a difference naturally occurs in the wave propagation speed between the two, and the center frequency f! , f2 cannot be matched, and the Q of the SAW resonator decreases.

そこで従来は例えばIDT(2)と反射器(3)、(3
)の各電極間ピッチP菫、P2を両者の中心周波数f!
、[2が一致するように計算して相違させている。
Therefore, conventionally, for example, IDT (2) and reflectors (3), (3)
) between each electrode pitch P violet, P2 is their center frequency f!
, [2 are calculated and made different so that they match.

溌“ (°゛− 3AW共振子の電極金属は共振特性の乱れが無くて高い
Qを得られる関係からアルミニウムが最適で、上記ID
T(2)や反射器(3)、(3)はアルミニウムの蒸着
膜で形成されるのが通常である。ところが、このアルミ
ニウム蒸着で使用するマスクの加工精度の限界から蒸着
膜の幅や間隔の出せる寸法を計算値どおりに合致させる
ことは困難となる。特に共振周波数が数百MHz以上に
なるとIDTおよびグレーティング反射器のくりかえし
ピッチの計算値と実際の設計値の差の大きさが問題とな
る。すなわち反射器の中心周波数とIDTの共振周波数
が一致しなくなるのである。このためIDTの共振周波
数が反射器のストップバンド内の比較的反射率の低い周
波数部にシフトしたりさらにはストップバンドからはず
れてしまうこともありうる。
溌" (°゛- Aluminum is optimal for the electrode metal of the 3AW resonator because it does not disturb the resonance characteristics and can obtain a high Q, and the above ID
T(2) and reflectors (3), (3) are usually formed of a vapor-deposited aluminum film. However, due to the limits of processing accuracy of the mask used in aluminum vapor deposition, it is difficult to match the width and spacing of the vapor deposited film to the calculated values. In particular, when the resonant frequency exceeds several hundred MHz, the magnitude of the difference between the calculated value and the actual design value of the repetition pitch of the IDT and grating reflector becomes a problem. In other words, the center frequency of the reflector and the resonant frequency of the IDT no longer match. For this reason, the resonant frequency of the IDT may shift to a frequency portion with a relatively low reflectance within the stop band of the reflector, or may even deviate from the stop band.

このような問題の解決策として、例えば反射器のすだれ
状に並ぶ数100の反射電極のピッチをμm単位で少し
ずつ大きくして、反射器の波伝搬速度を上げ、IDTと
反射器の中心周波数を近付けることが知られている。し
かし、この場合も電極の製作上の限界から計算値通りに
製作することが難しかった。
As a solution to this problem, for example, the pitch of several hundred reflective electrodes arranged in a comb-like pattern on the reflector can be gradually increased in μm units to increase the wave propagation speed of the reflector, and the center frequency of the IDT and the reflector can be increased. It is known to bring the However, in this case as well, it was difficult to manufacture the electrodes according to the calculated values due to manufacturing limitations of the electrodes.

°  ための 本発明は上記問題点に鑑み、これを解決したもので、反
射器型SAW共擾子のグレーティング電極のすだれ状に
並ぶ反射電極をその大部分を同−幅及びピッチで形成す
ると共に、所定の残余の反射電極幅又は反射電極間ピッ
チを他より大きくして形成したことを特徴とする。
The present invention has been made in view of the above-mentioned problems and has solved the problem by forming most of the reflecting electrodes arranged in the interdigital shape of the grating electrodes of the reflector-type SAW co-layer with the same width and pitch. , is characterized in that it is formed with a predetermined remaining reflective electrode width or pitch between reflective electrodes larger than others.

立里 上記本発明のように反射器の電極パターンを設定すると
、この電極パターンにおけるすだれ状反射電極の選択さ
れた位置にある他より大きな幅の電極又はピッチの寸法
や数、位置によって反射器の中心周波数が決まり、ID
Tの中心周波数に合致させることが製作上でも容易とな
る。
Tatsuri When the electrode pattern of the reflector is set as described above in the present invention, the size, number, and position of the electrodes with a larger width than other electrodes or pitches at the selected positions of the interdigital reflective electrodes in this electrode pattern can be set. The center frequency is determined and the ID
It becomes easy to match the center frequency of T in terms of manufacturing.

1」1兜 以下本発明の一実施例を第1図乃至第3図に基づき説明
すると、図において(5)は圧電基板、(6)は圧電基
板(5)上に形成したIDT、(7)、(7)はIDT
(6)の両側に形成したグレーティング反射器で、反射
電極(9)、 (9)から成る。
An embodiment of the present invention will be described based on FIGS. 1 to 3. In the figures, (5) is a piezoelectric substrate, (6) is an IDT formed on the piezoelectric substrate (5), and (7) is an IDT formed on the piezoelectric substrate (5). ), (7) are IDT
Grating reflector formed on both sides of (6), consisting of reflective electrodes (9), (9).

この実施例の特徴は一対の反射器(7)の内のすだれ状
の多数条、の反射電極(9)、(9)・−の内の例えば
2つの幅をd2に、他の大部分の幅をd2より小さいd
lに揃え、各反射電極(9)、(9) −を一定のピッ
チP3で形成したことである。1つの反射電極(9)の
内側から始めの@d2の反射電極(9”)までを第1電
極群M里、この反射電極(9°)から次の幅d2の反射
電極(9”)までを第2電極群M2、残りを第3電穫群
M3とすると、第1〜第3電極群M1〜M3での各々の
波伝搬速度は幅d2の反射電極(9゛)、(9”)を伝
搬する時に速度低下をきたす関係から第1電極群M1の
ところで最も速(、第3電極群M3のところで最も遅く
なる。この伝搬速度の関係から第1〜第3電極群M1〜
M3の各単独による反射器の周波数−反射率特性は例え
ば第3図の曲線c1 、c2、C3に示すようになる。
The feature of this embodiment is that, for example, the width of two of the reflective electrodes (9), (9), etc. of the pair of reflectors (7) is set to d2, and most of the other widths are set to d2. width d smaller than d2
1, and the reflective electrodes (9), (9) - are formed at a constant pitch P3. From the inside of one reflective electrode (9) to the first @d2 reflective electrode (9") is the first electrode group M, and from this reflective electrode (9°) to the next reflective electrode (9") with width d2. is the second electrode group M2 and the rest is the third electrode group M3, the wave propagation speed in each of the first to third electrode groups M1 to M3 is the reflective electrode (9゛) and (9'') with width d2. Due to the relationship that causes a decrease in speed when propagating, the speed is the highest at the first electrode group M1 (and the slowest at the third electrode group M3.From this relationship of propagation speed, the first to third electrode groups M1 to
The frequency-reflectance characteristics of the reflector using M3 alone are shown, for example, by curves c1, c2, and C3 in FIG.

つまり第1電極群M!単独時の中心周波数f3が最も高
く、第2電極群Mz INN待時中心周波数f4が中間
で、第3電極群M3の中心周波数f5が最も小さくなる
、また第1〜第3電極群M1〜M3を合わせた反射器(
7)の周波数−反射率特性は第3図の曲線C4となる。
In other words, the first electrode group M! The center frequency f3 when alone is the highest, the second electrode group Mz INN standby center frequency f4 is intermediate, and the center frequency f5 of the third electrode group M3 is the smallest, and the first to third electrode groups M1 to M3. reflector (
The frequency-reflectance characteristic of 7) is curve C4 in FIG.

これは上述3つの曲線CI、c2 、c、を合わせたも
のに相当する。
This corresponds to the combination of the above three curves CI, c2, and c.

従って、反射器(7)のストップバンドD゛が大きく設
定でき、またf4をtoに近くなる様に設計すればf3
 >r4>f5の関係から反射器(7)のストップバン
ドD゛の中にIDT(6)の中心周波数foが必ず入る
ことが分る、更に反射器(7)のストップバンドD゛の
中心周波数f6は’II d zの反射電極(9°)、
(9°°)の幅と数、位置の計算でfoに合致させるこ
とができる。また幅d2の反射電極(9゛)、(9°°
)の幅は池の統一された@d tの数倍程度と大まかで
よいので、上述計算通りに電極を形成することが容易に
可焼とぴる。
Therefore, the stop band D' of the reflector (7) can be set large, and if f4 is designed to be close to to, f3
From the relationship >r4>f5, it can be seen that the center frequency fo of the IDT (6) always falls within the stop band D' of the reflector (7), and furthermore, the center frequency of the stop band D' of the reflector (7) f6 is 'II d z reflective electrode (9°),
By calculating the width, number, and position of (9°°), it can be matched with fo. In addition, a reflective electrode (9゛) with a width d2, (9°
) can be approximately several times the width of the pond, so the electrode can be easily formed according to the above calculation.

第4図は本発明の(甑の実施例を示すもので、これの特
徴はIDT(6)の両側の反射器(10)、(10)で
、これは同一幅の反射電極(12)、(12)−・・−
を同一ピッチP4で多数すだれ状に配列すると共に、一
部のピッチP5のみを池より数倍大きくして形成するこ
とである。このようにするとピッチP5のところで波伝
搬速度が低下せず1つの反射器(10)における波伝搬
速度が上記実施例の如く位置によって相違して同様な効
果が発揮される。
Fig. 4 shows an embodiment of the present invention.The feature of this is the reflectors (10), (10) on both sides of the IDT (6). (12) ---
The method is to arrange a large number of holes at the same pitch P4 in the form of a blind, and to form only a part of the pitch P5 several times larger than the pond. In this way, the wave propagation speed does not decrease at the pitch P5, and the wave propagation speed in one reflector (10) differs depending on the position as in the above embodiment, producing the same effect.

発皿坐立来 以上のように本発明によればIDTと反射器の中心周波
数を一致させることが計算上、製作上共に容易となり、
また反射器のストップバンドを広げることが容易になり
、従って高QのSAW共振子の設計、製作が容易になる
As described above, according to the present invention, it is easy to match the center frequencies of the IDT and the reflector both in terms of calculation and manufacturing.
Furthermore, it becomes easier to widen the stop band of the reflector, and therefore it becomes easier to design and manufacture a high-Q SAW resonator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示す平面図及び
A−A線断面図、第3図は第1図のSAW共振子の周波
数特性図、第4図は本発明の他の実施例を示す平面図で
ある。第5図及び第6図は従来のSAW共振子の平面図
及びB−B線断面図、第7図は第5図のSAW共振子の
周波数特性図である。 (5)・−・・圧電基板、(6)・−・IDT、(7)
・・−・反射器、(9)  (9°)(9”°)−・−
反射電極、(10)・−・反射器、(12) −反射電
極。 「 第8図 第5図 第6図 第7図 圓漕散−−
1 and 2 are a plan view and a sectional view taken along the line A-A showing one embodiment of the present invention, FIG. 3 is a frequency characteristic diagram of the SAW resonator shown in FIG. 1, and FIG. 4 is a diagram showing an embodiment of the present invention. It is a top view showing an example of. 5 and 6 are a plan view and a sectional view taken along line B--B of a conventional SAW resonator, and FIG. 7 is a frequency characteristic diagram of the SAW resonator shown in FIG. 5. (5)---Piezoelectric substrate, (6)---IDT, (7)
...Reflector, (9) (9°) (9”°) ---
Reflecting electrode, (10) --Reflector, (12) -Reflecting electrode. "Figure 8, Figure 5, Figure 6, Figure 7, Enkosan--

Claims (1)

【特許請求の範囲】[Claims] (1)圧電基板上にIDTとその両側にグレーティング
反射器を配した共振子において、前記グレーティング反
射器におけるすだれ状に並ぶ多数条の反射電極をその大
部分を同一の幅及びピッチで形成し、所定の残余の反射
電極幅又は電極間ピッチを他より大きく形成したことを
特徴とする弾性表面波共振子。
(1) In a resonator in which an IDT and a grating reflector are arranged on both sides of the IDT on a piezoelectric substrate, a large number of reflective electrodes arranged in a comb shape in the grating reflector are formed with most of them having the same width and pitch, 1. A surface acoustic wave resonator characterized in that a predetermined remaining reflective electrode width or pitch between electrodes is formed larger than others.
JP4963985A 1985-03-12 1985-03-12 Surface acoustic wave resonator Pending JPS61208306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4963985A JPS61208306A (en) 1985-03-12 1985-03-12 Surface acoustic wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4963985A JPS61208306A (en) 1985-03-12 1985-03-12 Surface acoustic wave resonator

Publications (1)

Publication Number Publication Date
JPS61208306A true JPS61208306A (en) 1986-09-16

Family

ID=12836778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4963985A Pending JPS61208306A (en) 1985-03-12 1985-03-12 Surface acoustic wave resonator

Country Status (1)

Country Link
JP (1) JPS61208306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140890A (en) * 1997-11-12 2000-10-31 Nec Corporation Saw filter with multiple reflector pairs
JP4534307B2 (en) * 2000-05-24 2010-09-01 パナソニック株式会社 Surface acoustic wave filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140890A (en) * 1997-11-12 2000-10-31 Nec Corporation Saw filter with multiple reflector pairs
JP4534307B2 (en) * 2000-05-24 2010-09-01 パナソニック株式会社 Surface acoustic wave filter

Similar Documents

Publication Publication Date Title
EP0186410B1 (en) Surface acoustic wave resonator
US7939987B1 (en) Acoustic wave device employing reflective elements for confining elastic energy
US8106726B2 (en) Elastic surface wave device comprising dummy electrodes
US7135805B2 (en) Surface acoustic wave transducer
US9425766B2 (en) Elastic wave element, and electrical apparatus and duplexer using same
US4742319A (en) Surface-acoustic-wave resonator
JPS5925525B2 (en) surface acoustic wave resonator
KR100592363B1 (en) Surface acoustic wave device and its manufacturing method
US6480076B2 (en) Recessed reflector single phase unidirectional transducer
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JPH07263998A (en) End face reflecting surface wave resonator
JP2000183681A (en) Surface acoustic wave device
JP2620085B2 (en) 2-port SAW resonator
JPH02295211A (en) Energy shut-up type surface acoustic wave element
JPH0418806A (en) Thin piezoelectric film device
US5802685A (en) Method for manufacturing surface wave devices of the end-face reflection type
JPS63135010A (en) Surface acoustic wave resonator
JPS61208306A (en) Surface acoustic wave resonator
US6114927A (en) Surface acoustic wave filter utilizing direction changing electrodes and a weighted transducer
JPS59213A (en) Surface acoustic wave device
JPS62200814A (en) Surface acoustic wave resonator
JP2002223143A (en) Surface acoustic wave device
JPS614316A (en) Two-port elastic surface wave resonator
JPH01220910A (en) Surface acoustic wave resonator
JPH0380709A (en) Surface acoustic wave resonator