JPS6120685A - Work inspection method - Google Patents
Work inspection methodInfo
- Publication number
- JPS6120685A JPS6120685A JP59139992A JP13999284A JPS6120685A JP S6120685 A JPS6120685 A JP S6120685A JP 59139992 A JP59139992 A JP 59139992A JP 13999284 A JP13999284 A JP 13999284A JP S6120685 A JPS6120685 A JP S6120685A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- workpiece
- piercing
- processing
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/0002—Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明はレーザ光によって孔あけ加工が施された加工
部分を検出する加工検査方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a machining inspection method for detecting a machined part that has been drilled using a laser beam.
レーザ光を使って被加工物を加工するに際しては、加工
状態の良否を知るためにその加工状態を検査することが
行われている。When processing a workpiece using a laser beam, the processing state is inspected to determine whether the processing state is good or bad.
こうした検査は、従来、第2図あるいは第3図に示すよ
うなものが用いられている。すなわち、第2因に示すも
のは、レーザ光aを被加工物すに照射したときその被加
工物すの加工点から発する加工部をマイクロホンCで捕
えて、溶融量と相関関係にある加工部の大きさから加工
状態を検出するようにしたもので、また第3図に示すも
のは被加工物すに振動検出センサdを設けて、レーザ光
aの照射によって被加工物すから発づる振動を捕えて溶
融量と相関関係にある振動の大きさから加工状態を検出
するようにしたものである。なお、第2図および第3図
において、eはレーザ発振器、fは被加工物すを所定の
速度で移動させるための台車、qはアンプ、hは指示器
、iはフィルタ、jは集光レンズである。Conventionally, such an inspection as shown in FIG. 2 or 3 has been used. In other words, the second factor is that when the laser beam a is irradiated onto the workpiece, the processed part emitted from the processing point of the workpiece is captured by the microphone C, and the processed part that has a correlation with the amount of melting is detected. The processing state is detected from the size of The machining state is detected from the magnitude of vibration, which is correlated with the amount of molten metal. In Figures 2 and 3, e is a laser oscillator, f is a cart for moving the workpiece at a predetermined speed, q is an amplifier, h is an indicator, i is a filter, and j is a light condenser. It's a lens.
ところが、このような加工検査方法によると、確かに被
加工物すの溶融状態から加工状態を知ることができるも
のの、孔あけ加工が完了した状態を検出することができ
ない問題がある。However, according to such a machining inspection method, although the machining state can certainly be determined from the molten state of the workpiece, there is a problem in that it is not possible to detect the state in which the drilling process has been completed.
すなわち、溶融量に相関した加工部、あるいは振動の大
きさから被加工物すに孔があけられたことは検出するこ
とができるが、この孔は加工が終了するとき、さらには
終了直後において、溶融物ないし加工の際の飛散物によ
って再度塞がるおそれがある。特に、こうした孔塞ぎ現
象は孔径がΦ0.1#〜Φ0.3sなど微小径で、深孔
加工のとき発生しやすく、このような孔塞ぎが生じると
、上述した2者の加工検査方法では孔が塞がっているに
もかかわらず孔がおいていると誤って検出してしまう事
情にある。In other words, it is possible to detect that a hole has been drilled in the workpiece from the machining area that correlates with the amount of melting or from the magnitude of vibration, but this hole is detected when the machining is completed, and even immediately after the machining is completed. There is a risk that it will be blocked again by melted material or flying debris during processing. In particular, this hole clogging phenomenon tends to occur when drilling deep holes with minute diameters such as Φ0.1# to Φ0.3s. The problem is that a hole is incorrectly detected even though it is closed.
そこで、これに鑑み特開昭57−226335号で示す
ような検査方法が提案されている。これは、被加工物の
後方に加工点の直下に位置して反射ミラーを固定的に設
置して、この反射ミラーを介して孔あけ加工がなされた
加工点に測定用レーザ光を照射し、加工点の開口を通過
する測定用レーザ光を受光素子で検知して加工部分を検
出するようにした検査方法である。In view of this, an inspection method as shown in Japanese Unexamined Patent Publication No. 57-226335 has been proposed. In this method, a reflective mirror is fixedly installed at the rear of the workpiece directly below the machining point, and a measuring laser beam is irradiated through the reflective mirror to the machining point where the hole has been drilled. This is an inspection method in which a measuring laser beam passing through an aperture at a processing point is detected by a light receiving element to detect a processed part.
これによると、確かに誤りなく孔の加工が行われたこと
を検出することができるものの、反面、反射ミラーが加
工点の直下に位置して固定的に設置されているために、
孔あけ加工によって生じる飛散物により反射ミラーが汚
れやすく、長期間の使用に耐えられない欠点がある他、
測定用レーザ光を加工をなすレーザ光の光路から分岐さ
せて受光素子に導くためのダイクロイクミラー、ならび
にそのダイクロイクミラーを駆動させるための機構が必
要とされて機構的に複雑になる問題もあり、こうした点
も含めて改善することができるものが要望されている。According to this, although it is possible to detect that the hole has been machined without error, on the other hand, because the reflecting mirror is fixedly installed directly below the processing point,
In addition to the drawback that the reflective mirror is easily soiled by flying debris caused by the drilling process, it cannot withstand long-term use.
It also requires a dichroic mirror to branch the measurement laser beam from the optical path of the laser beam for processing and guide it to the light receiving element, as well as a mechanism to drive the dichroic mirror, resulting in mechanically complex problems. There is a need for something that can improve these points as well.
この発明は上記事情に着目してなされたもので、その目
的とするところは、レーザ光によって孔あけ加工が完了
した加工部分を、飛散物の影響を受けることなくして測
定用レーザ光から直接受光素子で検出することができる
加工検査方法を提供することにある。This invention has been made in view of the above-mentioned circumstances, and its purpose is to directly receive measurement laser light from a processing part that has been drilled using a laser beam without being affected by flying objects. The object of the present invention is to provide a processing inspection method that can be detected using an element.
〔発明の概要)
すなわち、この発明は光路を通じ加工用レーザ光を被加
工物へ照射して被加工物に対すφ孔あけ加工を終えた後
、上記被加工物の後方において上記孔あけ加工中、あら
かじめ上記加工点の軸線上から退避していた進退動可能
な受光素子を上記被加工物の加工点直下の部位に配置さ
せ、上記受光素子で上記加工点に向けて照射されこの加
工点の開口を通過した測定用レーザ光を検知して加工部
分を検出することにより、受光素子の加工点直下に対す
る進退移動、ならびに光路と同軸な測定用レーザ光の照
射によって、飛散物の影響を回避しつつ、測定用レーザ
光の直接検知から加工部分を検出しようとするものであ
る。[Summary of the Invention] That is, the present invention irradiates the workpiece with a processing laser beam through an optical path to finish drilling a φ hole in the workpiece, and then performs the drilling process at the rear of the workpiece. , a light-receiving element that can move forward and backward, which had been previously retracted from the axis of the machining point, is placed directly below the machining point of the workpiece, and the light-receiving element irradiates the machining point toward the machining point. By detecting the measurement laser beam that has passed through the aperture and detecting the processed part, the light receiving element moves forward and backward from directly below the processing point, and the measurement laser beam is irradiated coaxially with the optical path to avoid the effects of flying objects. At the same time, it attempts to detect the machined part through direct detection of the measurement laser beam.
以下、この発明を第1図に示す一実施例にもとづいて説
明する。第1図はこの発明方法を適用した加工検査装置
を示し、1は内部に集光レンズ2を装備したレンズホル
ダである。そして、集光レンズ2の入射側は図示しない
レーザ発振器に光学的に結ばれていて、レンズホルダ2
の内部を光路3の出射側に、レンズホルダ1の先端部に
形成した孔部4から集束した加工用レーザ光5を出射さ
せることができるようにしている。また、上記レーザ発
振器(図示しない)には補助レーザ光(通常、He−N
eレーザ光)を発振する発振部(図示しない)が付属さ
れ、この補助レーザ光を測定用レーザ光5aに使用して
、同じく先の光路3を通し孔部4へ出射させることがで
きるようにしている。そしてこの測定用レーザ光5aは
、レーザ発振器の制御部(図示しない)の制御により孔
あけ加工が終了すると、その加工のための加工用レーザ
光5の発振を停止して測定用レーザ光5aを代わりに発
振させるようにしている。なお、6は集光レンズ2以下
の部分を通して孔部4に向けてアシストガス7を送るた
めのアシストガス入口部である。The present invention will be explained below based on an embodiment shown in FIG. FIG. 1 shows a processing inspection apparatus to which the method of the present invention is applied, and 1 is a lens holder equipped with a condensing lens 2 inside. The incident side of the condenser lens 2 is optically connected to a laser oscillator (not shown), and the lens holder 2
The focused laser beam 5 for processing can be emitted from the hole 4 formed at the tip of the lens holder 1, with the inside of the lens holder 1 facing the exit side of the optical path 3. The laser oscillator (not shown) also includes an auxiliary laser beam (usually He-N
An oscillator (not shown) that oscillates a laser beam (e laser beam) is attached, and this auxiliary laser beam can be used as the measuring laser beam 5a to emit the same through the optical path 3 to the hole 4. ing. When the drilling process is completed under the control of a control unit (not shown) of a laser oscillator, the measurement laser beam 5a stops oscillating and starts the measurement laser beam 5a. Instead, it is made to oscillate. Note that 6 is an assist gas inlet portion for sending the assist gas 7 toward the hole 4 through the portion below the condenser lens 2.
一方、8は、チャック冶具9に支持された筒状の被加工
物である。この被加工物8は部位の状態で上記孔部4の
直下に配置される。また、10は被加工物8の後方とな
る被加工物8の内部に配置された受光素子としての形状
検出素子、11はその形状検出素子10を被加工物8の
軸心方向に沿って進退動させるための進退機構である。On the other hand, 8 is a cylindrical workpiece supported by a chuck jig 9. This workpiece 8 is placed directly below the hole 4 in a partial state. Further, 10 is a shape detection element as a light receiving element arranged inside the workpiece 8 at the rear of the workpiece 8, and 11 is a shape detection element 11 that moves the shape detection element 10 back and forth along the axial direction of the workpiece 8. It is a forward and backward mechanism for moving.
進退機構11は被加工物8内に゛その軸心方法に沿って
素子ホルダ12を進退自在に設ける一方、その素子ホル
ダ12の被加工物8の端部がら突出する基部側に、素子
ホルダ10を進退駆動する駆動源13を設けて構成され
る。そして、この素子ホルダ12の先端部に上記形状検
出素子10がその受光面を孔部4側に対し対向するよう
、また素子ホルダ12の基部にその形状検出素子10の
信号を受ける回路14が取付けられる。また、駆動源1
3ならびに形状検出素子10の回路14にはアンプ15
ならびにインターフェース部16が順次接続されていて
、常時は形状検出素子10を被加工物8の加工点の軸線
上に対し退避した状態に配置する一方、インク〜フェー
ス部16へ孔あけ加工に必要なレーザ発振時間が経過し
たことを示す終了信号が入力されることによりその形状
検出素子10を前進させて被加工物8の加工点の直下の
部位に配置させるようにしている。なお、17は形状検
出素子10の受光面に向けて清浄不活性ガス、あるいは
清浄空気などの清浄ガスを流すためのガス供給路で、こ
れは孔あけ加工作業時中、常時、形状検出素子10の受
光面に対してガスを吹付けるようにしている。The advancing/retracting mechanism 11 includes an element holder 12 that is provided in the workpiece 8 so as to be able to move forward and backward along the axis of the workpiece 8, and an element holder 10 is provided on the base side of the element holder 12 that protrudes from the end of the workpiece 8. It is constructed by providing a drive source 13 for driving the motor forward and backward. The shape detection element 10 is attached to the tip of the element holder 12 so that its light-receiving surface faces the hole 4 side, and a circuit 14 for receiving the signal from the shape detection element 10 is attached to the base of the element holder 12. It will be done. In addition, drive source 1
3 and the circuit 14 of the shape detection element 10 includes an amplifier 15.
The shape detection element 10 is normally placed in a retracted state with respect to the axis of the machining point of the workpiece 8, while the ink to face part 16 is connected in sequence to form a hole. When a termination signal indicating that the laser oscillation time has elapsed is input, the shape detection element 10 is advanced and placed at a location directly below the processing point of the workpiece 8. In addition, 17 is a gas supply path for flowing a clean gas such as a clean inert gas or clean air toward the light receiving surface of the shape detection element 10, and this is a gas supply path that is always connected to the shape detection element 10 during the drilling operation. The gas is sprayed onto the light receiving surface of the sensor.
つぎに、このように構成された加工検査装置を用いてこ
の発明方法を説明する。Next, the method of the present invention will be explained using the processing inspection apparatus configured as described above.
まず、図示しないレーザ発振器から加工用レーザ光5を
発振する。そして、この発振に連動してアシストガス入
口部6からアシストガス7が導入される。このとき、形
状検出素子10は被加工物8の加工点の軸線上から退避
した地点に配置される。一方、発振された加工用レーザ
光5は光路3ならびに集光レンズ2を通じて被加工物8
へ照射され、被加工物8の周側壁をレーザビームで溶融
して孔あけ加工が行なわれる。First, a laser beam 5 for processing is oscillated from a laser oscillator (not shown). Assist gas 7 is introduced from assist gas inlet 6 in conjunction with this oscillation. At this time, the shape detection element 10 is disposed at a point away from the axis of the processing point of the workpiece 8. On the other hand, the oscillated processing laser beam 5 passes through the optical path 3 and the condensing lens 2 to the workpiece 8.
The peripheral side wall of the workpiece 8 is melted by the laser beam and a hole is drilled.
゛ ここで、孔あけ加工の際、形状検出素子10が飛散
物に影響されることが懸念されるが、形状検出素子10
は被加工物8の加工点から遠くに退避して配置されてい
るために飛散物の形状検出素子10の受光面に対する付
着を未然に回避することになる。しかも、孔あけ加工作
業中はガス供給路17から受光面に向けて清浄不活性ガ
スあるいは清浄空気が吹付けられるから受光面にゴミや
飛散物が付着するような心配もない。゛ Here, there is a concern that the shape detection element 10 may be affected by flying objects during the drilling process, but the shape detection element 10
Since it is arranged far away from the processing point of the workpiece 8, it is possible to prevent flying objects from adhering to the light-receiving surface of the shape detection element 10. Moreover, since clean inert gas or clean air is blown toward the light receiving surface from the gas supply path 17 during the drilling process, there is no fear of dust or scattered matter adhering to the light receiving surface.
一方、孔あけ加工はあらかじめレーザ発振器(図示しな
い)の制御部に孔あけに必要な時間を設定しておいて行
なわれ、この孔あけ加工が終了すると、加工用レーザ光
5の発振が停止し、その加工を終えたことを示す終了信
号がインターフェース部16ならびにレーザ発振器(図
示しない)の制御部へそれぞれ出力される。そして、こ
れに伴いレーザ発振器(図示しない)では、加工を行な
う加工用レーザ光5に代わって測定用レーザ光5aが発
振され、加工に使用された光路3をそのままに光路3と
同軸でかつ同じ方向から測定用レーザ光5aが、被加工
物8の加工が施された孔18(加工点)に向けて照射さ
れ、またインターフェース部16では、終了信号を受け
ると駆動源13が作動して、孔あけ加工中、退避してい
た先はどの形状検出素子10を進退機構11の駆動で孔
18(加工点)の直下の部位に配置するよう前進させる
。On the other hand, the drilling process is performed by setting the time necessary for drilling in the control section of a laser oscillator (not shown) in advance, and when the drilling process is completed, the oscillation of the processing laser beam 5 is stopped. A completion signal indicating that the processing has been completed is output to the interface section 16 and the control section of the laser oscillator (not shown), respectively. Along with this, a laser oscillator (not shown) oscillates a measuring laser beam 5a instead of the processing laser beam 5 that performs processing, leaving the optical path 3 used for processing as it is and coaxial with and the same as the optical path 3. The measuring laser beam 5a is irradiated from the direction toward the machined hole 18 (machining point) of the workpiece 8, and when the interface part 16 receives the end signal, the drive source 13 is activated. During the drilling process, the shape detecting element 10 that had been retracted is moved forward by the drive of the advancing/retracting mechanism 11 so as to be placed directly under the hole 18 (machining point).
しかるに、ここで加工した孔18を通して形状検出素子
10へ入射する測定用レーザ光5aの有無により、孔あ
け加工が完了時まできらんと行われていれば、その孔1
8の開口を通過する測定用レーザ光5aを形状検出素子
10で検出して正規に孔が加工されたこと、ならびに孔
の形状を形状認識する。そして、チャック油質7を回転
駆動する制御部(図示しない)に孔あけ加工が完了した
ことを示す信号が出力され、次の加工点を光路3に対し
対向するように被加工物8を回転させる。However, depending on the presence or absence of the measurement laser beam 5a that enters the shape detecting element 10 through the hole 18 that has been machined, if the hole drilling process has been carried out smoothly until the completion of the hole 18, the hole 1
The measurement laser beam 5a passing through the opening 8 is detected by the shape detection element 10 to confirm that the hole has been properly machined and to recognize the shape of the hole. Then, a signal indicating that the drilling process is completed is output to a control unit (not shown) that rotationally drives the chuck oil 7, and the workpiece 8 is rotated so that the next processing point faces the optical path 3. let
また、加工した孔18が加工の終了、旨いし終了の直後
において、溶融物、飛散物にて塞がったようなときには
、孔18の開口を通過する測定用レーザ光5aがないこ
とからその塞がった状態を形状検出素子10で検出(形
状検出素子10から信号が出力されない状態)する。そ
して、この旨の信号をレーザ発振器の制御部(図示しな
い)に伝送して再度孔あけ加工を行なう。Furthermore, if the machined hole 18 is blocked by melted material or scattered matter immediately after the completion of processing, the blockage may occur because there is no measuring laser beam 5a passing through the opening of the hole 18. The state is detected by the shape detection element 10 (a state in which no signal is output from the shape detection element 10). Then, a signal to this effect is transmitted to a control section (not shown) of the laser oscillator, and the drilling process is performed again.
しかるに、測定用レーザ光5aから直接、孔あけ加工が
完了したことを検出することができるようになり、従来
、必要とされていたダイクロイクミラーはもちろん、そ
のダイクロイクミラーを駆動する機構を全く要すること
なく、孔あけ加工が施されだ加工部分を検出することが
できるようになる。However, it is now possible to directly detect the completion of drilling from the measuring laser beam 5a, and it is now possible to completely eliminate the need for a dichroic mirror and the mechanism that drives the dichroic mirror, which was previously required. It becomes possible to detect the portion where the hole has been drilled without the need for the hole-drilling process.
かくして、孔径が00.1s〜Φ0.3門などの微小径
で、深孔加工のときなどのような孔塞ぎ現象が発生しや
すい加工部分など孔の加工が完了したか否かを検出する
ことができないとされる加工部分は、この発明方法の採
用によって簡単な構成、ならびに飛散物に影響されるこ
となく検出することができることになる。In this way, it is possible to detect whether or not the hole machining has been completed, such as in the machining part where the hole clogging phenomenon is likely to occur, such as during deep hole machining, with a minute hole diameter such as 00.1 s to Φ0.3 mm. By employing the method of the present invention, it is possible to detect processing parts that are considered impossible with a simple configuration and without being affected by flying objects.
なお、上述した一実施例では筒状の被加工物に孔あけす
るものにこの発明方法を適用゛したが、もちろん板状の
被加工物に対する孔あけ加工の検出にもその被加工物の
後方に進退可能に形状検出素子を配置すればこの発明方
法を適用することができる。In the above-mentioned embodiment, the method of the present invention was applied to drilling a hole in a cylindrical workpiece, but of course, detection of drilling in a plate-shaped workpiece is also possible when the rear of the workpiece is detected. The method of the present invention can be applied by arranging the shape detection element so that it can move forward and backward.
また、上述した一実施例では加工用レーザ光の出射を停
止さゼて後、測定用レーザ光を照射ザるようにしたもの
で説明したが、もちろん加工用レーザ光と同時に測定用
レーザ光を照射するようにしたものでもよいことはいう
までもない。Furthermore, in the embodiment described above, the measurement laser beam is emitted after the processing laser beam has stopped emitting, but of course the measurement laser beam is emitted at the same time as the processing laser beam. It goes without saying that a device that can be used for irradiation may also be used.
〔発明の効果λ
以上説明したようにこの発明によれば、従来、必要とさ
れていたグイクロイクミラーはもちろん、そのダイクロ
イクミラーを駆動する機構を全く要、することなく、測
定用レーザ光の直接検知で加工が完了した加工部分を検
出することができる他、加工部分を検出するどきのみ受
光素子を加工点の直下に配して孔あけ加工中はその加工
点から受光素子を退避させるといった受光素子の移動で
飛散物の受光素子に対する干渉を回避することができる
ようになり、飛散物の影響を防止しつつ簡単かつ正確に
加工部分を検出することができる。[Effects of the Invention λ As explained above, according to the present invention, a measurement laser beam can be used without requiring a dichroic mirror or a mechanism for driving the dichroic mirror, which was conventionally required. In addition to being able to detect the completed machining part by direct detection of the machining part, the light receiving element is placed directly below the machining point only when the machining part is detected, and the light receiving element is evacuated from the machining point during drilling. By moving the light-receiving element as described above, it becomes possible to avoid interference of scattered objects with the light-receiving element, and it is possible to easily and accurately detect the processed part while preventing the influence of the scattered objects.
第1図はこの発明方法を適用した加工検査方法の一実施
例を示す断面図、第2図および第3図は従来のそれぞれ
異なる加工検査方法を示す側面図である。
3・・・光路、5・・・加工用し]ザ光、5a・・・測
定用レーザ光、8・・・被加工物、1o・・・形状検出
素子(受光素子)、11・・・進′A機構。
出願人代理人 弁理士 鈴江武彦
第1図FIG. 1 is a cross-sectional view showing one embodiment of a machining inspection method to which the method of the present invention is applied, and FIGS. 2 and 3 are side views showing different conventional machining inspection methods. 3... Optical path, 5... Laser light for processing, 5a... Laser light for measurement, 8... Workpiece, 1o... Shape detection element (light receiving element), 11... Shin'A organization. Applicant's agent Patent attorney Takehiko Suzue Figure 1
Claims (1)
物に対する孔あけ加工を終えた後、上記被加工物の後方
において上記孔あけ加工中、あらかじめ上記加工点の軸
線上から退避していた進退動可能な受光素子を上記被加
工物の加工点直下の部位に配置させ、上記受光素子で上
記加工点に向けて照射されこの加工点の開口を通過した
測定用レーザ光を検知して加工部分を検出することを特
徴とする加工検査方法。After completing the drilling process on the workpiece by irradiating the processing laser beam to the workpiece through the optical path, the laser beam is evacuated from the axis of the processing point in advance during the drilling process at the rear of the workpiece. A light-receiving element that can move forward and backward is placed at a location directly below the processing point of the workpiece, and the light-receiving element detects a measurement laser beam that is irradiated toward the processing point and passes through the aperture of the processing point. A processing inspection method characterized by detecting a processed part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59139992A JPS6120685A (en) | 1984-07-06 | 1984-07-06 | Work inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59139992A JPS6120685A (en) | 1984-07-06 | 1984-07-06 | Work inspection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6120685A true JPS6120685A (en) | 1986-01-29 |
Family
ID=15258411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59139992A Pending JPS6120685A (en) | 1984-07-06 | 1984-07-06 | Work inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6120685A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0225808U (en) * | 1988-08-08 | 1990-02-20 | ||
WO2022080394A1 (en) * | 2020-10-14 | 2022-04-21 | 株式会社アマダ | Laser processing device and nozzle inspection method |
-
1984
- 1984-07-06 JP JP59139992A patent/JPS6120685A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0225808U (en) * | 1988-08-08 | 1990-02-20 | ||
JPH0530083Y2 (en) * | 1988-08-08 | 1993-08-02 | ||
WO2022080394A1 (en) * | 2020-10-14 | 2022-04-21 | 株式会社アマダ | Laser processing device and nozzle inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20160149145A (en) | Laser machining apparatus | |
JP2002103077A (en) | Underwater laser welding device for repair and its method | |
JP5324187B2 (en) | Mist cutting fluid discharge confirmation method | |
JPWO2018097018A1 (en) | Laser processing apparatus and laser processing method | |
JPH0550362A (en) | Blade position detector | |
JPS6120685A (en) | Work inspection method | |
JPS61296980A (en) | Inspecting method for processing | |
JP6157245B2 (en) | Laser processing apparatus and laser optical axis adjustment method | |
JPS6123590A (en) | Working inspection device | |
JPS6160286A (en) | Inspection of worked matter | |
JPH07214357A (en) | Laser beam machine | |
JPH09327781A (en) | Laser beam irradiation head positioning device | |
JP3457436B2 (en) | Hand-held YAG laser processing head | |
JP3073317B2 (en) | Laser processing equipment | |
JP2925952B2 (en) | Dam bar processing device and dam bar processing method | |
JPS586785A (en) | Laser machining device | |
JPH0481290A (en) | Laser welding method and device | |
JPH0577073A (en) | Device for observing state of laser beam machining | |
JPH02205283A (en) | Laser beam machine | |
JPH067980A (en) | Laser beam machine | |
JP2000283888A (en) | Method and device for inspecting laser focusing optical system for machining | |
JPH08195461A (en) | Method and system for machining dam bar | |
JP2002210575A (en) | Method for discriminating weld condition in laser welding | |
JP2003220479A (en) | Laser beam welding apparatus | |
JPS609606A (en) | Laser-cut chip cutting tool |