JPS61207039A - Power semiconductor cooling device and manufacture thereof - Google Patents

Power semiconductor cooling device and manufacture thereof

Info

Publication number
JPS61207039A
JPS61207039A JP4788685A JP4788685A JPS61207039A JP S61207039 A JPS61207039 A JP S61207039A JP 4788685 A JP4788685 A JP 4788685A JP 4788685 A JP4788685 A JP 4788685A JP S61207039 A JPS61207039 A JP S61207039A
Authority
JP
Japan
Prior art keywords
heat pipe
heat
pipe
power semiconductor
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4788685A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP4788685A priority Critical patent/JPS61207039A/en
Publication of JPS61207039A publication Critical patent/JPS61207039A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To diminish the contact resistance heat by a method wherein a heat pipe to be pressure-fixed in a through hole of block is pressure-welded into the through hole by expanding the pipe to form it into one body with the block. CONSTITUTION:A heat pipe 3 is inserted into a through hole 2 of a metallic block 2 before the pipe 3 is completed i.e. the material pipe of container is inserted into the specified position in the state of straight pipe to be expanded for pressure-fixing into one body with the block 2. In order to completely exhaust air from fine flaws or dents inside the through hole 2 and the periphery of material pipe, both wall of material pipe are coated with grease or bonding agent with excellent heat conductivity to be expanded by means of force-fitting steel ball and pulling out plug and then any excessive coating material may be exhausted filling any recessions with the coating material for almost complete pressure-fixing to diminish the contact resistance heat almost into zero. Through these procedures, after finishing the insertion of material pipe into the insertion through hole 2, the material pipe may be bent at specified position to complete the heat pipe 3 through specific processes.

Description

【発明の詳細な説明】 (イ1遁婁上の利用分野 本発明にサイリスタ、ダイオード、トランジスタ専の如
き電力半尋体素子tヒートパイプ1e/Ff効に利用し
て冷却する冷却装置の構造及び製造方法の改善に関する
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Application The present invention relates to the structure and structure of a cooling device that utilizes heat pipes 1e/Ff to cool electric power semicircular elements such as thyristors, diodes, and transistors. Concerning improvements in manufacturing methods.

(口1従米の技術 電力用半導体の冷却にヒートパイプコンテナに利用する
構造が実用化さ1始めてから10年余になっている。ヒ
ートパイプの秀n九熱移送特性は半導体の電力損失に依
る発熱の冷却には憎めて有効なものでめつ几。然しヒー
トパイプ応用の冷却装置の基本的な構造にこの間殆ど変
っていない。即ち半導体と接触してその熱を引出す為の
金属ブロック、該金属ブロックに挿接されてj)り、金
属ブロックの熱tv汲み出して放熱部に移送する為のヒ
ートパイプ、ヒートパイプに装Wされてめって強制対流
さnる空気中に熱を放出する為のフィン群、の3構成要
素から形成されてあるのが通例である。この冷却装置が
敢も多く利用さnるのは平形サイリスタであってこの場
−&r!金属ブロックと平形サイリスタ素子が交互に多
add積!−されて使用さnる。この様な構造のio、
 tags伝導を良好ならしめる為、金属ブロックに一
般にa純銅ブロックが用いらA、6,1銅ブロツク及び
ヒートパイプは憔めて効率的に熱エネルギーを移送して
フィン群に熱を伝達する。然し多数のサイリスタが金属
ブロックと積層されてある*t、i15々のヒートパイ
プに装着されるフィン群に許さ几る専有容積は極めて制
限さ3tものとなり、如何にしてフィン群の表(2)横
を大にするかがサイリスタ冷却装置の間てシーメンス社
(西独)はフィン面積を拡大する構造を提案している。
(1) It has been more than 10 years since the structure used in heat pipe containers for cooling power semiconductors was put into practical use.The heat transfer characteristics of heat pipes depend on the power loss of the semiconductor. It is extremely effective for cooling heat generated. However, the basic structure of cooling devices using heat pipes has not changed much during this time. Namely, a metal block that comes into contact with a semiconductor and draws out its heat. A heat pipe that is inserted into a metal block and pumps out the heat from the metal block and transfers it to the heat dissipation section, and is installed in the heat pipe and radiates heat into the air through forced convection. It is customary to be formed from three components: a group of fins. What is often used in this cooling device is a flat thyristor. Multi-add product of metal blocks and flat thyristor elements alternately! - to be used. io with this kind of structure,
To ensure good conduction, the metal block is generally a pure copper block, and the A,6,1 copper block and heat pipes efficiently transfer thermal energy and transfer heat to the fins. However, the available space for the fin group attached to the *T and I15 heat pipes, in which a large number of thyristors are laminated with metal blocks, is extremely limited to 3 tons. Siemens (West Germany) is proposing a structure that increases the fin area between thyristor cooling devices.

第6図にその基本ユニットの構造を示すもので金属ブロ
ックIKμL字形に曲げらnたヒートパイプ3の熱吸収
部が挿着されてある。ヒートパイプの放熱部にはフィン
群5が装着されてある。14−a、4−bαフィンの保
賎叡である。図でaヒートパイプ3はブロックl(/J
右1llIに挿着さ1しであるがシーメンス扛0抛某で
に左側に挿着したユニットと交互に積)−することに依
りフィンNU充分にフィン面積を拡大させることが可能
となるものである。即ち金属ブロックの中心@x−x’
トtニートパイプの中心@Y −Y’トO間隔を大にす
ることで空気の流n/に対し充分な奥行きt与えること
が可能となる。又図示していないがフィン巾にサイリス
タ間隔の2漬にすることが可能となっている。シーメン
ス社の[a−J!は1975年になされている。この当
時のサイリスタの最大許容′1圧、電ftuL 5KV
、40 nA[度の規模であって、当時のサイリスタ冷
却器においてに金属ブロックに小さく、こルに挿着さn
るヒートパイプは1本のみで光分であり、当時の問題点
は王として如何にフィン面積を拡大するかに6つt、そ
の後の電力半導体の発展な目寛しく。
FIG. 6 shows the structure of the basic unit, in which a heat absorbing portion of a heat pipe 3 bent into a metal block IKμL shape is inserted. A fin group 5 is attached to the heat radiation part of the heat pipe. 14-a, 4-bα fins are protected. In the figure, a heat pipe 3 is connected to block l (/J
Although it is inserted in the right side, it is possible to sufficiently expand the fin area of the fin NU by stacking it alternately with the unit installed on the left side. be. i.e. the center of the metal block @x-x'
By increasing the distance between the center of the neat pipe and the center of the neat pipe, a sufficient depth t can be given to the air flow n/. Also, although not shown, it is possible to make the fin width equal to the thyristor spacing. Siemens' [a-J! was made in 1975. Maximum allowable voltage and voltage ftuL of thyristors at that time was 5KV
, 40 nA [degrees], and in the thyristor coolers of the time, they were small in a metal block and inserted into a coil.
There was only one heat pipe, and the problem at the time was how to expand the fin area.

近時ではサイリスタに例tとると4KV、1500Aの
容置のものも実用化され、区に4KV、2500Aのも
のも試作されて居り益々大容量化の傾向にある。こnに
依り1本のヒートパイプでに対処することが不可能とな
り同一の金属ブロックに数本のヒートパイプが挿着さf
L金属ブロックもvc第に大型化するに至っている。こ
nに依り新しい問題点として金属ブロックの重量が取扱
上過大となり。
In recent years, for example, thyristors with a capacity of 4KV and 1500A have been put into practical use, and thyristors with a capacity of 4KV and 2500A are also being prototyped, and there is a trend towards larger capacities. Due to this, it becomes impossible to deal with the problem with a single heat pipe, and several heat pipes are inserted into the same metal block.
The L metal block has also become larger than the VC. As a result of this, a new problem arises: the weight of the metal block becomes too much for handling.

その@量化が盲点課題となるに至っている。同時にこル
に対応してフィン枚数の増加、一枚当りフィン面積も大
きくなり、フィンの重量も増大しつつありその桶菫化も
IL喪課題となっている。特に。
Quantification has become a blind spot issue. At the same time, the number of fins is increasing, the area of each fin is increasing, and the weight of the fins is also increasing, and the problem of making the fins smaller is becoming a problem for IL. especially.

金属ブロック、ヒートパイプ、フィンの材料は何nも純
銅が主流である点も重量増加の原因となっている。要用
に供されているヒートパイプ式サイリスタ冷却長減り慮
被に1ユニツト13kl/lj!iするものもあるのが
現状である。材料として銅が使用さ几る理由としてaヒ
ートパイプとして最も高性fii発揮する為には純水作
動液(着熱が最大)r iIl用する以外には必要な冷
却性能を得ることが内鑵でh9純水作動液に対して虐も
適合性が良いコンテナとしては銅コンテナ、w4ウィッ
クが最適であることに依る。区に銅ヒートパイプに対し
電業の恐nが少く1区に最も熱抵抗τ小さくするフィン
材料、ブロック材料としては純銅が最適であり結局装置
f全体が純銅を主体として構成さすることになっている
ものである。従来技術においてブロック及びフィンが大
型化している現用のヒートパイプ式電力半導体冷却装置
の構造tgs図に示しである。ブロック1rC光分な間
隔を与えらnてヒートパイプ挿接用の挿接孔2−a、2
−bs2−c。
Another reason for the weight increase is that the metal blocks, heat pipes, and fins are mostly made of pure copper. In consideration of the cooling length of the heat pipe type thyristor used for the required purpose, 1 unit is 13kl/lj! The current situation is that there are some that do. The reason why copper is used as a material is that in order to exhibit the highest performance as a heat pipe, it is necessary to obtain the necessary cooling performance other than using pure water working fluid (maximum heat transfer). Therefore, copper containers and W4 wicks are the most suitable containers that are highly compatible with H9 pure water hydraulic fluid. In contrast to copper heat pipes, pure copper is the most suitable fin material and block material because it has fewer electrical hazards than copper heat pipes and has the lowest thermal resistance. It is something that The structure of a current heat pipe type power semiconductor cooling device in which blocks and fins are enlarged in the prior art is shown in a TGS diagram. The insertion holes 2-a and 2 for heat pipe insertion are given a distance equal to the block 1rC light.
-bs2-c.

が設けらnである。その為にブロックは大型化している
。大きな間隔が与えらnてめるのは、挿入されてある直
線状ヒートパイプ3−a、3−b*3−cの放熱部に長
層されてあるフィンf#5のフィン効率を良好ならしめ
る為には充分な間隔を必要とすることに依る。従って放
熱能力を増大せしめる為空気の対流方向にフィンの長官
t増加せしめる程ヒートパイプ間隔は大きくな9こrt
、1ctl’ってブロックは大型化さnることになる。
is set n. For this reason, the blocks are becoming larger. The reason why the large spacing is given is to improve the fin efficiency of the fin f#5, which is long layered on the heat dissipation part of the inserted linear heat pipes 3-a, 3-b*3-c. This depends on the fact that sufficient spacing is required to close the gap. Therefore, in order to increase the heat dissipation capacity, the heat pipe spacing is increased by increasing the length of the fins in the direction of air convection.
, 1ctl', the block becomes larger n.

ブロックの大型化tl17Jぎフィン面積を大きくする
為ヒートパイプを急角度で蛇行せしめ良形状のものも提
案さn比例がありこf′Lは第7図にボす。然しヒート
パイプの作動原理に容器内における作動液蒸党の高速流
1gl−利用するものであり、従って管路が狭い範l内
で反対方向のIt月曲げt繰返す場合に蒸気流に大きな
圧力損失が発生することは免nない。こnに依りヒート
パイプの性能に大巾に低下する。又狭隘な範囲での褌雑
な曲げ加工は加工vItt−増大させる恐nがある。
Increasing the size of the block tl17J In order to increase the fin area, a heat pipe with a good shape in which the heat pipe meandered at a steep angle was also proposed. However, the working principle of a heat pipe is to utilize a high-velocity flow of a working liquid vapor in a container, and therefore, when the pipe is repeatedly bent in opposite directions within a narrow range, there is a large pressure loss in the vapor flow. There is no excuse for this to occur. This greatly reduces the performance of the heat pipe. Moreover, the rough bending process in a narrow range may increase the process vItt-.

上述の如き従来aaの大容量半導捧冷却装電には区に大
きな間聰点が残されている。そnにヒートパイプと金属
ブロックの挿着の間隔である。挿接孔に単にヒートパイ
プを圧入しt4合に双方の表面の鑞細な凹凸によって発
生する9啄に依る接I!iI熱抵抗が発生し全く便用に
耐えない。こnk防ぐ為に熱伝導性グリス、熱伝導住接
層材を塗布して圧入する方法がめる。然し熱伝導性と称
してもこrL等の熱伝導率(1o、 5〜0.7 KC
a// m−h−℃に過ぎず純銅の熱伝4軍33 Q 
KCa//m・h・℃に比較してl/660〜’/4’
IOに過ぎない。この為に挿接孔内壁とヒートパイプ表
面間に生じる堕、ffl材料の噂狭の熱抵抗に依って冷
却性能は大巾に低下する。ヒートパイプ直径J54m、
饋料の熱体4率α7xcaJ/In−h−’C,薄襖厚
さO,l m挿溜部長官20011Ikの場合の塗料薄
膜の熱抵抗は0.0077℃んとなV総会熱抵抗として
0.01℃/Wが要望されている大容量半導体素子の冷
却装置において従層部だけで77%もの熱抵抗Jvj7
JIllは到底許容出来ないものである。従ってこの様
な連接方法に小谷瞳の成力半導体素子のみに適用さnる
のが通例である。従って従来構造の大容量の電力半導体
素子冷却tj[!tにおいてはヒートパイプと金属ブロ
ックとの挿接vcぼ錫鉛半田に依る接層が採用されてい
る。
In the conventional AA large capacity semiconductor cooling system as described above, a large gap remains in the area. Another factor is the spacing between the heat pipe and the metal block. The heat pipe is simply press-fitted into the insertion hole, and when the heat pipe is inserted into the insertion hole, there is no contact due to the slight unevenness on both surfaces. iI heat resistance occurs and it cannot be used at all. To prevent this, we recommend applying thermally conductive grease and thermally conductive bonding material and press-fitting it. However, even if it is called thermal conductivity, the thermal conductivity (1o, 5 to 0.7 KC
a// m-h-℃, pure copper heat transfer 4 army 33 Q
l/660~'/4' compared to KCa//m・h・℃
It's just an IO. For this reason, the cooling performance is greatly reduced due to the cracks that occur between the inner wall of the insertion hole and the surface of the heat pipe, and the rumored low thermal resistance of the FFL material. Heat pipe diameter J54m,
The thermal resistance of the thin paint film in the case of the heating element 4 rate α7xcaJ/In-h-'C, thin sliding door thickness O, l m, Director General of the Insertion Department 20011Ik is 0.0077°C, as V general thermal resistance. In cooling equipment for large-capacity semiconductor devices where 0.01°C/W is required, the slave layer alone has a thermal resistance of 77% Jvj7
JIll is completely unacceptable. Therefore, it is customary to apply this connection method only to Hitomi Kotani's semiconductor devices. Therefore, the large-capacity power semiconductor device cooling tj [! In t, a contact layer using VC tin-lead solder is used to connect the heat pipe and the metal block.

ヒートパイプ直径25.4装置半田層の厚さ0.15腸
、半田の熱伝導率が3 nKcal/rn−h・’C,
のno、挿棲長官200mとして半田ノーの熱抵抗(!
−算出するとO,OO027℃/W となる。この程度
の熱抵抗増力0に0.01℃/W(D総会熱抵抗を要求
される冷却装置においても全く問題とする必要がない@
然しヒートパイプの半田接続は極めて困難な作業である
。ヒートパイプは純水作動液の場合飽和水蒸気圧の増力
口に依り200’C以上に加熱することにコンテナが破
損変形する恐nがあって危険であり、又その秀nzss
送特性に依りヒートパイプに全体が均一な温度になり、
180℃の半田加工温度の4合接着部以外の部分も総べ
て180℃となり取扱いが困難となる。又油t!Rt−
すると忽ち放熱固化して挿着に不可能となる。又熱容量
の大きな金属ブロック1j(200℃を越えることなく
半田1!融温度に保持する必要があり、この状態を保ち
乍ら伸逆孔内に空気の侵入するのを防ぎ乍ら半田接着加
工を実施する・み景がある。この挿71那工の困囃さに
装置のコスト上杵の原因となってお9対策が求めらルて
いる。比較的小容量のヒートパイプ式半導体冷却獲tI
Lにおいてにフンオン11.フレオン114′第1の作
a歇が用いらnる場合がある。この4曾貫通合金属とし
ては銅又にアルミニウムがあり、一般にはアルミニウム
が1更用さnる。フレオン作動液は20 G ’Cにて
飽和蒸気圧σ数lO気圧以上にも達し、危険な為半田W
l麿法ニ採用することが出来ない。又フレオンに純水に
比較して潜熱が極めて小さいので通常のヒートパイプで
は良好な熱抵抗を得ることが出来ない。こlrL#の理
由からフレオン作動液を用いt大容量半導体冷却装置で
にフィン装着部とブロック部も一体化せしめ。
Heat pipe diameter: 25.4, device solder layer thickness: 0.15 mm, solder thermal conductivity: 3 nKcal/rn-h・'C,
No, thermal resistance of soldering as 200m (!
-Calculated as O,OO027°C/W. This level of thermal resistance increase of 0 is 0.01℃/W (there is no need to worry about it at all even in cooling equipment that requires a D general thermal resistance @
However, soldering heat pipes is an extremely difficult task. In the case of pure water working fluid, heating the heat pipe to over 200'C due to the saturated steam pressure intensifier port may cause damage and deformation of the container, which is dangerous.
Depending on the transmission characteristics, the entire heat pipe has a uniform temperature,
The soldering temperature of 180° C. for all parts other than the bonded portion of the 4 joints becomes 180° C., making handling difficult. Oil again! Rt-
Then, the heat dissipates and solidifies, making it impossible to insert. In addition, the metal block 1j with a large heat capacity (solder 1! must be maintained at the melting temperature without exceeding 200°C, and the solder bonding process is performed while maintaining this state and preventing air from entering the expansion hole. There is a view to implement this.The difficulty of this 71-hour process increases the cost of the equipment, and 9 countermeasures are required.Relatively small capacity heat pipe type semiconductor cooling technology
11. A Freon 114' first cycle may be used. Copper or aluminum can be used as the four-way metal, and aluminum is generally used. Freon hydraulic fluid reaches a saturated vapor pressure of several 10 atm or more at 20 G'C, which is dangerous, so do not solder it.
It is not possible to adopt the law. Also, Freon has extremely low latent heat compared to pure water, so a normal heat pipe cannot provide good thermal resistance. For this reason, we used Freon hydraulic fluid and integrated the fin mounting part and block part with a large capacity semiconductor cooling device.

そn等双方共に中空コンテナとして形成さnる例がある
。この場合も浩熱の小さな点を補なう為内*IiY積を
大巾に増大せしめる為内壁面を櫛型にし7tり無数のフ
ィンを内毫に設は九りしている。この様な?Jfiな構
造に純銅で形成することは極めて困難な為に一般にはア
ルミ製となっている。然し構造の複雑さに依る高歯格と
、高性崗Eが得が几い専の点から実用的には多用さnる
に至っていない。
There are examples where both are formed as hollow containers. In this case as well, in order to greatly increase the inner *IiY product in order to compensate for the small point of heat exchange, the inner wall surface was made into a comb shape and countless fins of 7 tons were installed on the inner wall. Like this? It is extremely difficult to form a Jfi structure with pure copper, so it is generally made of aluminum. However, it has not been widely used in practice due to the high tooth profile due to the complexity of the structure and the fact that the high quality steel is difficult to obtain.

(ハ)発明が解決しようとする問題点 上述の如き従来技術に残さn九多くの問題点につき本発
明に次の如き点について改善解決しょうとするものであ
る。
(c) Problems to be Solved by the Invention The present invention attempts to improve and solve the nine problems that remain in the prior art as described above.

a、受熱用金属ブロックの重tJt!!J大な点及び大
型に過ぎる点。
a. Weight of heat receiving metal block tJt! ! J Large points and points that are too large.

b、ヒートパイプ1本当り放熱面積が過小な点。b. The heat dissipation area per heat pipe is too small.

C3金属ブロツクとヒートパイプの挿着が困難な点。Difficult to insert C3 metal block and heat pipe.

d、上に依る熱抵抗は半田接層失敗の場合大巾に増力口
する。
d. The thermal resistance shown above increases significantly in the case of failure of solder bonding.

e、純水作動液に対し冷却装置の構成材料の選択範囲が
狭い点。
e. The selection range of constituent materials for the cooling device is narrow compared to pure water working fluid.

f、フィン材料が主として純銅である為重量が大きい点
も間蟲である。
f. Another problem is that the fin material is mainly pure copper, so it is heavy.

g。金属ブロックの機械■工費が高価である。又銅フィ
ンば腐食を生じ易い点も問題点であつ几。
g. Machinery for metal blocks■ Labor costs are expensive. Another problem is that copper fins are prone to corrosion.

に)問題点を解決する為の手段及び作用上記間1点の各
項に夫々に対応する解決手段及び作用に久の如くである
B) Means and actions for solving the problems The solution means and actions corresponding to each of the above points are as follows.

a。ブロックにおけるヒートパイプの連層間隔を小さく
することに依りブロックを小型化する。史に挿着間隔を
小さくする中段としてはヒートノ(イブの挿溜a水平と
し近接して伸増しフィン挿着部における必要なヒートパ
イプ間隔にヒートパイプを直月万同に曲げて放熱部を形
成する場合の曲げる位置の設定に依ってFA節する。
a. The block is made smaller by reducing the interval between successive layers of heat pipes in the block. Historically, as a middle step to reduce the insertion interval, the heat pipes are placed horizontally and the heat pipes are bent uniformly to the necessary heat pipe spacing at the extension fin insertion part to form a heat dissipation part. The FA section will depend on the setting of the bending position.

又小さなブロック内でヒートパイプとブロックの接触面
積を大きくする為に従来の如く受熱部tブロック内に哩
設ぜず貫通せしめて、ヒートバイブ端末の無効部分にブ
ロック外に4出せしめるか。
Also, in order to increase the contact area between the heat pipe and the block in a small block, the heat receiving part should not be installed inside the T block as in the past, but should be passed through it, and the ineffective part of the heat vibe terminal should be made to extend outside the block.

貫通せしめ九ヒートパイプの両端共直角に曲げてσ字管
ヒートパイプとすることに依り受熱部の無効面積を無く
する。
By bending both ends of a nine-penetration heat pipe at right angles to form a σ-shaped heat pipe, the ineffective area of the heat receiving part is eliminated.

b、直角方向に曲げる位置の設定に依って決まるフィン
装着部におけるヒートパイプの配列間隔を大きくするこ
とに依り従来形エリヒートパイプ1本当りフィンm、T
lta’拡大させる。、更に大容量の場合にU字管ヒー
トパイプにすることに依t)1本当りフィンI11[i
槓に倍増させることが出来ろうc、4[ブロックとヒー
トパイプの挿着に半田接着や接層材療看を適用すること
は取止める。又完成ヒートパイプの挿着も取止める。ブ
ロックに設げる連接孔xl1通孔とし、ヒートパイプ底
形用素管を挿入し比後拡管せしめてブロックと、#f衣
表面圧接状態にする。この唾の拡管で油圧拡管法の如き
全面同時拡fk実施する場合に圧4部に空気抱込みの恐
nがあるので鋼球圧入法かプラグ引抜法の如く片側から
の順欠拡管の万が望ましい。圧擾完了後曲げ加工tS+
し然る後ヒートパイプとして完成せしめる。
b. Fin m, T
Expand lta'. , in the case of a larger capacity, it depends on the use of a U-shaped heat pipe.
It would be possible to double the amount of heat pipe c, 4 [We do not apply solder bonding or bonding material therapy to the insertion of the block and heat pipe. In addition, the installation of completed heat pipes will also be canceled. The connection hole xl1 provided in the block is used as a through hole, and the base tube for the bottom shape of the heat pipe is inserted and the tube is enlarged to bring the #f coating surface into pressure contact with the block. When carrying out simultaneous expansion of the entire surface using this pipe expansion method, such as the hydraulic pipe expansion method, there is a risk of air being trapped in the pressure section. desirable. Bending process tS+ after completion of pressing
After that, it was completed as a heat pipe.

d、上記の方法は挿着に失敗が無く熱抵抗は極めて小さ
い。更に接触熱抵抗を小さくする為には拡管前に熱伝導
性グリス、熱伝導性接着材専を挿置孔内壁、コンテナ管
外壁に一塗布して傭人し、然る麦調球出入法、プラグ引
抜法にて拡管丁nば、圧接部の微小な凹部り空気框塑布
材料と置換さn、余分のm布材に排出さn億めて小さな
半触熱砥仇で帰着することが出来る。
d. The above method has no failure in insertion and has extremely low thermal resistance. In order to further reduce the contact thermal resistance, before expanding the tube, apply one coat of thermally conductive grease or thermally conductive adhesive to the inner wall of the insertion hole and the outer wall of the container tube, and then use the appropriate ball insertion method and plug. If the tube is expanded by the drawing method, the minute recess in the pressure welding part will be replaced with air frame plastic material, and the excess material will be discharged and returned with a small semi-catalytic abrasive. .

e、゛成力半導体に一役に発熱前が大きいので冷却装置
に便用するヒートパイ1は着熱の大きな純水作mat文
用しtものが望ましい。然し純水作−液を便用出来る迩
せ住り良好なヒートパイプ材料a他めてi4沢範囲が狭
く、汎用@属でに純銅、純ニッケルのみである。熱伝導
性の点t8j慮丁1しばヒートパイプ材料は純銅のみと
云うことになる。又従来ブロック材料にも純銅が使用さ
れてい之のはブロックとヒートパイプの挿着が半田接着
である為、愛着性の良好な点と熱伝導性の良好な点から
であつ几。本発明に係る電力半導体冷却!iffにおい
てにこの問題解決(t)手段として拡管挿着に依り両者
を圧接一体化せしめる。従って半田層着性を考1する・
ゐ貴が無いからブロックには純銅りりは若干低いが熱伝
導性の良好なアルミニウムブロックを採用することが出
来る。又拡管方式に鋼球圧入法かプラグ引抜法′I!e
採用すnばアルミブロックと銅ヒートパイプ間には!頃
に賃無に近くなるからアルミ腐食、!!!檀金属間電食
の間惰も生じない。
e. Since the generation of heat is large in semiconductors, it is preferable that the heat pie 1 used in the cooling device be one made of pure water, which has a large amount of heat transfer. However, in addition to heat pipe materials that can be easily used with pure water and are suitable for living, the range of I4 materials is narrow, and only pure copper and pure nickel are available for general purpose use. Regarding thermal conductivity, pure copper is the only material for the heat pipe. In addition, pure copper has traditionally been used as a block material because the block and heat pipe are inserted by solder bonding, which makes it easy to attach and has good thermal conductivity. Power semiconductor cooling according to the present invention! In IF, as a means to solve this problem (t), the two are pressure-welded and integrated by expanding and inserting the tube. Therefore, consider the solder layer adhesion.
Since there is no metal, it is possible to use an aluminum block with good thermal conductivity, although the pure copper content is a little low. In addition, steel ball press-in method or plug pull-out method is available for pipe expansion method! e
Between the aluminum block and the copper heat pipe! Aluminum corrodes because it will become almost unpaid around the time! ! ! No galvanic corrosion occurs between metals.

アルミブロックに対しアルミヒートパイプニ半田挿着が
不可能であつ次。01に伸接孔円のアルミ半田の接着力
の耐久性が悪く、又〃u工性が座い上に鉛半田に比較し
て半田作業aI&が高いので、ヒートバイブ内作鯛液の
蒸気圧が高くなり危険である等の問題がbつ7?:友め
である。然し拡′♂襞看法の採用に依り、製置上昇の間
噛もなく、アルミ半田便用の・み要件も無くなるのでア
ルミヒートパイプの挿着が可能となる。これは又作動液
の接触する内@IICn純鋼t1更用し外側ににアルき
ニウムを便用し友二重菅ヒートパイプtf用することが
可能となる。黒色アルマイトを外波とし丸鋼アルミヒー
トパイプは銅ヒートパイプエ9耐食注が憔めて良好であ
り冷却装置全体としての耐食性強化の効果がある。
It is impossible to solder the aluminum heat pipe to the aluminum block. 01, the durability of the adhesive strength of the aluminum solder in the expansion hole circle is poor, and the soldering work is high compared to lead soldering, so the vapor pressure of the sea bream liquid made in the heat vibrator is There are 7 problems such as high temperature and danger. : We are friends. However, by adopting the expanded fold viewing method, there is no jamming during the manufacturing and ascent process, and there is no need to scrunch the aluminum solder, making it possible to insert an aluminum heat pipe. This also makes it possible to replace the inner @IICn pure steel t1 with which the working fluid comes in contact, and use aluminum on the outer side, making it possible to use a double pipe heat pipe tf. A round steel aluminum heat pipe using black alumite as an external wave has excellent corrosion resistance than copper heat pipes, and has the effect of strengthening the corrosion resistance of the cooling device as a whole.

!、従来のヒートパイプ式半導体冷却装置には殆ど副フ
ィンが便用さnそのl1mが大きくなり間喧となってい
たのは必ずしも導電率が良好なことだけでに無かつt0
ヒートパイプが銅ヒートパイプであつ之のでit度の恐
nがある島アルミニウムフィンが愛用出来なかったもの
でおる。又銅フィンに騙賞し易いのでアルマイト連理I
ll之アルミニウムの便用が’A’lnでいたにも係わ
らす電食の恐れある為にIII!用出米な出来友。然し
ブロックに対して拡管圧着を冥施すn&i′鋼アルミ2
]1fヒートパイプが適用することが可能となり、こ几
に放熱部においてアルミフィンを用いた場合も同1金属
挿伊となす電食の恐几框全く無くなることht味する。
! Most of the conventional heat pipe type semiconductor cooling devices use sub-fins, but the reason why l1m becomes large and it becomes a problem is not necessarily because the conductivity is good and t0
Since the heat pipe is a copper heat pipe, I couldn't use the island aluminum fins, which could cause damage. Also, it is easy to cheat on copper fins, so anodized aluminum is used.
III.Although the use of aluminum was 'A'ln, there was a risk of electrolytic corrosion! A good friend of mine. However, the n&i' steel aluminum 2
] It is now possible to apply a 1F heat pipe, and even if aluminum fins are used in the heat dissipation part of this box, the risk of electrical corrosion caused by the same metal inserts will be completely eliminated.

アルミフィンの使用に銅フイン便用に依る道i11尚大
の問題も耐食性の悪い問題も一挙に解決することが可能
となる。
It is possible to solve all the serious problems caused by using copper fins instead of aluminum fins, as well as the problem of poor corrosion resistance.

3、銅ブロツク1更用の問題点としては機械加工の困暖
さがあつ几。符にヒートパイプ挿入孔の加工に困難高価
な作業であつ九。従来の半田挿着の場合は空気抱き込み
ケ防ぐ為、又半田+1i1 k薄くして熱抵抗會小さく
する為高いw4度の機械原工を必要としていt0然し拡
−a!FEE*の場合は伸逆孔の精度に考慮の必要が無
くなる。又挿着孔が並行なjr透通孔ある場合にブロッ
クに押出成形が0T能となる上機械加工に依る仕上刃ロ
エも全< =IlP要がなくなりブロックの大巾なコス
トダウンが可能となる。又拡WEE着に依シアルミニウ
ムブロックの採用が可能となる点も大きな利点である。
3. The problem with replacing the copper block 1 is that machining is difficult. Machining the heat pipe insertion hole is a difficult and expensive process. In the case of conventional solder insertion, in order to prevent air entrapment and to reduce the heat resistance by making the solder thinner, a machine with a high W4 degree is required. In the case of FEE*, there is no need to consider the accuracy of the reversible hole. In addition, when the insertion holes are parallel to each other and there are through-holes, the block can be extruded to 0T, and the need for finishing blades due to machining is eliminated, making it possible to significantly reduce the cost of the block. . Another great advantage is that it is possible to use aluminum blocks for expanded WEE deposition.

即ちアルミブロックの押出成形に銅の押出成形エリはる
かに高能率低価格で生殖することが出来るので麩にコス
トダウンがoTt+ヒとなる。
In other words, the extrusion molding of aluminum blocks and the extrusion molding of copper can be achieved with much higher efficiency and lower cost, resulting in cost reductions of OTt+H.

以上の各問題点の解決手段とその作用から1本発明にお
けるヒートパイプ完成後の挿着を取止め。
In order to solve the above-mentioned problems and their effects, 1. In the present invention, the insertion of the heat pipe after completion is discontinued.

ブロックに貫通並列孔を設け、コンテナ用素管を拡管法
で圧接する製造方法には極めて大きな故多くの抜書作用
があることが分る。
It can be seen that the manufacturing method in which parallel parallel holes are provided in the block and the container tube is pressed against the tube by the tube expansion method has a large number of drawing effects.

(ホ)′#施例 上述の如き各項の間頃解決の為の手段及び作用上適用し
7tl!施例が第1図に示しである。第2図はそのヒー
トパイプを上面から見几配列状態を示し、第3図はブロ
ックの形状を示しである。、第4図は他の実施列を示す
。lに金属ブロック、 2−aa2−t)、2−ei夫
夫々ヒートパイプ挿接用連通孔6rX、半導体を加圧W
:涜ぜしめる電着平面である。
(E)'#Example 7tl applied to the means and operation for solving each item as mentioned above! An example is shown in FIG. FIG. 2 shows the heat pipes as viewed from the top, and FIG. 3 shows the shape of the blocks. , FIG. 4 shows another implementation sequence. Metal block in L, 2-aa2-t), 2-ei each heat pipe insertion communication hole 6rX, semiconductor pressurized W
: It is an electrodeposited plane that confuses people.

貫通孔に成層平面に平行に又貫通孔相互間も平行に設け
らrし且つブロック据付姿勢に対して水平に設けらnで
ある。渠3図から分る様に貫通孔相互の間隔に第5図の
従来構造に比較して大巾に小さくなっている。従来にフ
ィン平面における間隔と同様に直径2!S@のヒートパ
イプに対し少くも約25錫以上の間隔r必要としてい友
のに対し直列配置で5鵡千鳥配列では水平1間隔でla
位迄小さくすることが出来る。こ−nにフィン乎向上の
ヒートパイプ間隔とブロックにおけるヒートパイプ間隔
が全く関係が無い構造になつ几ことに依る。
The through holes are provided parallel to the layered plane, parallel to each other, and horizontal to the block installation attitude. As can be seen from Figure 3, the spacing between the through holes is much smaller than that of the conventional structure shown in Figure 5. The diameter is 2, which is the same as the conventional spacing on the fin plane! For the heat pipe of S@, it is necessary to have a spacing of at least about 25 tin or more.
It can be made as small as possible. This is due to the fact that the structure has no relationship between the heat pipe spacing between the fins and the heat pipe spacing in the block.

こrt ICzリブロックにおけるシートパイプ配列方
向における長官は直径25謡υヒ一トパイプ3本1更用
時で4om短かくすることがoT能となりブロック皇t
t−大巾に小さくすることが可能になっている。貫通孔
2− a @ 2− b a 2− Cに拡管挿着用の
孔であるから半田付け、1械的圧入に比較して高い精度
は要求さルない。又フィン張着との関係もないのでi通
孔相互の位置精度も大きな自由度が許さnる。従って各
貫通孔にブロック外径と同時に押出加工で成形すること
がo7 ipであり、その後例尋の機械力ロエを必要と
しない。電設面側から見比ブロックの形状に雪形に形成
されてある。
It is possible to shorten the length of the sheet pipes in the direction of arrangement of the sheet pipes in the ICz reblock by 4 ohm when replacing three 25-diameter human pipes.
It is now possible to make it as small as t-width. Since the through hole 2-a @ 2-ba 2-C is a hole for inserting an expanded tube, higher precision is not required compared to soldering or mechanical press-fitting. Furthermore, since there is no relation to fin attachment, a large degree of freedom is allowed in the mutual positional accuracy of the through holes. Therefore, it is O7 IP to mold each through hole simultaneously with the outer diameter of the block by extrusion, and the typical mechanical force is not required thereafter. It is shaped like a snow-covered block when viewed from the electrical installation side.

こルに下側ヒートバイブ程水平部長官が長いことに対応
してヒートパイプのlPI吸収吸収長くして熱吸収効率
を向上さぜる為である。従ってこの形状は・応ずしも台
形に限定する必要はなく長方形でも正方形でも良い。但
しコスト面がら*[すnば貫通孔の長官方向に押出成形
さn九角形断面の棒材料から無駄なく切断して多数のブ
ロックが得らnる形状であることが望ましい。金属ブロ
ックの材料は純銅純アルミが望ましく、極めて高い冷却
性能が要求さnる場合に銅ブロックを用い、@量安価な
装置が要求さA、64合にアルミブロックを用いる。第
1図、第2図における3−a、3−b。
In response to the fact that the horizontal section of the lower heat vibrator is longer, the heat pipe's lPI absorption length is increased to improve heat absorption efficiency. Therefore, the shape need not be limited to a trapezoid, but may be a rectangle or a square. However, from a cost standpoint, it is desirable that the shape be such that a large number of blocks can be obtained by cutting without waste from a bar material with a nonagonal cross section extruded in the longitudinal direction of the through hole. The material of the metal block is preferably pure copper and pure aluminum; a copper block is used when extremely high cooling performance is required, and an aluminum block is used when an inexpensive device is required. 3-a and 3-b in FIGS. 1 and 2.

3−cにヒートパイプであって夫々の中間部に受熱部と
して金属ブロックのW過挿接孔に貫通挿接さrしてあり
、他の部分は金属ブロックの側面から所定の位置で直角
に、上方に向って屈曲されてある。その部分にブロック
の両面のits面を低長拡大し几両乎面に挾まf′Lf
C範囲外に出ることは通常では許さ1ない。こnに一般
に平形半導体冷却装置は多数の冷却装置と多数の半導体
素子が交互に横ノー状態で便用さn犬々の素子、冷却装
rt間には愛用時に大きな電位差が与えらnて居り、相
互に接触することが許さnないことに依る。上方に屈曲
さn友ヒートパイプζ金属ブロックの上部において配列
配置さ1て放熱部を形成している。放熱部は図の5−a
*5−b+5−cの如く各ヒートパイプ毎にフィン群が
形成されてあっても良く。
3-c is a heat pipe, which is inserted through the W over-insertion hole of the metal block as a heat receiving part in the middle part of each, and the other part is perpendicular to the side surface of the metal block at a predetermined position. , bent upwards. In that part, enlarge the its side of both sides of the block and put it on both sides f'Lf
It is normally not allowed to go outside the C range. In general, a flat semiconductor cooling device is used in a state where a large number of cooling devices and a large number of semiconductor elements are alternately placed horizontally, and a large potential difference is applied between the various elements and the cooling device RT during regular use. , depending on the fact that they are not allowed to come into contact with each other. The heat pipes bent upward are arranged in an array at the upper part of the metal block to form a heat dissipation section. The heat dissipation part is 5-a in the figure.
*A fin group may be formed for each heat pipe as in 5-b+5-c.

第5図のフィン群の如き共通フィン群が装着されてあっ
ても艮い。4− a * 4− b n フィンを保禮
すると共に強制対流の風7′t−案内する保護板である
。X42図に保護板4−1)の平面上におけるヒートパ
イプの配列状態を示し2組の千鳥配列になっている。こ
の配列rclf列配虚であっても良い。保護板及びフィ
ンの外幅にブロックlの両側の電接面6を延長し次平行
面の中にある。
It does not matter even if a common fin group such as the fin group shown in FIG. 5 is attached. 4-a*4-bn This is a protection plate that protects the fins and guides the forced convection wind. The arrangement state of the heat pipes on the plane of the protection plate 4-1) is shown in Fig. This array rclf may be an imaginary array. The electric contact surfaces 6 on both sides of the block 1 are extended to the outer width of the protection plate and the fins, and lie in parallel planes.

ヒートパイプ3とブロックの貫通孔2の挿接ニヒートハ
イプ3の完成前の状態で実施さnる。即ちコンテナの素
Vt−直管の状態で所定の位置迄挿入して素管を拡管せ
しめて圧着一体化せしめる。拡管に空気抱き込みt極小
にする為には鋼球圧入法かプラグ引抜法が望ましい。貫
通孔内及び素管外周の微小な疵や凹みの中の空気tも完
全に排除する為にに両壁面に熱伝導性の良好なグリスや
従者材を塗布して、′g4球圧入、プラグ引抜きに依る
拡’tirh*施すnば余分な塗布材に完全に排出さn
The heat pipe 3 and the through hole 2 of the block are inserted and connected before the heat pipe 3 is completed. That is, the raw Vt-straight pipe of the container is inserted to a predetermined position, the raw pipe is expanded, and the raw pipe is crimped and integrated. In order to minimize air entrapment during pipe expansion, it is desirable to use the steel ball press-in method or the plug-pulling method. In order to completely eliminate air in minute scratches and dents inside the through hole and on the outer periphery of the tube, apply grease or follower material with good thermal conductivity to both walls, press-fit the four balls, and plug. If the expansion is done by pulling out, the excess material will be completely drained away.
.

凹部内にに勿布材が充填さn几はぼ完全な圧着がなさn
1M部分の接触熱抵抗tはぼ零にすることが出来る。こ
の様にして貞逼挿接孔に対する挿接が児了し九後素管に
所定の位置でiFB聞さル、所定の工程を経てヒートパ
イプ3に完成される。
If the recess is filled with non-woven material, it may not be completely crimped.
The contact thermal resistance t of the 1M portion can be reduced to almost zero. In this way, the insertion into the insertion hole is completed, and the iFB is inserted into the blank tube at a predetermined position, and the heat pipe 3 is completed through a predetermined process.

従来構造のヒートパイプ挿着と異って本発明の挿着に圧
接状態に近くこの挿接部に腐食や電食の恐nがないので
アルミヒートパイプ、アルミ被ヒートパイプの挿着も可
能となる。又高温作痰の心情がないのでフレオンヒート
パイプの挿着が可能となることば前述の通りである。従
って本発明に係る実施例に2いてaヒートパイプ3の材
質に純銅、アルミ、アルミ岐噴銅1等が1史用さnる。
Unlike the conventional structure for inserting heat pipes, the insertion of the present invention is in a press-contact state and there is no risk of corrosion or electrolytic corrosion at this insertion part, so it is possible to insert aluminum heat pipes and aluminum heat pipes. Become. Also, as mentioned above, since there is no need for high-temperature sputum production, it is possible to insert a Freon heat pipe. Therefore, in the second embodiment of the present invention, the material of the heat pipe 3 is pure copper, aluminum, aluminum alloy copper, or the like.

又フィン材料としてにヒートパイプ3の材料が銅の場合
に銅か用いらfL、  ヒートパイプ3の外面がアルミ
、黒色アルマイト尋の第1会はアルミ板、黒色アルマイ
ト処理アルミ板の(”IflかがZ用さする。
In addition, if the material of the heat pipe 3 is copper as the fin material, the outer surface of the heat pipe 3 is aluminum. is used for Z.

第2実施例 第4図に第1図1Cs?いて夫々のヒートパイプがU字
管状コンテナであるのに対し所定の角度に曲げらn友コ
ンテナ’k 19!用し比例である。図においては放熱
Sはブロック1の11IIIIiの片側のみに集中して
設けら几である。又そnに対応してブロックの形状に放
熱側の反対−が垂直になった舌形に形成されてある。こ
の形状に舌形に限定さnず直方形でも正方形でも良い。
1Cs in Fig. 1 in Fig. 4 of the second embodiment? While each heat pipe is a U-shaped tubular container, it is a container bent at a predetermined angle. It is proportional. In the figure, the heat dissipation S is concentrated only on one side of block 1 11IIIi. Correspondingly, the block is formed into a tongue shape with the opposite side of the heat dissipating side being vertical. This shape is not limited to the tongue shape, but may be rectangular or square.

ブロックを小さくし且つ受熱面積を大きくする為に各ヒ
ートパイプの端末部の無効部分にブロックの垂直向に貫
A露出して挿着されてある。本実施例の如き構造は平形
半導体素子と本発明の半導体冷却装置11+−交互に積
層して夏用する場合組豆てに便利である。又その様な側
になる樟に組付わぜ几ばフィン巾t2倍に増加せしめて
放熱効果を増大せしめることが出来る。
In order to reduce the size of the block and increase the heat receiving area, the heat pipe is inserted into the ineffective portion of the end of each heat pipe so that the hole A is exposed in the vertical direction of the block. The structure of this embodiment is convenient for assembling when the flat semiconductor elements and the semiconductor cooling device 11+- of the present invention are alternately stacked for summer use. In addition, the fin width t can be increased by twice if the fin is attached to the camphor wood on such a side, thereby increasing the heat dissipation effect.

又は1本実施例の曲げ7!!度はIf線から直角の間の
どの角度でも良い。すなわち、フィン面とブロックの相
対姿勢にいかなる角度でも採用出来る。
Or bending 7 of this embodiment! ! The degree may be any angle between the If line and a right angle. That is, any angle can be adopted for the relative posture of the fin surface and the block.

製造方法の第1実施例 第1図及び第4図の如き構造の゛鴫力中導体冷却装置の
製造方法についてに間一点を解決する手段及び作用の項
で構造の説明と共に基本的なaR方法について説明した
。図の如き祷雑な形状のヒートパイプtフィン#Pt−
挿着することt9餌な程度に精密に従来法の半田接着を
行なうことに不可能に近い。こnに聡べての貫通孔の半
田が全S熔融状態になり流出して了りからである。又ア
ルミブロックと銅ヒートパイプ、アルミブロックとアル
ミ外被ヒートパイプ、銅ブロックとアルミ外被ヒートパ
イプの半田接着も11!頼性の点で半田嵌着不可能であ
る。又フレオン作動液ヒートパイプの半田φ者も安全性
の点で不可能である。従って不発明に係る構造のものは
ヒートパイプ完成前のコンテナ素管状態での拡−fff
l以外では製造不可能と云える。、7J第1図、第2図
の如き構造のものに実施上に紙に間譲点がある。即ち各
ヒートパイプの放熱部の間隔に実際上はフィン効率の関
係で50〜60粍位の、!甘が多いa従って曲げ作栗時
に屈曲用治工具の挿入が極めて困難となる。又コンテナ
素管ttm管状で挿入して拡管する場合全量にわtつて
拡管することになり不#!済である。又第1図の如き逼
曾予じめフィン群が形成さIしてある素管を便用する4
J合、挿播孔に対する挿入に不可能である。
1st Embodiment of the Manufacturing Method The basic aR method along with the explanation of the structure will be explained in the section of means and functions for solving the shortcomings regarding the manufacturing method of the conductor cooling device under pressure having the structure as shown in FIGS. 1 and 4. explained. Heat pipe t-fin #Pt- with a strange shape as shown in the figure
It is almost impossible to perform solder bonding using the conventional method with such precision as to insert and attach the connector. This is because all the solder in the through holes has become molten and has flowed out. Also solder bonding between aluminum block and copper heat pipe, aluminum block and aluminum jacket heat pipe, and copper block and aluminum jacket heat pipe is also 11! In terms of reliability, solder fitting is not possible. Furthermore, it is impossible to solder the Freon hydraulic fluid heat pipe from the viewpoint of safety. Therefore, the structure related to the non-invention is the expansion of the container in its original state before the heat pipe is completed.
It can be said that it cannot be manufactured with anything other than l. , 7J The structures shown in FIGS. 1 and 2 have some disadvantages in terms of implementation. In other words, the distance between the heat dissipating parts of each heat pipe is actually about 50 to 60 mm due to fin efficiency! If there is a lot of sweetness, it is therefore extremely difficult to insert a bending tool during bending. Also, if you insert and expand the container in the form of a TTM tube, you will have to expand the entire volume, which is a problem! It has been completed. Also, it is convenient to use a blank pipe on which fin groups have been formed in advance, as shown in Figure 1.
In J case, it is impossible to insert into the seeding hole.

こV様な4@−り実施例として第8図及び第9図に例示
しである手段が望ましい。図において31に短尺直管状
の素管である。先にこり様な素″#を拡管することに愼
めて容易である。仄に残余のコンテナを短尺;gfの先
端に気密に接続する。この場合残余のコンテナ33には
し一ドパイブ光成後では困難が想定さnる加工を完了さ
せておくことが囁ましい。即ち曲げ刀ロエや個別フィン
の装着等に接続前に完了させる。#硯に際してa18図
の如く4手32に依る挿入従続の場合と第9図の如く素
管と残余コンテナを直接に接続する例jLの手段でも良
い。こfL咎の歴fcは挿入接続とろう接34を併用す
ると艮い。この様な本発明に係る製造方法に依ってのみ
第1図及び第4図例示の如き本発明に係る電力半導体冷
Ml獲1tDその製造が可能となる。そして金属ブロッ
クの小型化+1ffl量化、アルミ化、が可能となりヒ
ートパイプに銅−水系ヒートパイプの高性能を保持し九
まま、外被りアルミ化、フィンのアルミ化も可能となる
The means illustrated in FIGS. 8 and 9 as a 4@-like embodiment are desirable. In the figure, numeral 31 indicates a short straight pipe. It is much easier to expand the solid material first. Connect the remaining container airtightly to the tip of the short length gf. In this case, connect the remaining container 33 to the tip of the gf. Therefore, it is recommended to complete the processing that is expected to be difficult.In other words, complete the bending knife loe and installation of individual fins before connecting. In the case of a connection, it is also possible to use the example jL in which the raw pipe and the remaining container are directly connected as shown in FIG. It is possible to manufacture the power semiconductor cold Ml 1tD according to the present invention as illustrated in FIGS. 1 and 4 only by the manufacturing method according to the above.It also becomes possible to miniaturize the metal block, increase the amount of 1ffl, and use aluminum. While retaining the high performance of copper-water heat pipes, it is also possible to use aluminum for the outer cover and aluminum for the fins.

製造方法の第2実施例 本発明に係る製造方法はヒートパイプと金属ブロックの
圧接一体化に依り両者間の接触熱抵抗を極めて小さくす
ることが出来る。又挿接孔の機械〃Ω工′?r、!Ii
略して大巾なコストダウンkUかることも可能になる。
Second Embodiment of Manufacturing Method The manufacturing method according to the present invention allows the contact thermal resistance between the heat pipe and the metal block to be extremely reduced by integrally press-welding the heat pipe and the metal block. Also, the insertion hole machine 〃Ωwork'? r,! Ii
In short, it is also possible to achieve a significant cost reduction.

然し機械力ロエケ省略することに依9強力な拡管力に依
O1f接状態になつ1挿71向にも@副な空気抱込み孔
が残置される恐nがある。
However, by omitting the mechanical force, there is a risk that secondary air intake holes may be left in the 1st and 71st directions, which are in contact with the strong tube expansion force.

損失電力が3noow以上で、要求さnる総合熱抵抗が
0.01℃/W v如き冷却装置においてに抱込み空気
に依る熱抵抗増加がo、 o 112℃/Wの如く小さ
なものであつtとしても無視することに出来ない。この
様な場合に圧接状態の挿接面に残る倣細孔を熱伝導性#
IJ質に工って充填し空気忙追出す・み要がある。@1
0図にその様な対策上官む実施例である。こV場合μ素
管Jt挿入する際、熱伝導性グリス、塗料、廣層材等の
粘性塗布材t−素管表面31及び挿接孔内壁2に塗って
挿入する。その後ブロック1と素管31の相対的位lt
′4を固定した゛まま鋼球361圧入するかプラグを引
抜く方法に依ってブロック1の片側からJ貝仄拡′gせ
しめる。
If the power loss is 300 or more, the required total thermal resistance is 0.01℃/W, and the increase in thermal resistance due to trapped air in a cooling device such as v is small, such as 112℃/W. However, it cannot be ignored. In such cases, the holes remaining on the welding surface in the press-welded state should be made of thermally conductive #
There is a need to make IJ quality, fill it, and expel the air. @1
Figure 0 shows an example of such countermeasures. In this case, when inserting the μ blank tube Jt, apply a viscous coating material such as thermally conductive grease, paint, or coating material to the blank tube surface 31 and the inner wall 2 of the insertion hole. After that, the relative position of the block 1 and the raw pipe 31 lt
The J shell is expanded from one side of the block 1 by press-fitting the steel ball 361 while keeping it fixed, or by pulling out the plug.

熱伝導性グリス35に地端から排出さ1乍ら挿接孔内1
と、tVに順仄王優さnる。この際両者間に微細孔が残
Iitさnるfa会はその中は熱伝導性グリスで充填さ
rLz状感になる。この様な圧接状態でに熱抵抗&’;
[dj定不司能な種度に小さなものとなる。
Thermal conductive grease 35 is discharged from the ground end 1 into the insertion hole 1
And Yusuke Junko appeared on tv. At this time, fine pores remain between the two and are filled with thermally conductive grease, resulting in a rLz-like appearance. Thermal resistance in such a pressure-welded state is
[DJ becomes a small person with a certain degree of incompetence.

(へ)発明の効果 本発明に係る電力半4体冷却装置の構造のP#値とする
所はべの34!累に依り構成されてある点が基本となっ
ている。
(f) Effects of the Invention The P# value of the structure of the power half-four body cooling device according to the present invention is Beno 34! The basic point is that it is structured based on a number of factors.

a、水平並列に#故りヒートパイプ挿着用貫通孔が設け
らrL友受熱用金属ブロック。
a, A metal block for receiving heat from a metal block with through holes for inserting heat pipes in parallel horizontally.

b−M貫通孔に頁通挿入さ1し拡管法に依りブロックに
圧着一体化されてあるヒートパイプ。
b-M Heat pipe inserted into the through hole 1 and crimped and integrated with the block using the tube expansion method.

C,l肯定の位1fで上方VcIIM用に曲げらn、整
列さ1747番が装置さ几である上記ヒートパイプ。
C, l The above heat pipe in which the positive position 1f is bent upward for VcIIM, and the aligned No. 1747 is the device.

上記GJ a + b −c 6項に夫々対応する個々
の作用に仄の如くである。
This is similar to the individual effects corresponding to the above GJ a + b - c 6 terms.

a、ブロック及びその冒通孔が共に押出成形法で一工程
で成形することt可能にすると共にブロックが小形婦を
化さfLる。
a. The block and its openings allow it to be molded together in one step by extrusion, and the block is made into a compact size.

b、半田付ffが不要となり、常温挿着が町dしとな9
゜挿接孔の機械加工が不要となる。又熱抵抗に極めて小
さくなる。又アルミ管の連層もoT駆になる。
b. Soldering FF is no longer necessary, and room temperature insertion is possible.
゜Machining of the insertion hole is not required. Also, the thermal resistance is extremely small. Also, the continuous layer of aluminum tubes becomes OT drive.

C,ヒートパイプ1本当りの放熱面積が増加する。C. The heat dissipation area per heat pipe increases.

上述の各構造1作用を組合わせて11g底さn九本発明
に係る装置は、!@−的に次の効果r発陣することが出
来る。
Combining the above-mentioned structures and effects, the device according to the present invention has a weight of 11g and a total weight of 9! You can take action with the following effect: @-.

d、装置全体として大巾な軽量化小型化が達成出来る。d. The entire device can be significantly reduced in weight and size.

e、fJFs抵仇の小さな高性能の装置直が得ら几る。e, fJFs A high-performance device with small resistance can be obtained.

f、アルミブロック、アルミヒートバイブ、アルミフィ
ン、フレオン作動液の他めて軽量な冷却長1覆が構成出
来る。
In addition to f, aluminum block, aluminum heat vibrator, aluminum fin, and Freon hydraulic fluid, a lightweight cooling length can be constructed.

3、アルミ破曖銅パイプtコンテナとして夏用すること
に依り、純水作動欣に僧触する部分のみが純銅で構成さ
rL、アルミブロック、アルミフィン。
3. Due to the summer use of the aluminum copper pipe container, only the parts that come into contact with pure water operation are made of pure copper, aluminum blocks, and aluminum fins.

アルミ破漬ヒートパイプの如く露出部の総べてt耐成ア
ルミで構成することが可能となるので、水作動藏銅コン
テナのヒートパイプり高性能高1g頼住を権持し、アル
ミの軽量高耐食性を備えた理想的な冷却!ftItが侵
らrしる@
As with aluminum heat pipes, all the exposed parts can be made of T-resistant aluminum, so the heat pipes of water-operated copper containers have high performance, high 1g weight, and are lightweight. Ideal cooling with high corrosion resistance! ftIt is being invaded @

【図面の簡単な説明】[Brief explanation of drawings]

第1図に本発明の実施例r示す概略構成図、A21にヒ
ートパイプを上面から見た配列状態を示す平向図、第3
図に金属ブロックの斜視図、第4図に本発明の畑の実施
例ケ示す14略構成図、第5図から第7図に従来例tボ
丁概略構成図、第8図および第9図μ金属ブロックに短
尺直管状の素管を拡管圧着し友恢にその素fKヒートパ
イプコンテナを接続し九状態勿示す正面図、第10図に
拡管方法を説明する之めの凶である。 1 ・−金属ブロック、 2− a * 2−1) 、
2− c ・・・挿接孔、3−a、3−b、3−c−ヒ
ートパイプ、4−a+4−fi””保−板、5−a*5
−b、5−c・・・フィン群。 第1図 第2図 第3図 第4図 第6図 、 第7図
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention, A21 is a plan view showing the arrangement state of the heat pipes as seen from the top, and Fig. 3
Fig. 4 is a perspective view of a metal block, Fig. 4 is a 14-schematic configuration diagram showing an embodiment of the field of the present invention, Figs. 5 to 7 are schematic configuration diagrams of conventional T-bottoms, and Figs. Fig. 10 is a front view showing nine states in which a short straight raw pipe is expanded and crimped onto a μ metal block, and a raw FK heat pipe container is connected to it. 1 ・-metal block, 2- a * 2-1),
2-c...Insertion hole, 3-a, 3-b, 3-c-heat pipe, 4-a+4-fi"" retention plate, 5-a*5
-b, 5-c...Fin group. Figure 1 Figure 2 Figure 3 Figure 4 Figure 6, Figure 7

Claims (8)

【特許請求の範囲】[Claims] (1)ヒートパイプ式放熱器が装着されてある金属ブロ
ックの平面に設けられてある電接面に電力半導体素子を
接触せしめて冷却する電力半導体冷却装置であつて、複
数の貫通孔が相互に並列に且つ電接面に平行に、更にブ
ロック据付姿勢で水平である様に設けられてある金属ブ
ロックと、該金属ブロックの夫々の貫通孔に貫通して挿
着されてあり且つそれ等の受熱部は拡管法により夫々の
貫通孔内壁に圧着されて一体化されてある複数のヒート
パイプとから構成されてあり、夫々のヒートパイプは所
定の位置において上方に且つ垂直に曲げられて並列化さ
れてあり、並列化部の所定の部分には個別に或いは共通
に放熱フィン群が装着されて放熱部として形成されてあ
ることを特徴とする電力半導体冷却装置。
(1) A power semiconductor cooling device that cools a power semiconductor element by bringing it into contact with an electrical contact surface provided on a flat surface of a metal block on which a heat pipe type radiator is attached, in which a plurality of through holes are connected to each other. Metal blocks installed in parallel and parallel to the electrically connected surfaces and horizontally in the installed position of the blocks, and inserted through the respective through holes of the metal blocks to receive heat from them. The section is composed of a plurality of heat pipes that are crimped and integrated on the inner wall of each through hole by a tube expansion method, and each heat pipe is bent upward and vertically at a predetermined position and arranged in parallel. 1. A power semiconductor cooling device characterized in that a group of heat dissipating fins are individually or commonly attached to predetermined portions of the parallel section to form a heat dissipating section.
(2)特許請求の範囲第1項に記載の電力半導体冷却装
置であつて、金属ブロツクは電接面が設けられてある面
から見た形状が台形である様に形成されてあることを特
徴とする電力半導体冷却装置。
(2) The power semiconductor cooling device according to claim 1, characterized in that the metal block has a trapezoidal shape when viewed from the surface on which the electrical contact surface is provided. Power semiconductor cooling equipment.
(3)特許請求の範囲第1項に記載の電力半導体冷却装
置であつて、ヒートパイプの作動液としては純水を主成
分とした液体が使用されてあり、ヒートパイプのコンテ
ナとしては熔接作業の為アルミ被覆が除去されてある部
分を除いて、総べて純銅又は銅合金からなる内管の外周
にアルミニウム又はアルミニウム合金からなる外管が密
着一体化して被覆されてある二重金属管構造のコンテナ
が使用されてあり、ヒートパイプの放熱部に装着されて
あるフィン群もアルミニウム又はアルミニウム合金で形
成されてあることを特徴とする電力半導体冷却装置。
(3) In the power semiconductor cooling device according to claim 1, a liquid mainly composed of pure water is used as the working fluid of the heat pipe, and the container of the heat pipe is welded. It has a double metal tube structure in which the outer periphery of the inner tube made of pure copper or copper alloy is closely and integrally coated with the outer periphery of the inner tube made of pure copper or copper alloy, except for the part where the aluminum coating has been removed. A power semiconductor cooling device characterized in that a container is used, and a group of fins attached to a heat dissipation part of a heat pipe is also made of aluminum or an aluminum alloy.
(4)特許請求の範囲第1項に記載の電力半導体冷却装
置において、各ヒートパイプの形状は所定の角度で曲げ
られた屈曲形状であつてその受熱部は貫通挿着孔に貫通
挿着されてあり、受熱部のヒートパイプとしての無効部
分はブロック外に露出されてあることを特徴とする電力
半導体冷却装置。
(4) In the power semiconductor cooling device according to claim 1, each heat pipe has a bent shape bent at a predetermined angle, and the heat receiving portion thereof is inserted through the through insertion hole. A power semiconductor cooling device characterized in that an ineffective part of a heat receiving part as a heat pipe is exposed outside the block.
(5)特許請求の範囲第1項に記載の電力半導体冷却装
置であつてブロックの貫通孔に挿着されてある各ヒート
パイプは拡管に依り貫通孔内に圧接されてブロックと一
体化されてあり、ブロック外に突出されてある短尺の直
管部と該直管とその一端或いは両端において気密に接続
されて一体化されてあるヒートパイプの他の部分とから
なつていることを特徴とする電力半導体冷却装置。
(5) In the power semiconductor cooling device according to claim 1, each heat pipe inserted into the through hole of the block is pressed into the through hole by pipe expansion and integrated with the block. A heat pipe is characterized in that it consists of a short straight pipe part that projects outside the block, and another part of the heat pipe that is integrally connected to the straight pipe at one or both ends in an airtight manner. Power semiconductor cooling equipment.
(6)金属ブロックに設けられてある貫通孔にヒートパ
イプを挿着して構成されてある電力半導体冷却装置の製
造方法であつて、先ずヒートパイプコンテナの素管を貫
通孔内に貫通挿入し、次に該素管を拡管せしめて貫通孔
内に圧着させ金属ブロックと一体化せしめ、然る後にコ
ンテナを所定の形状及び構成のヒートパイプに形成し、
更に所定の構成の放熱部を形成して完成せしめることを
特徴とする電力半導体冷却装置の製造方法。
(6) A method for manufacturing a power semiconductor cooling device configured by inserting a heat pipe into a through hole provided in a metal block, in which first a base tube of a heat pipe container is penetrated and inserted into the through hole. Next, the raw pipe is expanded and crimped into the through hole to be integrated with the metal block, and then the container is formed into a heat pipe with a predetermined shape and configuration,
A method of manufacturing a power semiconductor cooling device, which further comprises forming a heat dissipation portion having a predetermined configuration to complete the device.
(7)特許請求の範囲第6項に記載の電力半導体冷却装
置の製造方法において、先ず金属ブロックの貫通孔に短
尺直管のヒートパイプ素管を両端部の所定の長官が突出
する様挿入し、該素管と金属ブロックの相対位置を保持
せしめたまま素管を拡管して貫通孔内壁に圧着せしめて
、金属ブロックと素管を一体化せしめ、然る後該素管の
一端或いは両端に所定の形状及び構成のヒートパイプコ
ンテナを気密に接続し、その後所定のヒートパイプ形成
手段を施し、更に所定の構成の放熱部形成手段を施して
完成せしめることを特徴とする電力半導体冷却装置の製
造方法。
(7) In the method for manufacturing a power semiconductor cooling device according to claim 6, first, a short straight heat pipe material tube is inserted into a through hole of a metal block so that predetermined lengths of both ends protrude. , While maintaining the relative positions of the raw pipe and the metal block, the raw pipe is expanded and crimped onto the inner wall of the through hole to integrate the metal block and the raw pipe, and then one end or both ends of the raw pipe are Manufacture of a power semiconductor cooling device characterized in that heat pipe containers having a predetermined shape and configuration are airtightly connected, and then a predetermined heat pipe forming means is applied, and further a heat dissipation part forming means having a predetermined structure is applied to complete the device. Method.
(8)特許請求の範囲第6項に記載の電力半導体冷却装
置の製造方法であつて、素管を貫通孔内に挿入するに際
して貫通孔内壁、素管挿着部外周壁面の何れか或いは双
方に熱伝導性の良好なグリス、塗料、接着材の何れかの
塗布材を塗布して実施し、拡管法としては■球圧入法か
プラグ引抜法に依り実施することを特徴とする電力半導
体冷却装置の製造方法。
(8) A method for manufacturing a power semiconductor cooling device according to claim 6, in which, when inserting the raw tube into the through hole, either or both of the inner wall of the through hole and the outer peripheral wall surface of the raw tube insertion part. Power semiconductor cooling is carried out by applying a coating material such as grease, paint, or adhesive with good thermal conductivity to the tube, and the tube expansion method is carried out by ■ bulb press-in method or plug pull method. Method of manufacturing the device.
JP4788685A 1985-03-11 1985-03-11 Power semiconductor cooling device and manufacture thereof Pending JPS61207039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4788685A JPS61207039A (en) 1985-03-11 1985-03-11 Power semiconductor cooling device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4788685A JPS61207039A (en) 1985-03-11 1985-03-11 Power semiconductor cooling device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61207039A true JPS61207039A (en) 1986-09-13

Family

ID=12787877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4788685A Pending JPS61207039A (en) 1985-03-11 1985-03-11 Power semiconductor cooling device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61207039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254755A (en) * 1987-04-10 1988-10-21 Mitsubishi Electric Corp Manufacture of cooling device for electronic element body
JPS63254754A (en) * 1987-04-10 1988-10-21 Mitsubishi Electric Corp Cooling device for electronic element body
US5651414A (en) * 1993-12-28 1997-07-29 Hitachi, Ltd. Heat-pipe type cooling apparatus
US6959755B2 (en) * 2002-01-30 2005-11-01 Kuo Jui Chen Tube-style radiator structure for computer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254755A (en) * 1987-04-10 1988-10-21 Mitsubishi Electric Corp Manufacture of cooling device for electronic element body
JPS63254754A (en) * 1987-04-10 1988-10-21 Mitsubishi Electric Corp Cooling device for electronic element body
US5651414A (en) * 1993-12-28 1997-07-29 Hitachi, Ltd. Heat-pipe type cooling apparatus
US6959755B2 (en) * 2002-01-30 2005-11-01 Kuo Jui Chen Tube-style radiator structure for computer

Similar Documents

Publication Publication Date Title
US5791406A (en) Cooling device for electrical or electronic components having a base plate and cooling elements and method for manufacturing the same
RU2243617C2 (en) Solid-state thermoelectric device
US6637109B2 (en) Method for manufacturing a heat sink
US6009937A (en) Cooling device for electrical or electronic components having a base plate and cooling elements and method for manufacturing the same
JP3510831B2 (en) Heat exchanger
KR100744271B1 (en) An aluminum-copper clad material and a method for manufacturing the material, and a heat sink
WO2018021009A1 (en) Cooling apparatus
US3241607A (en) Brazed joint
JPS61207039A (en) Power semiconductor cooling device and manufacture thereof
AU5961099A (en) Power electronic componenet including cooling means
JP2007035907A (en) Thermoelectric module
JP2007123564A (en) Heat exchanging device
US3390018A (en) Thermoelectric heat pump and heat flow pegs
CN212183960U (en) Heat dissipation pipe, heat dissipation module and liquid cooling system
US4476856A (en) Process for the production of a solar collector panel assembly and a panel assembly produced thereby
CN104821785A (en) Photovoltaic junction box
JPH02224396A (en) Self-tightening heatsink
CN111683494A (en) Composite radiator and processing method thereof
JP3175177B2 (en) Semiconductor cooling device
US7188661B2 (en) Process for joining members of a heat transfer assembly and assembly formed thereby
CN113056344A (en) Heat pipe structure, heat sink, method for manufacturing heat pipe structure, and method for manufacturing heat sink
US4821389A (en) Method of making a pin fin heat exchanger
JP3010602U (en) Electronic component cooler
JP2008196787A (en) Heat pipe
JP2002286384A (en) Heat pipe and its manufacturing method