JPS6120798B2 - - Google Patents

Info

Publication number
JPS6120798B2
JPS6120798B2 JP9639878A JP9639878A JPS6120798B2 JP S6120798 B2 JPS6120798 B2 JP S6120798B2 JP 9639878 A JP9639878 A JP 9639878A JP 9639878 A JP9639878 A JP 9639878A JP S6120798 B2 JPS6120798 B2 JP S6120798B2
Authority
JP
Japan
Prior art keywords
heat exchanger
pipe
evaporator
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9639878A
Other languages
Japanese (ja)
Other versions
JPS5523861A (en
Inventor
Hiroaki Murazaki
Akio Mitani
Kunio Yokoyama
Koji Kashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9639878A priority Critical patent/JPS5523861A/en
Publication of JPS5523861A publication Critical patent/JPS5523861A/en
Publication of JPS6120798B2 publication Critical patent/JPS6120798B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、非共沸混合冷凍媒は使用する冷凍・
冷蔵庫に係り、特に、この冷凍・冷蔵庫における
除霜装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides that the non-azeotropic mixed refrigerant is
The present invention relates to refrigerators, and particularly to a defrosting device for this freezer/refrigerator.

従来、この種の冷凍・冷蔵庫は、第1図及び第
2図に示されるように、圧縮機aで圧縮された冷
媒を凝縮器bで熱交換して凝縮し、この液冷媒を
キヤピラリーチユーブ等による圧力調整器(絞り
機構)cを介して冷蔵室d及び冷凍室eに配設さ
れた各蒸発器f,gで蒸発して冷却し、仕事を了
えた冷媒を上記圧縮機aへ還流するようになつて
いる。
Conventionally, as shown in FIGS. 1 and 2, this type of freezer/refrigerator condenses refrigerant compressed by a compressor a through heat exchange in a condenser b, and transfers this liquid refrigerant to a capillary reach tube. The refrigerant is evaporated and cooled in the evaporators f and g disposed in the refrigerator compartment d and the freezer compartment e through a pressure regulator (throttle mechanism) c, etc., and the refrigerant that has completed its work is returned to the compressor a. I'm starting to do that.

しかしながら、この種の冷凍・冷蔵庫の冷凍室
eは、内周壁面e1に蒸発器gを配設し、さらに、
除霜用ヒータhを設けてある関係上、上記内周壁
面e1の全周壁に亘つて着霜した霜は、除霜用ヒー
タhで除霜するので、内周壁面e1の全周壁に亘つ
て加熱して除霜しなければならず、これに起因し
て冷凍室eが昇温し、冷凍効率を低下する原因に
なつている。
However, the freezer compartment e of this type of freezer/refrigerator has an evaporator g disposed on the inner circumferential wall surface e1 , and further,
Since the defrosting heater h is provided, the frost that has formed on the entire circumferential wall of the inner circumferential wall surface e1 is defrosted by the defrosting heater h, so that the frost that has formed on the entire circumferential wall of the inner circumferential wall surface e1 is defrosted. It is necessary to defrost the refrigerator by heating it over a period of time, and this causes the temperature of the freezer compartment e to rise, causing a decrease in the refrigeration efficiency.

本発明は上述した点に鑑み、非共沸混合冷媒
(以下、単に混合冷媒という)の特性と霜の局所
低温生成の特性を利用し、冷凍室に異なる温度の
二つの蒸発器を配設し、高い温度の蒸発器に着霜
した霜を低い温度の蒸発器に昇華作用で移動さ
せ、集霜し、これを加熱器で除霜し、これにより
冷凍室の全周壁面を加熱することなくして冷凍効
率を向上するようにしたことを目的とする冷凍・
冷蔵庫を提供するにある。
In view of the above-mentioned points, the present invention utilizes the characteristics of a non-azeotropic mixed refrigerant (hereinafter simply referred to as mixed refrigerant) and the local low-temperature generation characteristics of frost, and arranges two evaporators with different temperatures in the freezing compartment. The frost that has formed on the high temperature evaporator is transferred to the low temperature evaporator by sublimation, where it is collected and defrosted using a heater, thereby eliminating the need to heat the entire wall surface of the freezer compartment. A refrigeration system that aims to improve refrigeration efficiency by
There is a refrigerator provided.

以下、本発明を図示の一実施例について説明す
る。
Hereinafter, the present invention will be described with reference to an illustrated embodiment.

第3図乃至第4図において、符号1は、混合冷
媒を使用する冷凍サイクルを組込んだ冷凍・冷蔵
庫の本体であつて、この本体1内には冷蔵室2及
び冷凍室3が形成されており、この冷蔵室2及び
冷凍室3の各開口部には各開閉扉4,5が開閉自
在に蝶着されている。又、上記本体1の外がわの
下部には圧縮機6が設置されており、この圧縮機
6で加圧された混合冷媒は、第4図に示されるよ
うに、吐出管(冷媒管)7から凝縮器8に移送さ
れて、こゝで熱交換されて二相流冷媒になる。さ
らに、上記凝縮器8の二相流冷媒は、気液分離器
9によつてガス冷媒と液冷媒とに分離し、このガ
ス冷媒は気送管10を通して第1熱交換器11へ
送出されるようになつており、上記気液分離器9
で分離された液冷媒は、液送管12上に配設され
た第1絞り機構(圧力調整器)13、上記冷凍室
3内に設えられる冷凍用蒸発器14、上記冷蔵室
2内に設けられる冷蔵用蒸発器15を介して上記
第1熱交換器11へ熱交換して送出されるように
なつている。又、この第1熱交換器11はガス冷
媒と二相冷媒と熱交換し、ガス冷媒は液冷媒の蒸
発作用によつて熱を奪われて液化する。さらに蒸
発してガス化した冷媒はそのまゝ還流管16を通
して上記圧縮機6の供給口6aに還流するも、残
余の液化した冷媒は、連管17を通して第2熱交
換器18、第2絞り機構19を通して低温蒸発器
20に送られて、これを上記各蒸発器14,15
よりも低温度に冷却するようになつている。しか
して、上記低温蒸発器20で熱交換したあとの冷
媒は、まだ低温度であるから、連結管21を通し
て上記第2熱交換器18に戻し、液冷媒と熱交換
して液冷媒の過冷却度を増加した後、ガス冷媒に
なつて上記還流管16に連結した戻し管22を通
して圧縮機6に還流するようになつている。な
お、上記低温蒸発器20の近傍には除霜用加熱器
23が設けられており、これらは前記冷凍室3内
に配設されている。
In FIGS. 3 to 4, reference numeral 1 denotes the main body of a freezer/refrigerator incorporating a refrigeration cycle using a mixed refrigerant, and a refrigerating compartment 2 and a freezing compartment 3 are formed in the main body 1. Doors 4 and 5 are hinged to the openings of the refrigerator compartment 2 and the freezer compartment 3 so as to be openable and closable. Further, a compressor 6 is installed at the lower part of the outer side of the main body 1, and the mixed refrigerant pressurized by the compressor 6 is discharged into a discharge pipe (refrigerant pipe) as shown in FIG. The refrigerant is transferred from the refrigerant 7 to the condenser 8, where it undergoes heat exchange and becomes a two-phase flow refrigerant. Further, the two-phase flow refrigerant in the condenser 8 is separated into gas refrigerant and liquid refrigerant by a gas-liquid separator 9, and this gas refrigerant is sent to the first heat exchanger 11 through the pneumatic pipe 10. The above gas-liquid separator 9
The separated liquid refrigerant is transferred to a first throttling mechanism (pressure regulator) 13 disposed on the liquid feed pipe 12, a freezing evaporator 14 disposed within the freezing compartment 3, and a freezing evaporator 14 disposed within the refrigerating compartment 2. The heat is exchanged with the first heat exchanger 11 through the refrigerating evaporator 15, and then sent out. Further, the first heat exchanger 11 exchanges heat between the gas refrigerant and the two-phase refrigerant, and the gas refrigerant is liquefied by removing heat from it by the evaporation action of the liquid refrigerant. Further, the evaporated and gasified refrigerant returns directly to the supply port 6a of the compressor 6 through the reflux pipe 16, but the remaining liquefied refrigerant passes through the continuous pipe 17 to the second heat exchanger 18 and the second throttle. It is sent to a low temperature evaporator 20 through a mechanism 19, and is sent to each of the above-mentioned evaporators 14, 15.
It is designed to be cooled to a lower temperature. Since the refrigerant after heat exchange in the low-temperature evaporator 20 is still at a low temperature, it is returned to the second heat exchanger 18 through the connecting pipe 21 and exchanges heat with the liquid refrigerant to subcool the liquid refrigerant. After increasing the temperature, the refrigerant becomes a gas refrigerant and is returned to the compressor 6 through a return pipe 22 connected to the return pipe 16. Note that a defrosting heater 23 is provided near the low-temperature evaporator 20, and these are disposed within the freezer compartment 3.

従つて、例えば混合冷媒としてR12に対してR13
を重量比約40%で混合した場合、上記凝縮機8の
出口温度を約35℃とし、低温蒸発器20の入口温
度を約−40℃とすれば、第5図に示されるような
i―p線図で表される。こゝで凝縮圧力約
23ata、蒸発圧力約2ataでは上記低温蒸発器20
の平均蒸発温度−35℃程度となり、冷凍用蒸発器
14の平均蒸発温度約−25℃程度になる。
Thus, for example, R 13 versus R 12 as a mixed refrigerant.
When mixed at a weight ratio of about 40%, if the outlet temperature of the condenser 8 is about 35°C and the inlet temperature of the low-temperature evaporator 20 is about -40°C, the i- It is represented by a p-diagram. The condensation pressure is approximately
23ata, evaporation pressure about 2ata, the above low temperature evaporator 20
The average evaporation temperature of the refrigerating evaporator 14 is about -35°C, and the average evaporation temperature of the freezing evaporator 14 is about -25°C.

一方、上記低温蒸発器が約−35℃とし、冷凍用
蒸発器14の平均蒸発温度約−25℃程度になるよ
うに制御運転すると、食品の出入時の扉開閉動作
によつて、庫内空気は温度の高い外気と入れかわ
り、庫内空気温度は約25℃程度になる。この場
合、室3の蒸発器14と流入した空気の温度差が
大きいために、蒸発器14及び低温蒸発器20は
同じように着霜するも、霜が増加して室3の温度
が低下して安定してくると、低温蒸発器20と冷
凍用蒸発器14との着霜面の温度差によつて、低
温蒸発器20よりも高温度の上記冷凍用蒸発器1
4から、低温蒸発器20に、霜が拡散現象により
移動して着霜する。
On the other hand, if the temperature of the low-temperature evaporator is controlled to be approximately -35°C, and the average evaporation temperature of the freezing evaporator 14 is controlled to be approximately -25°C, the air inside the refrigerator will be This replaces the high temperature outside air, and the internal air temperature becomes approximately 25℃. In this case, because there is a large temperature difference between the evaporator 14 in chamber 3 and the inflowing air, the evaporator 14 and low-temperature evaporator 20 are frosted in the same way, but the frost increases and the temperature in chamber 3 decreases. When the temperature becomes stable, the freezing evaporator 1 whose temperature is higher than that of the low-temperature evaporator 20 due to the temperature difference between the frosted surfaces of the low-temperature evaporator 20 and the freezing evaporator 14
4, frost moves to the low-temperature evaporator 20 due to a diffusion phenomenon and forms frost.

即ち、G=ρD1/1−w・dw/dy となる。 That is, G=ρ D 1/1−w·dw/dy.

但し、Gは霜の移動量(Kg/m2h),ρは湿り空
気の比重(Kg/m3),Dは拡散係数(m3/h),wは
湿り空気絶対湿度、yは冷却面間代表長(m)と
する。
However, G is the amount of movement of frost (Kg/m 2 h), ρ is the specific gravity of humid air (Kg/m 3 ), D is the diffusion coefficient (m 3 /h), w is the absolute humidity of humid air, and y is cooling. Let the representative length between surfaces be (m).

なお、上記低温蒸発器20の冷却面積A=0.04
m2とすると、上式により冷却面の温度差と霜の移
動量の関係は、第6図のグラフで示される。
Note that the cooling area A of the low temperature evaporator 20 is 0.04.
Assuming that m 2 , the relationship between the temperature difference on the cooling surface and the amount of frost movement is shown by the graph in FIG. 6 using the above equation.

又、温度差が約−10℃である場合、1日の霜の
移動量は約100gであり、1日当りの着霜量は約
15g程度になるので、冷凍室3内に生じる霜を上
記低温蒸発器20に集霜して格納した食品を昇温
させることなく、除霜用加熱器23によつて迅速
に除霜することができる。
Also, if the temperature difference is about -10℃, the amount of frost transferred per day is about 100g, and the amount of frost formed per day is about
Since the amount is about 15 g, the frost generated in the freezer compartment 3 can be collected in the low temperature evaporator 20 and the stored food can be quickly defrosted by the defrosting heater 23 without raising the temperature. can.

以上述べたように本発明によれば、非共沸混合
冷媒を使用する冷凍サイクルにおいて、圧縮機6
に接続した冷媒管路上に圧縮機8及び気液分離器
9を設け、この気液分離器9の気送管10に第1
熱交換器11を接続し、他方、上記気液分離器9
の液送管12に第1絞り機構13、冷凍用蒸発器
14、冷蔵用蒸発器15を介して上記第1熱交換
器11を繁ぎ、この第1熱交換器11に第2熱交
換器18、第2絞り機構19及び低温蒸発器20
を接続し、この低温蒸発器20の近傍に除霜用加
熱器23を設けてあるので、高い温度の蒸発器1
4に着霜した霜をも低温蒸発器20に拡散現象で
移動させて集霜し、昇温させることなく除霜でき
るばかりでなく、冷凍室の全周壁を加熱すること
なく短時間で解霜し得るから、冷凍効率を上げる
ことができる等の優れた効果を有するものであ
る。
As described above, according to the present invention, in a refrigeration cycle using a non-azeotropic mixed refrigerant, the compressor 6
A compressor 8 and a gas-liquid separator 9 are installed on the refrigerant pipe connected to the gas-liquid separator 9.
A heat exchanger 11 is connected to the gas-liquid separator 9.
The first heat exchanger 11 is connected to the liquid feed pipe 12 via a first throttle mechanism 13, a freezing evaporator 14, and a refrigeration evaporator 15, and a second heat exchanger is connected to the first heat exchanger 11. 18, second throttle mechanism 19 and low temperature evaporator 20
Since the defrosting heater 23 is installed near the low-temperature evaporator 20, the high-temperature evaporator 1
Not only can the frost that has formed in the refrigerator compartment 4 be moved to the low-temperature evaporator 20 by diffusion phenomenon to collect the frost and defrost it without raising the temperature, but it can also be defrosted in a short time without heating the entire peripheral wall of the freezer compartment. Therefore, it has excellent effects such as being able to increase refrigeration efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の冷凍・冷蔵庫を説明
するための各図、第3図は本発明による冷凍・冷
蔵庫の断面図、第4図は本発明の線図、第5図及
び第6図は本発明を説明するための各グラフであ
る。 1…本体、2…冷蔵室、3…冷凍室、6…圧縮
機、8…凝縮器、9…気液分離器、13…第1絞
り機構、14…冷凍用蒸発器、15…冷蔵用蒸発
器、18…第2熱交換器、19…第2絞り機構、
20…低温蒸発器、23…除霜用加熱器。
1 and 2 are diagrams for explaining a conventional freezer/refrigerator, FIG. 3 is a sectional view of the freezer/refrigerator according to the present invention, FIG. 4 is a line diagram of the present invention, and FIGS. Figure 6 is each graph for explaining the present invention. DESCRIPTION OF SYMBOLS 1... Main body, 2... Refrigeration compartment, 3... Freezer compartment, 6... Compressor, 8... Condenser, 9... Gas-liquid separator, 13... First throttling mechanism, 14... Refrigeration evaporator, 15... Refrigeration evaporator 18... second heat exchanger, 19... second throttle mechanism,
20...Low temperature evaporator, 23...Defrosting heater.

Claims (1)

【特許請求の範囲】[Claims] 1 非共沸混合冷凍媒を使用する冷凍サイクルに
おける冷凍冷蔵庫において、圧縮機の吐出管に凝
縮器及び気液分離器を順に接続し、この気液分離
器の気送管に第1熱交換器を接続し、この気液分
離器の液送管に第1絞り機構、冷凍用蒸発器、冷
蔵用蒸発器及び第1熱交換器を順に接続し、この
第1熱交換器により気送管を通過する冷媒と液送
管を通過する冷媒とを互に熱交換させ、第1熱交
換器を介して気送管と連通する第1熱交換器の還
流管に圧縮機を接続し、第1熱交換器を介して液
送管と連通する第1熱交換器の連管に第2熱交換
器を接続し、この第2熱交換器を介して連管と連
通する第2熱交換器の連結管に第2絞り機構、除
霜用加熱器を備えた低温蒸発器及び第2熱交換器
を順に接続し、この第2熱交換器により連管を通
過する冷媒と連結管を通過する冷媒とを互に熱交
換させ、この第2熱交換器を介して連結管と連通
する第2熱交換器の戻し管を還流管に接続し、こ
の低温蒸発器を本体内に形成された冷凍室に設け
たことを特徴とする冷凍・冷蔵庫。
1. In a refrigerator-freezer in a refrigeration cycle that uses a non-azeotropic mixed refrigeration medium, a condenser and a gas-liquid separator are connected in sequence to the discharge pipe of the compressor, and a first heat exchanger is connected to the pneumatic pipe of the gas-liquid separator. A first throttling mechanism, a freezing evaporator, a refrigeration evaporator, and a first heat exchanger are connected in this order to the liquid feed pipe of the gas-liquid separator, and the pneumatic feed pipe is A compressor is connected to a reflux pipe of the first heat exchanger that communicates with the pneumatic pipe through the first heat exchanger, and a compressor is connected to the reflux pipe of the first heat exchanger that communicates with the pneumatic pipe through the first heat exchanger. A second heat exchanger is connected to a connecting pipe of the first heat exchanger that communicates with the liquid feed pipe via the heat exchanger, and a second heat exchanger that communicates with the connecting pipe via the second heat exchanger. A second throttle mechanism, a low-temperature evaporator equipped with a defrosting heater, and a second heat exchanger are sequentially connected to the connecting pipe, and the second heat exchanger allows the refrigerant passing through the connecting pipe and the refrigerant passing through the connecting pipe to be connected in sequence. The return pipe of the second heat exchanger, which communicates with the connecting pipe through the second heat exchanger, is connected to the reflux pipe, and the low-temperature evaporator is connected to the freezing chamber formed in the main body. Freezer/refrigerator characterized by being installed in.
JP9639878A 1978-08-08 1978-08-08 Refrigerator Granted JPS5523861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9639878A JPS5523861A (en) 1978-08-08 1978-08-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9639878A JPS5523861A (en) 1978-08-08 1978-08-08 Refrigerator

Publications (2)

Publication Number Publication Date
JPS5523861A JPS5523861A (en) 1980-02-20
JPS6120798B2 true JPS6120798B2 (en) 1986-05-23

Family

ID=14163847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9639878A Granted JPS5523861A (en) 1978-08-08 1978-08-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5523861A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886370A (en) * 1981-11-19 1983-05-23 小型ガス冷房技術研究組合 Refrigerator

Also Published As

Publication number Publication date
JPS5523861A (en) 1980-02-20

Similar Documents

Publication Publication Date Title
JP2865844B2 (en) Refrigeration system
US4910972A (en) Refrigerator system with dual evaporators for household refrigerators
US6327871B1 (en) Refrigerator with thermal storage
KR100230170B1 (en) Tandem refrigeration system
US5134859A (en) Excess refrigerant accumulator for multievaporator vapor compression refrigeration cycles
WO2018121425A1 (en) Refrigeration system utilizing parallel and serial-connected dual evaporators, and control method thereof
EP2200483A2 (en) Refrigerated case
US6311512B1 (en) Refrigerated merchandiser system
US4862707A (en) Two compartment refrigerator
JPH0755273A (en) Refrigeration system and refrigerator
CN114763958B (en) Refrigerator with a refrigerator body
CN206593361U (en) A kind of vehicle-mounted energy-saving refrigerator
JPS6230691Y2 (en)
JPS6120798B2 (en)
JP2004333092A (en) Freezer/refrigerator
CN114739026A (en) Mixed refrigerant refrigerating system for display cabinet
EP0374688B1 (en) Refrigerator system with dual evaporators for household refrigerators
KR0135133B1 (en) Evaporator structure for cooler with double evaporators
CN219014673U (en) Refrigerating system, air conditioner and refrigeration house
CN218065446U (en) Refrigerator with a door
JP2573082Y2 (en) Late-night electric power type refrigerator
KR0126728Y1 (en) A refrigerator
JPS6150237B2 (en)
JPS5838362Y2 (en) refrigerator
JPS6119413Y2 (en)