JPS6120637B2 - - Google Patents

Info

Publication number
JPS6120637B2
JPS6120637B2 JP4030377A JP4030377A JPS6120637B2 JP S6120637 B2 JPS6120637 B2 JP S6120637B2 JP 4030377 A JP4030377 A JP 4030377A JP 4030377 A JP4030377 A JP 4030377A JP S6120637 B2 JPS6120637 B2 JP S6120637B2
Authority
JP
Japan
Prior art keywords
fluorine
iodine
group
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4030377A
Other languages
Japanese (ja)
Other versions
JPS53125974A (en
Inventor
Toshikatsu Sada
Akihiko Nakahara
Junichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP4030377A priority Critical patent/JPS53125974A/en
Publication of JPS53125974A publication Critical patent/JPS53125974A/en
Publication of JPS6120637B2 publication Critical patent/JPS6120637B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規且つ有用な電解用弗素系イオン交
換膜の原膜に関し、詳しくは含弗素重合体の膜状
物で、官能基として−CFI−基及び/又は−CF2I
基を有し且つ沃素が該重合体の4(重量)%〜40
(重量)%を占めている電解用弗素系イオン交換
膜の原膜及びその製法を提供する。 イオン交換膜を用いるアルカリ金属水溶液の電
解法の確立は水銀法アルカリ金属塩水溶液の電解
の代り広く望まれている。特に電解用イオン交換
膜は耐薬品性、耐熱性を要求されるので一般には
弗素系イオン交換膜が使用される。例えば工業的
にはナフイオンの商品名でスルホン酸基をイオン
交換基としたパーフルオロカーボン系イオン交換
膜が知られている。一般のイオン交換膜のイオン
交換基としてはスルホン酸基、カルボン酸基、リ
ン酸基等必要に応じて使用されているが、電解用
イオン交換膜を前提とする場合は超強酸であるパ
ーフルオロスルホン酸基は必ずしも十分なイオン
交換基とは言えない。一方、カルボン酸基をイオ
ン交換基とした弗素系イオン交換膜が電解用イオ
ン交換膜としてはすぐれていると言われている。
しかしながら、カルボン酸基自身が熱安定性に欠
けるためカルボン酸基を有する含弗素重合体の膜
状物を成形する際に種々の困難がある。 本発明者等は官能基としてカルボン酸基を有す
る含弗素重合体の膜状物の製造方法につき鋭意研
究して来たが、官能基として特定のものを選ぶこ
とにより後処理によつて容易にカルボン酸基の導
入が出来、しかも取扱い上容易な原膜を見出し本
発明を完成させるに至つた。本発明は含弗素重合
体の膜状物で官能基として−CFI−基及び/又は
−CF2I基を有し且つ沃素が該重合体中の4(重
量)%〜40(重量)%を占めていることを特徴と
する電解用弗素系イオン交換膜の原膜及びその製
造方法である。 本発明の弗素系イオン交換膜の原膜は含弗素重
合体の膜状物で官能基として−CFI−基及び/又
は−CF2I基を有していることが必須である。こ
れらの官能基は硫酸、クロルスルホン酸、硝酸等
の鉱酸と反応後加水分解によつて簡単にカルボン
酸基に変換出来る利点を有する。しかしながら、
該原膜から得られるイオン交換膜を電解用のイオ
ン交換膜として使用する場合はイオン交換膜の電
気抵抗、膜自身の強度等が実用に供されるだけの
性質を有する必要がある。このため本発明の原膜
中に存在する沃素は該重合体中の4(重量)%〜
40(重量)%をの範囲を占めることが重要であ
る。上記沃素の含有量が4(重量)%より少ない
場合は得られるイオン交換膜の電気抵抗が大きく
て電解用イオン交換膜として好ましくない。また
逆に上記沃素の含有量が40(重量)%より多い場
合は得られるイオン交換膜の強度が実用上十分で
なく電気化学的性質も劣るので好ましくない。 本発明の弗素系イオン交換膜の原膜に存在する
−CFI−基及び/又は−CF2I基の官能基は該原膜
の膜内部に均一に分布結合していてもよく、原膜
の少くとも一方の表層部に偏つて存在してもよ
い。勿論該官能基の他に他のイオン交換基或いは
後処理により容易にイオン交換基になりうる他の
官能基例えばスルホニルハライド基、スルホン酸
基が結合されていることは本発明のさまたげにな
るものではない。また含弗素重合体の膜状物は耐
酸性、耐熱性、耐薬品性等の観点からパーフルオ
ロカーボン系重合体のものが好ましいが該膜状物
の耐酸性、耐熱性、耐薬品性等が実用に供される
程度の塩素、水素、炭化水素基を含んでいてもさ
しつかえない。また、一般に官能基の結合は側鎖
に結合している態様が最も好ましく、パーフルオ
ロカーボン系重合体の主鎖にパーフルオロカーボ
ン系の側鎖を形成し、該側鎖の末端に官能基を結
合させると好ましい。また該官能基はエーテル結
合、チオエーテル結合を介して或いは含弗素アル
カキル基を介して結合しているものであつてもよ
い。 本発明における上記含弗素重合体の膜状物及び
その製法は特に制限されるものではなく公知のも
の或いは製法が採用出来る。例えば特公昭45−
22327号、特公昭45−26303号、特開昭50−108182
号、特開昭52−36589号等に記載された膜状物又
はその製法が好適に採用出来る。これらの方法を
より具体的に例示すれば、次ぎの通りである。 (イ) 一般式 で示される含弗素モノマー (ロ) 一般式 で示される含弗素モノマー (ハ) テトラフルオロエチレン、ヘキサフルオロプ
ロピレン、三弗化−塩化エチレン、弗化ビニリ
デン、弗化ビニル、アルキルビニルエーテル等
のフルオロフイン。 但し上記()及び()式に於けるXは水
素、ハロゲン原子又はフルオロアルキル基;Yは
弗素原子又はパーフルオアルキル基;Zはイオン
交換基又はイオン交換基に変りうる官能基;lは
0〜5;m及びm´はそれぞれ0又は1;nは1〜
12をそれぞれ示す。 上記一般式()で示される含弗素モノマーと
(ハ)のフルオロオレフインとをラジカル重合開始剤
の存在下に溶液重合又は懸濁重合することによつ
て含弗素重合体を得ることが出来る。勿論含弗素
重合体の膜状物とするときは上記重合と同時に成
形するか該重合体を得た後で成形する等の公知の
方法で得ることが出来る。また前記一般式()
で示される含弗素モノマーを上記()の含弗素
モノマーに代つて使用するときは主鎖又は側鎖の
末端に不飽和結合を有する含弗素重合体とするこ
とが出来る。勿論前記一般式()及び()で
示される各含弗素モノマーと前記(ハ)に示されるフ
ルオロオレフインの3成分よりなるモノマー混合
物を出発原料として得られる含弗素重合体も好適
に使用出来る。 また本発明の原膜を製造する方法の原料として
用いる官能基としてスルホニルハライド基を有す
る含弗素重合体を得る場合は前記含弗素モノマー
で官能基としてスルホニルハライド基を有するも
のを使用して前記重合を行うか、前記含弗素重合
体を得たのち官能基としてスルホニルハライド基
を後処理で導入すればよい。 本発明の原膜を得る方法は一部前記したが、特
に制限されず公知の方法が採用出来る。その代表
的な方法について以下説明する。工業的に最も代
表的な方法の1つは官能基としてスルホニルハラ
イド基を有する含弗素重合体に沃素又は沃素含有
化合物とを反応させて、該重合体に−CFI−基又
は−CF2I基を導入する方法である。また主鎖又
は側鎖の末端に不飽和結合を有する含弗素重合体
に沃素又は沃素含有化合物とを反応させることに
より、該重合体に−CFI−基又は−CF2I基を導入
することも出来る。含弗素重合体か予め成形した
膜状物でもよく、粉末を用いてもよいが、該粉末
を用いるときは上記の反応後に膜状に成形する必
要がある。勿論、重合可能な不飽和結合を有する
モノマーと−CFI−基又は−CF2有するビニルモ
ノマーを重合又は共重合して膜状物を得る方法、
−CFI−基及び/又は−CF2I基を結合して有する
オリゴマー又は含弗素重合体を他の含弗素重合体
と均一或いは不均一に混合し膜状物に成形する方
法等も必要に応じて採用出来る。 以上、要するに主鎖又は側鎖の末端に−CFI−
基及び/又は−CF2I基を導入するための含弗素
重合体は 主鎖又は側鎖にスルホニルハライド基を有す
る重合体 F2C=CX(O)n−(CF2o−(O)n−CX=
CF2(m,nは前述と同じ)を共重合させるこ
とにより得られる側鎖に二重結合を持つ重合体 F2C=CF−CF=CF2又は
The present invention relates to a novel and useful fluorine-based ion exchange membrane for electrolysis, and more specifically, it is a film-like material of a fluorine-containing polymer, and has -CFI- groups and/or -CF 2 I as functional groups.
group and iodine is 4% (by weight) to 40% of the polymer
(by weight) % of a fluorine-based ion exchange membrane for electrolysis, and a method for producing the same. The establishment of an electrolysis method for aqueous alkali metal solutions using ion exchange membranes is widely desired as an alternative to the electrolysis of aqueous alkali metal salt solutions using the mercury method. In particular, ion exchange membranes for electrolysis are required to have chemical resistance and heat resistance, so fluorine-based ion exchange membranes are generally used. For example, a perfluorocarbon ion exchange membrane using a sulfonic acid group as an ion exchange group is known industrially under the trade name Nafion. The ion exchange groups in general ion exchange membranes include sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, etc. Sulfonic acid groups are not necessarily sufficient ion exchange groups. On the other hand, fluorine-based ion exchange membranes having carboxylic acid groups as ion exchange groups are said to be excellent as ion exchange membranes for electrolysis.
However, since the carboxylic acid group itself lacks thermal stability, there are various difficulties when molding a film-like product of a fluorine-containing polymer having a carboxylic acid group. The present inventors have conducted intensive research on a method for producing a film-like product of a fluorine-containing polymer having a carboxylic acid group as a functional group. The present inventors have discovered a raw film in which carboxylic acid groups can be introduced and which is easy to handle, leading to the completion of the present invention. The present invention is a film-like material of a fluorine-containing polymer, which has a -CFI- group and/or a -CF 2 I group as a functional group, and in which iodine accounts for 4% (by weight) to 40% (by weight) of the polymer. A raw membrane of a fluorine-based ion exchange membrane for electrolysis and a method for manufacturing the same, characterized in that: It is essential that the base film of the fluorine-based ion exchange membrane of the present invention is a film-like material of a fluorine-containing polymer and has a -CFI- group and/or a -CF2I group as a functional group. These functional groups have the advantage that they can be easily converted into carboxylic acid groups by hydrolysis after reaction with mineral acids such as sulfuric acid, chlorosulfonic acid, and nitric acid. however,
When the ion exchange membrane obtained from the raw membrane is used as an ion exchange membrane for electrolysis, it is necessary that the ion exchange membrane has properties such as electrical resistance and strength of the membrane itself that are suitable for practical use. Therefore, the iodine present in the raw film of the present invention is 4% (by weight) to 4% (by weight) of the polymer.
It is important to account for a range of 40% (by weight). If the iodine content is less than 4% (by weight), the electrical resistance of the resulting ion exchange membrane will be high, making it undesirable as an ion exchange membrane for electrolysis. On the other hand, if the iodine content is more than 40% (by weight), the resulting ion exchange membrane will not have sufficient strength for practical use and its electrochemical properties will be poor, which is not preferable. The -CFI- group and/or -CF 2 I functional group present in the raw membrane of the fluorine-based ion exchange membrane of the present invention may be uniformly distributed and bonded within the membrane of the raw membrane. It may be present biased towards at least one surface layer. Of course, the fact that other ion exchange groups or other functional groups that can easily become ion exchange groups by post-treatment, such as sulfonyl halide groups and sulfonic acid groups, are bonded to the functional group is a hindrance to the present invention. isn't it. In addition, the fluorine-containing polymer film is preferably a perfluorocarbon polymer from the viewpoint of acid resistance, heat resistance, chemical resistance, etc., but the acid resistance, heat resistance, chemical resistance, etc. It is acceptable even if it contains chlorine, hydrogen, or hydrocarbon groups to the extent that it can be subjected to Generally, it is most preferable that the functional group is bonded to a side chain, and a perfluorocarbon side chain is formed in the main chain of the perfluorocarbon polymer, and the functional group is bonded to the end of the side chain. and preferable. Further, the functional group may be bonded via an ether bond, a thioether bond, or a fluorine-containing alkyl group. The film-like material of the fluorine-containing polymer and the manufacturing method thereof in the present invention are not particularly limited, and known materials or manufacturing methods can be employed. For example, the special public interest public in 1973
No. 22327, Japanese Patent Publication No. 1972-26303, Japanese Patent Publication No. 1973-108182
The film-like material or its manufacturing method described in Japanese Patent Application Laid-open No. 52-36589 and the like can be suitably employed. More specific examples of these methods are as follows. (a) General formula Fluorine-containing monomer (b) represented by the general formula Fluorine-containing monomer (c): Fluorophine such as tetrafluoroethylene, hexafluoropropylene, trifluoro-chlorinated ethylene, vinylidene fluoride, vinyl fluoride, alkyl vinyl ether, etc. However, in the above formulas () and (), X is hydrogen, a halogen atom, or a fluoroalkyl group; Y is a fluorine atom or a perfluoroalkyl group; Z is an ion exchange group or a functional group that can be converted into an ion exchange group; l is 0 ~5; m and m' are each 0 or 1; n is 1~
12 are shown respectively. A fluorine-containing monomer represented by the above general formula () and
A fluorine-containing polymer can be obtained by solution polymerization or suspension polymerization of (c) fluoroolefin in the presence of a radical polymerization initiator. Of course, when a film-like product of the fluorine-containing polymer is to be obtained, it can be obtained by a known method such as molding at the same time as the above polymerization or molding after obtaining the polymer. Also, the general formula ()
When the fluorine-containing monomer represented by the formula (2) is used in place of the fluorine-containing monomer () above, it can be a fluorine-containing polymer having an unsaturated bond at the end of the main chain or side chain. Of course, fluorine-containing polymers obtained using as starting materials a monomer mixture consisting of the fluorine-containing monomers represented by the above general formulas () and () and the fluoroolefin shown in the above (c) can also be suitably used. In addition, when obtaining a fluorine-containing polymer having a sulfonyl halide group as a functional group to be used as a raw material in the method for producing the raw film of the present invention, the above-mentioned fluorine-containing monomer having a sulfonyl halide group as a functional group is used to carry out the polymerization. Alternatively, after obtaining the fluorine-containing polymer, a sulfonyl halide group may be introduced as a functional group in a post-treatment. Some of the methods for obtaining the raw film of the present invention have been described above, but there are no particular limitations and any known method can be employed. A typical method will be explained below. One of the most typical industrial methods is to react a fluorine-containing polymer having a sulfonyl halide group as a functional group with iodine or an iodine-containing compound to form a -CFI- group or -CF 2 I group in the polymer. This is a method of introducing Furthermore, by reacting a fluorine-containing polymer having an unsaturated bond at the end of the main chain or side chain with iodine or an iodine-containing compound, a -CFI- group or a -CF 2 I group can be introduced into the polymer. I can do it. A film-like product formed from a fluorine-containing polymer or a powder may be used, but when such a powder is used, it is necessary to form it into a film after the above-mentioned reaction. Of course, a method for obtaining a film-like material by polymerizing or copolymerizing a monomer having a polymerizable unsaturated bond and a vinyl monomer having a -CFI- group or -CF2 ,
A method of uniformly or non-uniformly mixing an oligomer or fluorine-containing polymer having -CFI- groups and/or -CF 2 I groups with other fluorine-containing polymers and forming the mixture into a film-like material may be used as necessary. Can be hired. In short, at the end of the main chain or side chain -CFI-
The fluorine-containing polymer for introducing groups and/or -CF 2 I groups is a polymer having a sulfonyl halide group in the main chain or side chain F 2 C=CX(O) n -(CF 2 ) o -(O ) n −CX=
A polymer having a double bond in the side chain obtained by copolymerizing CF 2 (m and n are the same as above) F 2 C=CF−CF=CF 2 or

【式】 の如き共役二重結合を有するモノマーを共重合さ
せることにより主鎖に二重結合を持つ重合体 四フツ化エチレンと三フツ化塩化エチレン及
び他のモノマーを共重合させた後加熱しFClを
脱離させて主鎖に二重結合を形成させた重合体 その他の沃素又は沃化水素等の沃素含有化合物
と反応可能な重合体を用いる。 スルホニルハライド基例えばスルホニルフルオ
ライド、スルホニルクロライド、スルホニルブロ
マイド、スルホニルアイオダイド基を有する含弗
素重合体に沃素を反応させる場合は、該含弗素重
合体の膜状物に沃素蒸気を接触させることによつ
て容易に本発明の原膜とすることが出来る。勿
論、溶液状で沃素との反応を行うことも出来、一
般には反応の制御上好適であろう。例えばスルホ
ニルハライド基を有する含弗素重合体の膜状物に
沃素を反応させる条件は例えば常圧〜加圧下に−
30〜300℃の範囲で実施すればよい。また沃素含
有化合物を用いる場合はアルコール、アセトニト
リル、ジグライム、二硫化炭素等の該沃素含有化
合物を溶解する能力を有する溶媒中で反応させれ
ばよい。 また主鎖又は側鎖の末端に不飽和結合を有する
含弗素重合体の膜状物に沃素又は沃素含有化合物
を反応させる方法は特に限定されず公知の方法が
採用出来る。例えば熱、光、電離性放射線、ラジ
カル開始剤その他の触媒の存在下に上記含弗素重
合体に沃素又は沃素含有化合物を適当な溶媒の存
在下又は不存在下に付加反応を実施すればよい。
列えば元素状沃素の蒸気の存在下において紫外線
を照射する方法、加熱する方法、電離性放射線を
照射する方法、元素状沃素とラジカル開始剤の存
在下に加熱処理する方法、元素状沃素を有機溶媒
(好ましくはアルコール、二硫化炭素)に溶解し
50℃以上に加熱する方法、光増感剤を共存させて
可視光、紫外線を照射する方法等、更にはラジカ
ル開始剤の存在下に加熱し同時に紫外線を照射す
る方法等、二種以上併用すると特に好ましい結果
が得られる。一般に熱のみを用いる場合には0℃
以上、好ましくは50℃以上該含弗素重合体の膜状
物が分解しない温度範囲内で実施される。光を用
いる場合は紫外線が好ましいが、必ずしも紫外線
である必要はなく、増感剤を共速させて可視光を
用いてもよい。この場合の光増感剤は従来公知の
ものが何ら制限なく、その目的によつて適宜選択
して用いられる。電離性放射線はα、B、γ、X
線が用いられ照射線量としては0.1〜30Mradの範
囲内で最適の線量が選定されるが、含弗素系重合
体の膜状物の有意の分解或いは機械的強度の低下
を招かない範囲で実施しなければならない。また
ラジカル開始剤は従来公知の有機系、無機系のも
のが制限なく用いられ、有機系のものとしては炭
化水素系、含弗素系、パーフルオロ系のもの等適
宜選択して用いられうるが、分解の半減期が40℃
以上で10時間以上のものなら何ら制限はない。具
体的にはベンゾイルパーオキサイド,α,α′−
アゾビスイソブチロニトリル,ラウリルパーオキ
サイド,ジターシヤリイブチルパーオキサイド,
N2F2,CF3COOCF3などの例があるが、これは
単に例示したのみである。その他不飽和結合を有
する含弗素重合体と沃素又は沃素含有化合物とを
反応させる場合に元素状の鉄,鉄の塩類等が好適
な触媒として用いられる。これらの熱,光,電離
性放射線,ラジカル開始剤,触媒等のいづれか一
種以上を併用して用いるときには更に一層の効果
が現われるが、その条件は最も効率よく反応が進
行する条件を選定して実施すればよい。 上記した沃素は前記した如く元素状,ガス状,
溶液状,固体状のもののいづれでもよく、濃度は
特に限定的ではないが通常0.001%〜飽和溶液ま
で用いられる。溶液状のときに用いられる溶媒と
しては一つは沃素を溶解するものであること及び
含弗素重合体への反応の程度を制禦する目的とで
選択される。例えば含弗素重合体の膜状物の表層
部近傍のみ反応させる場合は該膜状物に親和性の
よくない溶媒を用いて膜表層部のみ反応せしめる
ようにし、また膜状物の内部まで均一に反応を進
行させる場合は該膜状物に親和性が良く、よく膨
潤させうる溶媒を用いるとよい。また沃素含有化
合物としては無機,有機の沃素の塩が用いられ
る。無機の沃素塩としては陽イオンがアルカリ金
属塩,アルカリ土類金属塩,遷移金属の沃素塩,
錯塩等特に制限はない。より具体的に例示すれ
ば、ヨウ化ナトリウム,ヨウ化カリウム,ヨウ化
リチウム,ヨウ化セシウム,ヨウ化カルシウム,
ヨウ化マグネシウム,ヨウ化ストロンチウム,ヨ
ウ化コバルト,ヨウ化ニツケル,ヨウ化鉄,ヨウ
化銅等が好適である。また有機の沃素塩としては
陽イオンが一級,二級,三級アミン類,第四級ア
ンモニウム塩基,アルソニウム塩基,ホスホニウ
ム塩基,スチボニウム塩基,スルホニウム塩基等
の謂ゆるオニウム塩基類を結合した有機物が用い
られ、アミンの有機鎖としては飽和,不飽和の直
鎖状,分岐性の鎖状アルキル基,環状のもの,芳
香族環を有するもの,複素環を有するもの等特に
制限はない。より具体的に例示すれば、テトラメ
チルアンモニウムヨードなどのアルキルアンモニ
ウムの沃素塩,アニリンの沃化水素酸塩,ジエチ
ルアミンの沃化水素酸塩,トリエタノールアミン
の沃化水素酸塩,トリエチルアミンの沃化水素酸
塩,
[Formula] A polymer having a double bond in the main chain by copolymerizing monomers having a conjugated double bond such as A polymer in which double bonds are formed in the main chain by eliminating FCl A polymer that can react with other iodine or iodine-containing compounds such as hydrogen iodide is used. When iodine is reacted with a fluorine-containing polymer having a sulfonyl halide group, for example, a sulfonyl fluoride, sulfonyl chloride, sulfonyl bromide, or sulfonyl iodide group, the fluorine-containing polymer may be reacted with iodine vapor by contacting a film of the fluorine-containing polymer. Therefore, it can be easily used as the raw film of the present invention. Of course, the reaction with iodine can also be carried out in the form of a solution, which is generally suitable for controlling the reaction. For example, the conditions for reacting iodine with a film of a fluorine-containing polymer having a sulfonyl halide group are, for example, under normal pressure to elevated pressure.
What is necessary is just to carry out in the range of 30-300 degreeC. When an iodine-containing compound is used, the reaction may be carried out in a solvent capable of dissolving the iodine-containing compound, such as alcohol, acetonitrile, diglyme, or carbon disulfide. Further, the method for reacting iodine or an iodine-containing compound with a film of a fluorine-containing polymer having an unsaturated bond at the end of its main chain or side chain is not particularly limited, and any known method can be employed. For example, an addition reaction of iodine or an iodine-containing compound to the above-mentioned fluorine-containing polymer may be carried out in the presence or absence of a suitable solvent in the presence of heat, light, ionizing radiation, a radical initiator or other catalyst.
Examples include irradiation with ultraviolet rays in the presence of elemental iodine vapor, heating, irradiation with ionizing radiation, heat treatment in the presence of elemental iodine and a radical initiator, and irradiation of elemental iodine with organic Dissolved in a solvent (preferably alcohol, carbon disulfide)
If two or more methods are used in combination, such as heating to 50℃ or higher, irradiating with visible light or ultraviolet rays in the presence of a photosensitizer, or heating in the presence of a radical initiator and simultaneously irradiating with ultraviolet rays, etc. Particularly favorable results are obtained. Generally, when only heat is used, it is 0°C.
The above temperature range is preferably 50° C. or higher, at which the membrane of the fluorine-containing polymer does not decompose. When using light, ultraviolet light is preferred, but it is not necessarily necessary to use ultraviolet light, and visible light may be used with a sensitizer co-promoting. In this case, conventionally known photosensitizers may be used without any restriction, and may be appropriately selected depending on the purpose. Ionizing radiation is α, B, γ, X
The optimum irradiation dose is selected within the range of 0.1 to 30 Mrad, but it must be carried out within a range that does not cause significant decomposition of the fluorine-containing polymer film or decrease in mechanical strength. There must be. In addition, conventionally known organic and inorganic radical initiators can be used without limitation, and organic ones can be appropriately selected and used such as hydrocarbon-based, fluorine-containing, perfluorinated, etc. Half-life of decomposition is 40℃
There is no limit as long as it is more than 10 hours. Specifically, benzoyl peroxide, α, α′-
Azobisisobutyronitrile, lauryl peroxide, ditertiary butyl peroxide,
Examples include N 2 F 2 and CF 3 COOCF 3 , but these are merely examples. In addition, when a fluorine-containing polymer having an unsaturated bond is reacted with iodine or an iodine-containing compound, elemental iron, iron salts, etc. are used as suitable catalysts. Even more effects can be obtained when one or more of these heat, light, ionizing radiation, radical initiators, catalysts, etc. are used in combination, but the conditions must be selected and carried out under conditions that allow the reaction to proceed most efficiently. do it. As mentioned above, the iodine mentioned above can be in elemental form, gaseous form,
It may be in the form of a solution or a solid, and its concentration is not particularly limited, but it is usually used from 0.001% to a saturated solution. One of the solvents used when the solution is in the form of a solution is selected so as to dissolve iodine and to control the degree of reaction to the fluorine-containing polymer. For example, when reacting only near the surface of a fluorine-containing polymer film, use a solvent that does not have good affinity for the film to react only at the surface of the film, and even to the inside of the film. When the reaction is to proceed, it is preferable to use a solvent that has good affinity for the membrane-like material and can swell it well. Inorganic and organic iodine salts are used as the iodine-containing compound. Inorganic iodine salts include cationic alkali metal salts, alkaline earth metal salts, transition metal iodine salts,
There are no particular restrictions on complex salts, etc. More specific examples include sodium iodide, potassium iodide, lithium iodide, cesium iodide, calcium iodide,
Suitable examples include magnesium iodide, strontium iodide, cobalt iodide, nickel iodide, iron iodide, and copper iodide. In addition, as organic iodine salts, organic substances with cations bound to so-called onium bases such as primary, secondary, and tertiary amines, quaternary ammonium bases, arsonium bases, phosphonium bases, stibonium bases, and sulfonium bases are used. The organic chain of the amine is not particularly limited, such as a saturated or unsaturated linear alkyl group, a branched chain alkyl group, a cyclic chain, a chain having an aromatic ring, or a chain having a heterocycle. More specific examples include iodide salts of alkylammonium such as tetramethylammonium iodide, hydroiodide of aniline, hydroiodide of diethylamine, hydroiodide of triethanolamine, and iodide of triethylamine. Hydrogen salt,

【式】〔(CH34Sb〕+I- [Formula] [(CH 3 ) 4 Sb] + I -

【式】 等が好適である。さらにまた本発明における沃素
化合物としては、このような塩の形態をなすもの
ではなく沃素と臭素,塩素等のハロゲン化合物等
の共有結合によつて結合されているものなども有
効である。 このようにして得られた含弗素重合体の膜状物
の主鎖又は側鎖に結合した−CFI−基又は−CF2I
基は(−CF2−CFI−CFI−CF2)−
[Formula] etc. are suitable. Furthermore, the iodine compound in the present invention is not in the form of a salt, but is also effective in which iodine is bonded to a halogen compound such as bromine or chlorine through a covalent bond. -CFI- group or -CF 2 I bonded to the main chain or side chain of the fluorine-containing polymer membrane thus obtained
The group is ( -CF2 -CFI-CFI- CF2 )-

【式】【formula】

又は などの形態となる。これらの−CFI−基又は−
CF2I基は例えば鉱酸,アルカリ処理,グリアニ
ル試薬反応,CO2の導入等によつてカルボン酸基
に変換することが出来る。以下の実施例によつて
本発明の内容を具体的に説明するが、本発明の内
容は以下の実施例によつて制限されるものではな
い。なお実施例中用途例として示す−CFI−基及
び/又は−CF2I基を官能基として有する弗素系
イオン交換膜の原膜を更に処理してカルボン酸基
に変換したときの諸性質については次の方法によ
つた。即ち、電気抵抗は3.5N−NaClと6.0N−
NaOHを膜の両側に配して85℃で1000サイクル交
流によつて測定した値である。交換容量は酸型に
した膜を0.1N−NaOHの一定量の中に浸漬して2
時間放置後、膜の酸によつて中和されたNaOHの
量を0.1N−HClで逆滴定して求め、乾燥膜1g
(H型)あたり重量で示した。含水量は100℃の純
水中で30分間煮沸したときの含水量を室温で測定
しH型の乾燥膜1gについての量(%)で示し
た。電解の実験は有効通電面積1dm2の電解槽を
用い、陽極にはチタンのラス材に二酸化チタンと
二酸化ルテニウムをコーテイングした通常の金属
陽極を用い、陰極には軟鉄の金網を用いた。膜は
陽極に支持させ、陰極と膜の間隙は約3mmに保つ
て実施した。電解時の温度は80〜90℃に保つよう
にして陰極室は純水を供給して一定濃度のNaOH
を定常的に取得するようにした。陽極液にはアル
カリ金属の飽和溶液を供給して食塩水の場合は大
略3.0〜3.5Nとして排出するようにした。また用
いた塩水中のCa++Mg++の両方の和は1ppm以下
になるように抑えた。また電気分解の際の電流密
度は特に断らない限り30A/dm2で実施した。 実施例 1 テトラフルオロエチレンとパーフルオロ(3,
6−ジオキサ−4−メチル−7−オクテンスルホ
ニルフルオライド)を共重合して後膜状物に成型
して得たもの(厚み0.15mm)をジメチルスルホキ
シド・水の混合溶媒にNaOHを溶解した加水分解
浴に浸漬して加水分解処理したパーフルオロスル
ホン酸型の陽イオン交換膜とした。交換容量は
0.91ミリ当量/グラム乾燥膜(OH型)であつ
た。これを20%硝酸の80℃の中に16時間浸漬して
スルホン酸型に変換し、次いでオキシ塩化リン2
と五塩化リン1の中に130℃で72時間浸漬反応さ
せてスルホン酸基をスルホニルクロライド基に変
換した。これのスルホニルクロライド基への転換
の割合を見るため1.0N−HCl中で1000サイクル交
流で電気抵抗を測定したところ25.0℃で約45000
Ω−cm2であつた。 次にこの膜を沃素のエタノール飽和溶液100部
にジターシヤリイブチルパーオキサイド3部を溶
解したものの中にオートクレーブ中で室温で浸漬
し16時間放置して膜内に充分に含浸させたのち、
オイルバス中で130℃で24時間加熱処理した。放
冷後膜をとり出してエタノールで充分に洗滌後更
に二硫化炭素で洗滌した、表面の反射赤外吸収ス
ペクトルをとつたところスルホニルクロライドに
相当する1420cm-1の吸収が消失していた。そこ
で、この膜の表層部をカミソリで削りとつて元素
分析したところ沃素の量は8.9%であつた。ま
た、表層部のみでなく膜そのものについて元素分
析して沃素の量を求めたところ5.3%であつた。 用途例 1 実施例1で得た原膜即ち沃素を結合したパーフ
ルオロ系重合体の膜状物を30%の過剰の三酸化硫
黄を含んだ大過剰の発煙硫酸中に130℃で100時間
浸漬して後、放冷し次いで98%,80%,40%の硫
酸水と順次浸漬していき、最後に10%NaOHのメ
タノール溶液中に浸漬した。得られた膜状物の表
面を反射赤外吸収スペクトルで観察したところ約
1690cm-1の吸収が強く認められた。また約1060cm
-1のスルホン酸の吸収が弱いシヨルダーとして確
認された。上記の膜について電気抵抗を測定した
ところスルホン酸型の膜のままのときは1.95Ω−
cm2であり、交換容量0.91ミリ当量/グラム乾燥膜
(H型),含水量17%であり計算上の固定イオン濃
度は5.26mであつた。他方、本発明の方法を実施
した膜では交換容量0.88ミリ当量/グラム乾燥膜
(H型),含水量12%であり固定イオン濃度は733
mとなつていた。しかし電気抵抗が3.92Ω−cm2
に増大していた。なお沃素を反応後発煙硫酸を反
応し、次いで加水分解のみして膜についてクリス
タルバイオレツトで染色し、顕微鏡で染色した厚
みを観察したところ、膜の両面から各々1/3の部
分は極めて鮮明に染まり中央部の1/3は僅かに染
まる程度であつた。 次いでこの膜を用いて明細書記載の装置によつ
て飽和食塩水を20A/dm2で電気分解したとこ
ろ、スルホン酸基のみ有する膜の場合は電槽電圧
3.52V,電流効率は6.0N−NaOHを取得して61%
であつたが、本発明の膜の場合は電槽電圧
4.05V,電流効率は8.7N−NaOHを取得して94%
であつた。またNaOH中のNaClの量も前者が48%
NaOH換算で145ppmであつたものが17ppmとな
つていた。 実施例 2 CF2=CFOCF2CF=CF2を懸独重合して得た
重合体を0.15mmの厚みのシートに成型した。この
シート(10cm×15cm)を500c.c.のガラスオートク
レーブ中で1gのFeCl3,100gのIClを加えた300
c.c.のメチレンクロライドと5℃で10時間反応させ
た。反応後シートをメチレンクロライドで充分洗
滌した。洗滌後、シートを元素分析したところ沃
素が23%の含弗素重合体の膜状物であつた。 用途例 2 実施例2で得た含弗素重合体の膜状物をクロル
スルホン酸中に130℃で150時間浸漬した後、10%
NaCH水溶液中に浸漬して加水分解処理した。得
られた膜の交換容量は0.89meq/グラム乾燥膜
(H型)であつた。クリスタルバイオレツトで染
色テストしたところ殆んど均一に染色されてい
た。この膜の電気抵抗は4.2Ω−cm2でで飽和食塩
水の電気分解を明細書記載の装置で20A/dm2
実施した。電流効率は12N−NaOHを陰極から取
得して電流効率92%であつた。 実施例 3 実施例1で用いたと同じパーフルオロアルキル
ビニルエーテルスルホニルフルオライド型の膜状
物を同様にオキシ塩化リンと五塩化リンで処理し
てスルホニルクロライド基に変換した。これを水
銀紫外ランプを封入したデシケータ中に入れて同
時に沃素の固体を封入して、減圧にしたのち密封
して更にオイルバス中に入れて85℃に加熱して沃
素の蒸気をデシケータ中に飽和させ、そのまま8
時間放置後、紫外ランプを16時間照射した。用い
た紫外ランプは東芝紫外ランプSHLS−1002Bで
あつた。放冷後膜を取り出しメタノールで洗い、
次いで二硫化炭素でreflux洗滌して後、螢光X線
によつて同様に沃素と硫黄の表層部の量を測定し
たところ、表層部の−CF2SO2Cl基の約84%が−
CF2I基に変換されていることを確認した。但
し、この場合は紫外線が照射された面のみが著し
く多く裏面にも若干認められたが(−CF2SO2Cl
基の約3.5%)これは沃素が膜状物に吸着された
ものか或いは熱によつて反応が進行したものと考
えられる。 用途例 3 実施例3で得た含弗素重合体の膜状物を
C3H7MgBrのエチルエーテル中に、該膜状物を充
分に減圧脱気乾燥したのちに−30℃に保つて浸漬
し8時間放置後、これを更に−40℃にまで冷却し
て充分に脱水精製したCO2を導入して気泡撹拌し
膜状物面に充分にCO2が接触するように24時間放
置したのちに常温にもどし膜状物をとり出してメ
タノール、次いで水洗して、NaOH中に浸漬し
た。この膜状物の紫外線を照射した側の表層部を
反射赤外吸収スペクトルをとると1690cm-1に極め
て強い吸収ピークが表われカルボキシル基が生成
していることが分つた。またこのグリニヤル試薬
と反応せしめた膜状物の紫外線照射面を螢光X線
で分析したところ殆んどバツクグランドと同程度
の沃素しか検出されなかつた。 用途例 4 用途例3で得た膜状物を10%NaOHのメタノー
ル溶液に16時間60℃で浸漬したあと、この膜状物
を陽イオン交換膜として用いて明細書記載の食塩
電解槽によつて飽和食塩水を電気分解したところ
(但し紫外線照射面を陰極に向けて)、7.3−
NaOHを取得して電槽電圧は30A/dm2の電流密
度で3.84Vであつた。他方、本発明の処理をして
いないスルホン酸型の陽イオン交換膜は電層電圧
3.81Vであつた。電流効率は前者が92%,後者が
51%であつた。またNaOH中のNaClの量は48%
NaOHに換算して前者が18ppmであつたのに対し
て、後者は148ppmであつた。 また前記10%NaOHのメタノール溶液に浸漬す
る前の膜状物を塩基性染料であるクリスタルバイ
オレツト水溶液中に浸漬して染色テストをしたと
ころ表層部の約1.2ミクロンまでは極めて染色さ
れた。裏面は約0.1ミクロンが、僅かに染色され
ていた。 実施例 4 CF2=CF−OCF2CF2−CF=CF2を懸独重合し
て得た含弗素重合体を0.15mmの厚みの膜状物に成
型した。これを沃素のエチルアルコールの飽和溶
液中に浸漬し24時間放置して充分に膜状物内に沃
素を含浸させたのちに、そのままでCO60の線源
から2800rad/hrの線量率で第1表に示す所定の
6種の違つた線量照射して後、夫々とり出し充分
にエタノールで洗い、次いで二硫化炭素で洗滌し
て吸着して付着している沃素を除去した。これを
元素分析して沃素の量を求めた。その結果は第1
表に示す通りであつた。
or It takes the form of These -CFI- groups or -
The CF 2 I group can be converted into a carboxylic acid group, for example, by mineral acid, alkali treatment, Grianyl reagent reaction, introduction of CO 2 , etc. The contents of the present invention will be specifically explained with reference to the following examples, but the contents of the present invention are not limited to the following examples. Regarding the various properties when the raw film of a fluorine-based ion exchange membrane having -CFI- group and/or -CF 2 I group as a functional group, which is shown as an application example in the examples, is further processed and converted into a carboxylic acid group. I used the following method. That is, the electrical resistance is 3.5N−NaCl and 6.0N−
This value was measured by placing NaOH on both sides of the membrane and applying alternating current for 1000 cycles at 85°C. The exchange capacity is determined by immersing the membrane in acid form in a fixed amount of 0.1N-NaOH.
After standing for a period of time, the amount of NaOH neutralized by the acid in the membrane was determined by back titration with 0.1N HCl.
It is expressed in weight per (H type). The water content was measured at room temperature after boiling in pure water at 100°C for 30 minutes, and was expressed as the amount (%) per 1 g of H-type dry film. For the electrolysis experiment, an electrolytic cell with an effective current-carrying area of 1 dm 2 was used. The anode was a regular metal anode made of titanium lath coated with titanium dioxide and ruthenium dioxide, and the cathode was a soft iron wire mesh. The membrane was supported by the anode, and the gap between the cathode and the membrane was maintained at approximately 3 mm. The temperature during electrolysis is kept at 80 to 90℃, and pure water is supplied to the cathode chamber to maintain a constant concentration of NaOH.
is now obtained regularly. A saturated alkali metal solution was supplied to the anolyte, and in the case of saline solution, it was discharged at approximately 3.0 to 3.5N. In addition, the sum of both Ca ++ Mg ++ in the brine used was suppressed to 1 ppm or less. Further, the current density during electrolysis was 30 A/dm 2 unless otherwise specified. Example 1 Tetrafluoroethylene and perfluoro(3,
6-dioxa-4-methyl-7-octensulfonyl fluoride) was copolymerized and then formed into a film (thickness 0.15 mm), which was then hydrated by dissolving NaOH in a mixed solvent of dimethyl sulfoxide and water. A perfluorosulfonic acid type cation exchange membrane was obtained by immersing it in a decomposition bath and undergoing hydrolysis treatment. Exchange capacity is
It was 0.91 meq/g dry film (OH type). This was immersed in 20% nitric acid at 80°C for 16 hours to convert it to the sulfonic acid form, and then phosphorus oxychloride 2
and phosphorus pentachloride 1 at 130°C for 72 hours to convert the sulfonic acid groups into sulfonyl chloride groups. In order to see the rate of conversion of this into a sulfonyl chloride group, the electrical resistance was measured at 1000 cycles of alternating current in 1.0N-HCl and was approximately 45000 at 25.0℃.
It was Ω- cm2 . Next, this membrane was immersed in a solution prepared by dissolving 3 parts of ditertiary butyl peroxide in 100 parts of an ethanol saturated solution of iodine in an autoclave at room temperature and left for 16 hours to fully impregnate the membrane.
Heat treatment was performed at 130°C for 24 hours in an oil bath. After cooling, the film was taken out and thoroughly washed with ethanol and then with carbon disulfide. When the reflection infrared absorption spectrum of the surface was taken, the absorption at 1420 cm -1 corresponding to sulfonyl chloride had disappeared. Therefore, when the surface layer of this film was scraped off with a razor and subjected to elemental analysis, the amount of iodine was found to be 8.9%. Furthermore, the amount of iodine was determined by elemental analysis of not only the surface layer but also the film itself, and it was found to be 5.3%. Application example 1 The raw film obtained in Example 1, that is, a film of perfluoro polymer bound with iodine, was immersed in a large excess of oleum containing 30% excess sulfur trioxide at 130°C for 100 hours. After that, it was allowed to cool, and then it was sequentially immersed in 98%, 80%, and 40% sulfuric acid water, and finally it was immersed in a 10% NaOH methanol solution. When the surface of the obtained film-like material was observed using a reflection infrared absorption spectrum, approx.
Strong absorption of 1690 cm -1 was observed. Also about 1060cm
-1 was confirmed as a weak shoulder absorbing sulfonic acid. When we measured the electrical resistance of the above membrane, it was 1.95Ω- when it was still a sulfonic acid type membrane.
cm 2 , exchange capacity 0.91 meq/g dry membrane (H type), water content 17%, and calculated fixed ion concentration was 5.26 m. On the other hand, the membrane produced by the method of the present invention has an exchange capacity of 0.88 meq/g dry membrane (H type), a water content of 12%, and a fixed ion concentration of 733.
It became m. However, the electrical resistance increased to 3.92Ω-cm 2 . In addition, after reacting with iodine, reacting with fuming sulfuric acid, and then only hydrolyzing, the membrane was stained with crystal violet, and when the thickness of the stained membrane was observed under a microscope, 1/3 of each side of the membrane was extremely clear. The central 1/3 of the stain was only slightly stained. Next, when this membrane was used to electrolyze saturated saline at 20 A/dm 2 using the apparatus described in the specification, the cell voltage was
3.52V, current efficiency is 61% with 6.0N-NaOH
However, in the case of the membrane of the present invention, the cell voltage
4.05V, current efficiency is 94% with 8.7N−NaOH obtained.
It was hot. Also, the amount of NaCl in NaOH is 48% in the former.
What was 145ppm in terms of NaOH became 17ppm. Example 2 A polymer obtained by suspension polymerization of CF 2 =CFOCF 2 CF = CF 2 was molded into a sheet with a thickness of 0.15 mm. This sheet (10 cm x 15 cm) was heated in a 500 c.c. glass autoclave with 1 g of FeCl 3 and 100 g of ICl.
The mixture was reacted with cc of methylene chloride at 5°C for 10 hours. After the reaction, the sheet was thoroughly washed with methylene chloride. After washing, elemental analysis of the sheet revealed that it was a film of a fluorine-containing polymer containing 23% iodine. Application example 2 After immersing the fluorine-containing polymer film obtained in Example 2 in chlorosulfonic acid at 130°C for 150 hours, 10%
It was immersed in a NaCH aqueous solution for hydrolysis treatment. The exchange capacity of the resulting membrane was 0.89 meq/g dry membrane (H type). A dyeing test with crystal violet revealed that the dyeing was almost uniform. The electrical resistance of this membrane was 4.2 Ω-cm 2 , and electrolysis of saturated saline solution was carried out at 20 A/dm 2 using the apparatus described in the specification. The current efficiency was 92% when 12N-NaOH was obtained from the cathode. Example 3 The same perfluoroalkyl vinyl ether sulfonyl fluoride film used in Example 1 was similarly treated with phosphorus oxychloride and phosphorus pentachloride to convert it into a sulfonyl chloride group. This was placed in a desiccator containing a mercury ultraviolet lamp, and at the same time solid iodine was sealed, the pressure was reduced, the mixture was sealed, and the mixture was placed in an oil bath and heated to 85°C to saturate the desiccator with iodine vapor. 8
After leaving it for a while, it was irradiated with an ultraviolet lamp for 16 hours. The ultraviolet lamp used was a Toshiba ultraviolet lamp SHLS-1002B. After cooling, remove the membrane and wash with methanol.
Next, after reflux cleaning with carbon disulfide, the amounts of iodine and sulfur in the surface layer were similarly measured using fluorescent X-rays, and it was found that about 84% of the -CF 2 SO 2 Cl groups in the surface layer were -
It was confirmed that it was converted to a CF 2 I group. However, in this case, only the surface irradiated with ultraviolet rays was significantly more visible, and some light was also observed on the back surface (−CF 2 SO 2 Cl
(approximately 3.5% of the group) This is thought to be due to iodine being adsorbed to the film-like material or due to the reaction progressing due to heat. Application example 3 The fluorine-containing polymer film obtained in Example 3 was
After thoroughly drying the film-like material under reduced pressure and degassing it in ethyl ether of C 3 H 7 MgBr, it was immersed at -30°C, left for 8 hours, and then further cooled to -40°C and thoroughly dried. Dehydrated and purified CO 2 was introduced into the solution, bubble-stirred, and left for 24 hours so that the CO 2 came into sufficient contact with the surface of the film-like material. After returning to room temperature, the film-like material was taken out and washed with methanol and then with water. Soaked in NaOH. When we took a reflection infrared absorption spectrum of the surface layer of this film on the side irradiated with ultraviolet rays, an extremely strong absorption peak appeared at 1690 cm -1 , indicating that carboxyl groups were formed. Furthermore, when the ultraviolet irradiated surface of the film reacted with this Grignard reagent was analyzed using fluorescent X-rays, only the same amount of iodine as the background was detected. Application example 4 After immersing the membrane obtained in Application example 3 in a 10% NaOH methanol solution at 60°C for 16 hours, this membrane was used as a cation exchange membrane to conduct a salt electrolysis cell as described in the specification. When saturated saline was electrolyzed (with the ultraviolet irradiated surface facing the cathode), the result was 7.3−
NaOH was obtained and the cell voltage was 3.84 V at a current density of 30 A/dm 2 . On the other hand, the sulfonic acid type cation exchange membrane that has not been treated according to the present invention has a low electrode voltage.
It was 3.81V. The current efficiency is 92% for the former and 92% for the latter.
It was 51%. Also, the amount of NaCl in NaOH is 48%
In terms of NaOH, the former was 18 ppm, while the latter was 148 ppm. Further, when a dyeing test was carried out by immersing the film-like material before being immersed in the 10% NaOH methanol solution in an aqueous solution of crystal violet, which is a basic dye, the surface layer was extremely dyed up to about 1.2 microns. The back side was slightly stained, approximately 0.1 microns thick. Example 4 A fluorine-containing polymer obtained by suspension polymerization of CF 2 =CF-OCF 2 CF 2 -CF=CF 2 was molded into a film with a thickness of 0.15 mm. This was immersed in a saturated solution of iodine in ethyl alcohol and left for 24 hours to fully impregnate iodine into the film. After being irradiated with six different doses shown in the table, each sample was taken out and thoroughly washed with ethanol, and then with carbon disulfide to remove adsorbed and attached iodine. This was subjected to elemental analysis to determine the amount of iodine. The result is the first
It was as shown in the table.

【表】 用途例 5 実施例4で得た沃素を結合した各含弗素重合体
の膜状物をそれぞれ純度90%以上のクロルスルホ
ン酸の中に130℃で200時間浸漬した。次いでこれ
を10%NaOHの水−エタノールの1:1の混合溶
液に浸漬して加水分解してカルボン酸基有する陽
イオン交換膜とした。この陽イオン交換膜の性質
及び飽和食塩水の電気分解を実施した。その結果
を第2表に示す。
[Table] Application Example 5 The films of each iodine-bonded fluorine-containing polymer obtained in Example 4 were immersed in chlorosulfonic acid with a purity of 90% or more at 130°C for 200 hours. Next, this was immersed in a 1:1 mixed solution of 10% NaOH in water and ethanol to be hydrolyzed to obtain a cation exchange membrane having carboxylic acid groups. The properties of this cation exchange membrane and electrolysis of saturated saline were investigated. The results are shown in Table 2.

【表】 番号6の膜は機械的強度が極めて弱かつた。 実施例 5 実施例1で用いたと同じテトラフルオロエチレ
ンとパーフルオロアルキルビニルエーテルスルホ
ニルフルオライドの共重合体の膜状物を加水分解
したときの交換容量が0.91ミリ当量/グラム乾燥
膜(H型)のものを、PBr3とPBr5を3:1の割
合に混合したものの中で135℃で約75時間加熱処
理してスルホニルブロマイド型の膜状物とした。
スルホン酸からスルホニルプロマイドへの転換の
程度を見るため1.0N−HCl中で1000サイクル交流
で電気抵抗を測定したところ、(25℃)約31000Ω
−cm2でであつた。これの片面に沃素20部とエタノ
ール100部の混合溶液にジターシヤリイブチルパ
ーオキサイド3部を溶解したものを均一に塗布し
て、ある梯度膜状物の内部に浸み込ませたものを
両面セロフアンでおおい、鉄板の間にはさみ110
℃で18時間加熱処理した。放冷後とり出した膜状
物はエタノール−二硫化炭素で抽出処理して吸着
或いは付着している沃素を除いたのち螢光X線で
沃素と硫黄の量を求めたところ、膜状物の表層部
のSは元の量の約1/5に減少し沃素は膜状物の交
換容量に対して約3/5に相当する量が結合してい
た。 実施例 6 実施例1のパーフルアルキルビニルエーテルス
ルホニルフルオライドとテトラフルオロエチレン
の共重合体の膜状物を四塩化炭素にヒドラジンを
溶解したものの中に浸漬して50℃に放置反応させ
てスルホン酸ヒドラジドを形成させた。これを四
塩化炭素に沃素を飽和状態まで溶解したものに加
え、115℃のオートクレーブ中で24時間加熱処理
した。放冷後、膜状物をとり出し水洗、エタノー
ル流い、二硫化炭素洗滌をして螢光X線によつて
Clの量を求めたところ、元の膜状物の85%が消
失し硫黄の減少量は8%であつた。他方、沃素は
塩素の減少量にほぼ等しい量が新らしく認められ
た。これを減圧にして180℃で16時間加熱したあ
と更びCl,S,Iの量を求めたところ硫黄の減
少が著しく、元の膜状物の95%がなくなりClと
Iの存在割合と存在量は殆んど変らなかつた。恐
らく−CF2SO2I→−CF2I+SO2↑なる反応が進ん
だものと思われる。 実施例 7 CF2=CF−CF2−CF=CFを懸独重合して得た
高分子の微粉末に微粒状炭酸カルシウムを1:2
の割合に混合して加熱加圧成型して膜状物とし
た。これをタテ・ヨコともに1.2倍延伸したあと
5.0N−HCl中に60℃で48時間浸漬した。膜状物の
内部の炭酸カルシウムを分解除去して多孔膜とし
た。この膜状物を風乾して後純水の透過量を調べ
たところ、水柱1mの圧力まで全く透水性は認め
られなかつた。膜状物自体が撥水性で全く不水透
性であつた。次いでこれを二硫化炭素100部に沃
素20部を溶解した中に浸漬し充分に膜状物の内部
に沃素が浸み込むまで放置して(48時間)後、
3800rad/hrで7.5MradCO60の線源からγ線を照
射した。元素分析の結果、8.8%の沃素が認めら
れた。 用途例 6 実施例7で得られた微多孔膜を実施例1と同様
に30%のSO3を過剰に含む発煙硫酸で120℃,120
時間反応させ10%NaOH水溶液に浸漬した。この
多孔膜は陽イオン交換容量が認められ、クリスタ
ルバイオレツトで鮮明に染色された。極めて親水
性が良く、透水量は0.12c.c./hr・cm2・cmH2Oを示
した。 更にこの一部をとつて赤外吸収スペクトルをと
ると−CF2COONa基に相当する1690cm- 1の吸収
が強く認められ、また−CF=CF2基に帰属され
ると思われる1790cm- 1の吸収が認められた。そこ
で、これに更に高圧水銀灯から紫外線を照射しな
がら130℃で100時間加熱して再び赤外吸収スペク
トルをとると1790cm-1の吸収は著しく減少して透
水量は0.08c.c./hr・cm2・cmH2Oに減少し且つ膜が
若干硬くなつていた。これは架橋構造が生成した
ものと思われる。 実施例 8 CF2=CFO(−CF2)−3COOHを紫外線を照射し
ながらBr2と反応させ、二重結合に臭素を付加し
た。次いで、オートクレーブ中でエチルアルコー
ルに10%となるように沃素を溶解した溶液100部
を入れ、これに上記臭素を付加したカルボン酸基
のある化合物を50部入れて180℃に8時間加熱し
た。次いでエチルアルコールを除き、蒸留した。
その結果、CF2Br−CFBrO(−CF2)−3Iを収率15%
で得た。これをメチルアルコールに亜鉛の粉を分
散した中に加えて脱臭素を行い、CF2=CF−O
(−CF2)−3Iを得た。 上記で得られたモノマーとテトラフルオロエチ
レンを1,1,2−トリクロロトリフルオロエタ
ンを溶媒として、α,α″−1アゾビスイソブチ
ロニトリルを重合開始剤として共重合した。得ら
れたポリマーを元素分析したところ沃素が36.5%
含まれていた。次いで、これを熱板の間にはさん
で加熱加圧して本発明の膜状物とした。尚この膜
状物に成型したものを一部切りとりコーヒーミル
によつて微粉状としたのち再び沃素の元素分析を
したところ28.5%となつていた。
[Table] Membrane No. 6 had extremely low mechanical strength. Example 5 When a membrane of the same copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether sulfonyl fluoride used in Example 1 was hydrolyzed, the exchange capacity was 0.91 meq/g of the dry membrane (H type). The material was heat-treated at 135° C. for about 75 hours in a mixture of PBr 3 and PBr 5 at a ratio of 3:1 to form a sulfonyl bromide film.
To check the degree of conversion from sulfonic acid to sulfonylbromide, we measured the electrical resistance in 1.0N-HCl with 1000 cycles of alternating current, and found that it was approximately 31000Ω (at 25°C).
-cm2 . A solution of 3 parts of ditertiary butyl peroxide dissolved in a mixed solution of 20 parts of iodine and 100 parts of ethanol was coated uniformly on one side of this, and the mixture was soaked into the inside of a certain grade film. Cover with cellophane, scissors between iron plates 110
Heat treatment was performed at ℃ for 18 hours. The film-like material taken out after cooling was extracted with ethanol and carbon disulfide to remove adsorbed or attached iodine, and the amount of iodine and sulfur was determined using fluorescent X-rays. S in the surface layer decreased to about 1/5 of the original amount, and iodine was bound in an amount equivalent to about 3/5 of the exchange capacity of the membrane. Example 6 A film of the copolymer of perfluoralkyl vinyl ether sulfonyl fluoride and tetrafluoroethylene prepared in Example 1 was immersed in a solution of hydrazine in carbon tetrachloride and allowed to react at 50°C to form sulfonic acid. hydrazide was formed. This was added to a solution of iodine dissolved in carbon tetrachloride to a saturated state, and the mixture was heated in an autoclave at 115°C for 24 hours. After cooling, the film-like material was taken out and washed with water, ethanol, and carbon disulfide, and then examined using fluorescent X-rays.
When the amount of Cl was determined, 85% of the original film-like substance had disappeared and the amount of sulfur had been reduced by 8%. On the other hand, a new amount of iodine was observed that was approximately equal to the amount of chlorine reduced. After reducing the pressure and heating it at 180°C for 16 hours, we further determined the amounts of Cl, S, and I. We found that the amount of sulfur was significantly reduced, and 95% of the original film-like substance disappeared, and the proportion and presence of Cl and I were determined. The amount did not change much. It seems that the reaction -CF 2 SO 2 I → -CF 2 I + SO 2 ↑ probably progressed. Example 7 CF 2 = CF−CF 2 −CF=Fine powder of polymer obtained by suspension polymerization of CF and finely divided calcium carbonate were added at a ratio of 1:2.
The mixture was mixed under heat and pressure to form a film-like product. After stretching this by 1.2 times both vertically and horizontally
It was immersed in 5.0N-HCl at 60°C for 48 hours. Calcium carbonate inside the membrane was decomposed and removed to form a porous membrane. When this membrane-like material was air-dried and the amount of pure water permeated was examined, no water permeability was observed up to a pressure of 1 m of water column. The membrane itself was water repellent and completely impermeable to water. Next, this was immersed in a solution of 20 parts of iodine in 100 parts of carbon disulfide and left until the iodine had sufficiently penetrated into the film (48 hours).
Gamma rays were irradiated from a source of 7.5 MradCO 60 at 3800 rad/hr. Elemental analysis revealed 8.8% iodine. Application example 6 The microporous membrane obtained in Example 7 was treated with fuming sulfuric acid containing an excess of 30% SO 3 at 120°C and 120°C in the same manner as in Example 1.
The mixture was allowed to react for a time and then immersed in a 10% NaOH aqueous solution. This porous membrane was found to have cation exchange capacity and was clearly stained with crystal violet. It had extremely good hydrophilicity, with a water permeability of 0.12 cc/hr·cm 2 ·cmH 2 O. Furthermore, when an infrared absorption spectrum was taken of a part of this, a strong absorption at 1690 cm - 1 corresponding to the -CF 2 COONa group was observed, and an absorption at 1790 cm - 1 which was thought to be assigned to the -CF=CF 2 group was observed. Absorption was observed. Therefore, when this was further heated at 130℃ for 100 hours while irradiated with ultraviolet rays from a high-pressure mercury lamp and the infrared absorption spectrum was taken again, the absorption at 1790 cm -1 decreased significantly and the water permeation rate was 0.08 cc/hr・cm 2・cmH 2 O and the film had become slightly hard. This seems to be due to the formation of a crosslinked structure. Example 8 CF 2 =CFO(-CF 2 )- 3 COOH was reacted with Br 2 while irradiated with ultraviolet rays to add bromine to the double bond. Next, 100 parts of a solution of 10% iodine dissolved in ethyl alcohol was placed in an autoclave, and 50 parts of the above-mentioned bromine-added carboxylic acid group-containing compound was added thereto, followed by heating at 180°C for 8 hours. Then, the ethyl alcohol was removed and the mixture was distilled.
As a result, CF2Br −CFBrO( −CF2 ) −3I was obtained with a yield of 15%.
I got it. This is added to a dispersion of zinc powder in methyl alcohol to debromine, and CF 2 = CF-O
(−CF 2 )− 3 I was obtained. The monomer obtained above and tetrafluoroethylene were copolymerized using 1,1,2-trichlorotrifluoroethane as a solvent and α,α″-1 azobisisobutyronitrile as a polymerization initiator. The obtained polymer Elemental analysis revealed that iodine was 36.5%
It was included. Next, this was placed between hot plates and heated and pressurized to obtain the film-like material of the present invention. A portion of this film-like material was cut out and ground into fine powder using a coffee mill. Elemental analysis of iodine was again conducted, and it was found to be 28.5%.

Claims (1)

【特許請求の範囲】 1 含弗素重合体の膜状物で、官能基として−
CFI−基及び/又は−CF2I基を有し且つ沃素が該
重合体中の4(重量)%〜40(重量)%を占めて
いることを特徴とする電解用弗素系イオン交換膜
の原膜。 2 含弗素重合体がパーフルオロカーボン系重合
体である特許請求の範囲第1項記載の原膜。 3 官能基としてスルホニルハライド基を有する
含弗素重合体の粉末又は膜状物に沃素又は沃素含
有化合物を反応させ、該重合体に−CFI−基及
び/又は−CF2I基を導入し、含弗素重合体の粉
末はその後膜状物に成形することを特徴とする電
解用弗素系イオン交換膜の原膜の製造方法。 4 −CFI−基及び/又は−CF2I基が沃素として
含弗素重合体中に4(重量)%〜40(重量)%の
範囲で導入される特許請求の範囲第3記載の原膜
の製造方法。 5 含弗素重合体がパーフルオロカーボン系重合
体である特許請求の範囲第3記載の原膜の製造方
法。 6 主鎖又は側鎖の末端に不飽和結合を有する含
弗素重合体の粉末又は膜状物に沃素又は沃素含有
化合物を反応させ、該重合体に−CFI−基及び/
又は−CF2I基を導入し、含弗素重合体の粉末は
その後膜状物に成形することを特徴とする電解用
弗素系イオン交換膜の原膜の製造方法。 7 −CFI−基及び/又は−CF2I基が沃素として
含弗素重合体中に4(重量)%〜40(重量)%の
範囲で導入される特許請求の範囲第6記載の原膜
の製造方法。 8 含弗素重合体がパーフルオロカーボン系重合
体である特許請求の範囲第6記載の原膜の製造方
法。
[Scope of Claims] 1. A film-like material of a fluorine-containing polymer, which has - as a functional group.
A fluorine-based ion exchange membrane for electrolysis, characterized in that it has a CFI group and/or a -CF 2 I group, and iodine accounts for 4% (by weight) to 40% (by weight) in the polymer. protomembrane. 2. The raw film according to claim 1, wherein the fluorine-containing polymer is a perfluorocarbon polymer. 3. A powder or film of a fluorine-containing polymer having a sulfonyl halide group as a functional group is reacted with iodine or an iodine-containing compound to introduce a -CFI- group and/or a -CF 2 I group into the polymer. 1. A method for producing a base membrane of a fluorine-based ion exchange membrane for electrolysis, characterized in that the fluoropolymer powder is then formed into a membrane-like material. 4 -CFI- group and/or -CF2I group is introduced into the fluorine-containing polymer as iodine in a range of 4 (weight)% to 40 (weight)% of the raw film according to claim 3. Production method. 5. The method for producing a raw film according to claim 3, wherein the fluorine-containing polymer is a perfluorocarbon polymer. 6. A powder or film of a fluorine-containing polymer having an unsaturated bond at the end of the main chain or side chain is reacted with iodine or an iodine-containing compound to add -CFI- groups and/or
Or - A method for producing a base film of a fluorine-based ion exchange membrane for electrolysis, which comprises introducing a CF 2 I group and then forming the powder of the fluorine-containing polymer into a membrane. 7 -CFI- group and/or -CF2I group is introduced into the fluorine-containing polymer as iodine in a range of 4% (by weight) to 40% (by weight) of the raw film according to claim 6. Production method. 8. The method for producing a base film according to claim 6, wherein the fluorine-containing polymer is a perfluorocarbon polymer.
JP4030377A 1977-04-11 1977-04-11 Fluorine-contained polymer membrane-like base product for electroysis and method of producing same Granted JPS53125974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4030377A JPS53125974A (en) 1977-04-11 1977-04-11 Fluorine-contained polymer membrane-like base product for electroysis and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4030377A JPS53125974A (en) 1977-04-11 1977-04-11 Fluorine-contained polymer membrane-like base product for electroysis and method of producing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60072743A Division JPS60238330A (en) 1985-04-08 1985-04-08 Manufacture of fluorine-containing ion-exchange membrane

Publications (2)

Publication Number Publication Date
JPS53125974A JPS53125974A (en) 1978-11-02
JPS6120637B2 true JPS6120637B2 (en) 1986-05-23

Family

ID=12576839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4030377A Granted JPS53125974A (en) 1977-04-11 1977-04-11 Fluorine-contained polymer membrane-like base product for electroysis and method of producing same

Country Status (1)

Country Link
JP (1) JPS53125974A (en)

Also Published As

Publication number Publication date
JPS53125974A (en) 1978-11-02

Similar Documents

Publication Publication Date Title
KR840000725B1 (en) Novel polymers having acid functionality
US4340680A (en) Cation exchange membrane of fluorinated polymer for an electrolysis
JP4788267B2 (en) Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof
US4683041A (en) Process for electrolysis of sodium chloride
US4169023A (en) Electrolytic diaphragms, and method of electrolysis using the same
CA1046457A (en) Electrolytic diaphragms, and method of electrolysis using the same
JPS5850316B2 (en) Method for electrolyzing alkali and/or alkaline earth metal halides and electrolytic cell used therein
NO843527L (en) PROCEDURE FOR PREPARING A MEMBRANE OF POOD POLYMES
JPH0237936B2 (en)
WO1994003503A2 (en) Fluorinated polymers
JPS6134515B2 (en)
US4200711A (en) Process for preparing fluorine-containing polymers having carboxyl groups
GB2051831A (en) Fluorinated copolymers and cation exchange membrane and process for producing the same
JPH0261498B2 (en)
EP0053455B1 (en) Preparation of a fluorocarbon cation-exchange membrane and electrolysis process using the membrane
JPS6147843B2 (en)
US4154909A (en) Process for producing cation exchange membrane by treatment of fluorinated polymer containing sulfonyl halide groups with amine and vinyl monomer
JPS6356257B2 (en)
Kirsh et al. Perfluorinated carbon-chain copolymers with functional groups and cation exchange membranes based on them: synthesis, structure and properties
JPS6120637B2 (en)
JPH0148932B2 (en)
JPS6128752B2 (en)
JPS60238330A (en) Manufacture of fluorine-containing ion-exchange membrane
JPS63458B2 (en)
JPS61185507A (en) Production of anion exchange material