JPH0261498B2 - - Google Patents

Info

Publication number
JPH0261498B2
JPH0261498B2 JP50367881A JP50367881A JPH0261498B2 JP H0261498 B2 JPH0261498 B2 JP H0261498B2 JP 50367881 A JP50367881 A JP 50367881A JP 50367881 A JP50367881 A JP 50367881A JP H0261498 B2 JPH0261498 B2 JP H0261498B2
Authority
JP
Japan
Prior art keywords
membrane
membranes
fluoropolymer
pct
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50367881A
Other languages
Japanese (ja)
Other versions
JPS57501858A (en
Inventor
Jooji Henrii Baanetsuto
Maikeru Boitetsuku Marukusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orica Ltd
Original Assignee
ICI Australia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ICI Australia Ltd filed Critical ICI Australia Ltd
Publication of JPS57501858A publication Critical patent/JPS57501858A/ja
Publication of JPH0261498B2 publication Critical patent/JPH0261498B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31928Ester, halide or nitrile of addition polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PCT No. PCT/AU81/00171 Sec. 371 Date Jun. 17, 1982 Sec. 102(e) Date Jun. 17, 1982 PCT Filed Nov. 26, 1981 PCT Pub. No. WO82/01882 PCT Pub. Date Jun. 10, 1982.Process of radiation graft polymerizing a fluorinated unsaturated carboxylic acid monomer to a fluoropolymeric permselective membrane in order to improve its performance when used in an electrolysis cell.

Description

請求の範囲 1 選択透過膜を塩素・アルカリ電解そう内で使
用する場合、水酸イオンの逆方向の泳動に対する
膜の抵抗性を改善するためにフルオロポリマー選
択透過膜を処理する方法であつて、該膜内で遊離
基部位を発生させるために高エネルギの放射線で
該膜を照射し次いで、該膜をフツ素化カルボン酸
又はその誘導体を含んでなるモノマー物質で該膜
を処理することを含んでなり、その結果、該モノ
マー物質がフルオロポリマーとグラフト共重合し
該膜内で共重合体成分を形成する、前記方法。
Claim 1: A method for treating a fluoropolymer permselective membrane to improve the membrane's resistance to reverse migration of hydroxide ions when the permselective membrane is used in a chlor-alkali electrolyzer, comprising: irradiating the membrane with high-energy radiation to generate free radical sites within the membrane, and then treating the membrane with a monomeric material comprising a fluorinated carboxylic acid or a derivative thereof. wherein the monomer material is graft copolymerized with the fluoropolymer to form a copolymer component within the membrane.

2 前記フルオロポリマー膜がスルホネート、カ
ルボキシレートおよびホスホネートから選ばれる
カチオン交換基を含有する、請求の範囲第1項記
載の方法。
2. The method of claim 1, wherein the fluoropolymer membrane contains cation exchange groups selected from sulfonates, carboxylates and phosphonates.

3 前記モノマー物質が、次式: CF2=CF−X−COOR {式中、Xは(CF2a又はO−(CF2−CF2−O)b
−(CF2c (式中、aは0又は1ないし6の整数であり、b
は0又は1ないし4の整数でありそしてcは1な
いし6の整数である)であり、そしてRは水素又
はC1〜C6アルキル基である} で表わされる少なくとも一種のフツ素化不飽和脂
肪族カルボン酸を含んでなる、請求の範囲第1項
又は第2項記載の方法。
3 The monomer substance has the following formula: CF 2 =CF-X-COOR {wherein X is (CF 2 ) a or O-(CF 2 -CF 2 -O) b
−(CF 2 ) c (wherein a is 0 or an integer from 1 to 6, and b
is 0 or an integer from 1 to 4 and c is an integer from 1 to 6), and R is hydrogen or a C 1 -C 6 alkyl group} 3. The method of claim 1 or 2, comprising an aliphatic carboxylic acid.

4 前記モノマーがパーフルオロ−3−ブテン酸
を含んでなる、請求の範囲第3項記載の方法。
4. The method of claim 3, wherein the monomer comprises perfluoro-3-butenoic acid.

5 前記モノマーがメチルパーフルオロ−3−ブ
テノエートを含んでなる、請求の範囲第3項記載
の方法。
5. The method of claim 3, wherein the monomer comprises methyl perfluoro-3-butenoate.

6 前記モノマーがエチルパーフルオロ−3−ブ
テノエートを含んでなる、請求の範囲第3項記載
の方法。
6. The method of claim 3, wherein the monomer comprises ethyl perfluoro-3-butenoate.

7 フルオロポリマーの選択透過膜がテトラフル
オロエチレンおよびパーフルオロビニルスルホニ
ルフルオリドのコポリマーから誘導される請求の
範囲第1項から第6項までのいずれかに記載の方
法。
7. A method according to any one of claims 1 to 6, wherein the fluoropolymer selectively permeable membrane is derived from a copolymer of tetrafluoroethylene and perfluorovinylsulfonyl fluoride.

8 高エネルギ放射線がγ−線、X−線および電
子ビームから選ばれる請求の範囲第1項から第7
項までのいずれかに記載の方法。
8. Claims 1 to 7 in which the high-energy radiation is selected from gamma-rays, X-rays, and electron beams.
The method described in any of the preceding sections.

9 グラフト共重合後のフルオロポリマー膜の重
量増加が12%未満である、請求の範囲第1項から
第8項までのいずれかに記載の方法。
9. The method according to any of claims 1 to 8, wherein the weight increase of the fluoropolymer membrane after graft copolymerization is less than 12%.

10 前記重量増加が3ないし5%の範囲にあ
る、請求の範囲第9項記載の方法。
10. The method of claim 9, wherein said weight increase is in the range of 3 to 5%.

明細書 本発明はカチオン交換樹脂を含んでなる膜、お
よび電解槽内におけるそれらの使用、特に塩素・
アルカリ電解槽内の選択透過膜としてのそれらの
使用並びにかかる樹脂および膜の選択性の改善に
関する。
Description The present invention relates to membranes comprising cation exchange resins and their use in electrolytic cells, in particular chlorine and
The present invention relates to their use as permselective membranes in alkaline electrolysers and to improving the selectivity of such resins and membranes.

塩素・アルカリ電解槽は、アルカリ金属塩化物
溶液の電解により塩およびアルカリ金属水酸化物
を製造するために用いられる。
Chloro-alkali electrolyzers are used to produce salts and alkali metal hydroxides by electrolysis of alkali metal chloride solutions.

水銀槽もしくは隔膜槽のいずれかがこの目的の
ために一般に用いられる。水銀槽は実質的にアル
カリ金属塩化物を含まない濃アルカリ金属水酸化
物を製造する利点があるが、水銀を含有する流出
液の廃棄に伴なう問題が生じる。一方、アノード
とカソードが陽イオンおよび陰イオンの双方並び
にアルカリ金属塩化物の電解質を通す多孔性隔膜
によつて分離される、隔膜槽は前述の流出液の問
題は避けられるが以下の(1)、(2)および(3)の点で不
利である:(1)比較的に弱いアルカリ金属水酸化物
溶液が得られこれは濃度を増大させるために蒸発
されねばならないこと、(2)生成ガス、すなわち水
素および塩素の混合の可能性、および(3)生成した
アルカリ金属水酸化物溶液が高濃度のアルカリ金
属塩化物と接触しそしてこのアルカリ金属塩化物
を除去するために溶液を精製しなければならない
こと。
Either mercury tanks or diaphragm tanks are commonly used for this purpose. Although mercury baths have the advantage of producing concentrated alkali metal hydroxides that are substantially free of alkali metal chlorides, problems arise with the disposal of mercury-containing effluents. On the other hand, diaphragm vessels, in which the anode and cathode are separated by a porous diaphragm that passes both cations and anions as well as the alkali metal chloride electrolyte, avoid the aforementioned effluent problems, but (1) , (2) and (3): (1) a relatively weak alkali metal hydroxide solution is obtained which must be evaporated to increase the concentration; (2) the product gas , i.e. the possibility of mixing hydrogen and chlorine, and (3) the resulting alkali metal hydroxide solution comes into contact with a high concentration of alkali metal chloride and the solution must be purified to remove this alkali metal chloride. Things that must be done.

カチオン選択透過膜によりアノードとカソード
が分離されている槽を用いることによつて水銀槽
と隔膜槽の双方の欠点を克服せんとする試みがな
されてきている。かかる膜は選択透過性がありそ
して正に荷電したイオンのみを通過させそして電
解質および負に荷電したイオンの通過を妨げる。
Attempts have been made to overcome the drawbacks of both mercury tanks and diaphragm tanks by using tanks in which the anode and cathode are separated by a cation permselective membrane. Such membranes are permselective and allow only positively charged ions to pass through and prevent the passage of electrolytes and negatively charged ions.

塩素・アルカリ電解質槽において使用が提案さ
れたカチオン選択透過膜には、例えばカチオン交
換基、例えばスルホネート、カルボキシレートも
しくはホスホネート基およびそれらの誘導体を含
有するフルオロポリマーから得られるものが含ま
れている。
Cation-selective membranes proposed for use in chlor-alkali electrolyte cells include, for example, those obtained from fluoropolymers containing cation exchange groups, such as sulfonate, carboxylate or phosphonate groups and derivatives thereof.

長期間の槽の条件に耐えるフルオロポリマー、
例えばパーフルオロスルホン酸−型の膜が好まし
く、この膜はEI Dupont社から登録商標
「NAFION」の名称のもとに製造販売されてお
り、これはパーフルオロ−オレフイン、例えばテ
トラフルオロエチレン、およびスルホン酸基を含
有するパーフルオロビニルエーテル又はそれらの
誘導体の水解コポリマーである。このような膜は
例えば米国特許第2636851号;第3017338号;第
3496077号;第3560568号;第2967807号;第
3282875号およびイギリス特許第1184321号に開示
されている。
Fluoropolymer, resistant to long-term bath conditions
Preferred are, for example, perfluorosulfonic acid-type membranes, manufactured and sold by EI Dupont under the registered trademark NAFION, which contain perfluoroolefins, such as tetrafluoroethylene, and sulfonate. It is a hydrolyzed copolymer of perfluorovinyl ethers or derivatives thereof containing acid groups. Such membranes are described, for example, in U.S. Pat. No. 2,636,851;
No. 3496077; No. 3560568; No. 2967807; No.
No. 3282875 and British Patent No. 1184321.

塩素・アルカリ電解槽において使用される他の
フルオロポリマーは旭ガラス社から商標
「FLEMION」の名称のもとに製造販売されてお
り、これはイギリス特許第1516048号、第1522877
号、第1518387号および第1531068号に開示されて
いる。
Other fluoropolymers used in chlor-alkali electrolysers are manufactured and sold by Asahi Glass Company under the trademark FLEMION and are covered by British Patents Nos. 1516048 and 1522877.
No. 1518387 and No. 1531068.

かかる膜は良好な長期化学的安定性の如き多く
の望ましい性質があり、この性質は塩素・アルカ
リ槽の苛酷な化学的環境においてその使用を魅力
的なものとしているが、電流効果は望んでいる程
高くはなく、特に水酸化ナトリウムが高濃度で生
成する場合、そうである。陰極液中の水酸化ナト
リウム濃度が増大するにつれて、陽極液への水酸
イオンの逆方向への泳動の傾向が増大する。これ
は槽内の電流効率の降下が原因である。これによ
り塩素中の酸素不純物の量が多量になると、塩水
中の塩素酸塩および次亜塩素酸塩汚染物のビルド
アツプが多塩となり、そしてこの汚染物は許容可
能な槽の操作を維持するため除去されかつ廃棄さ
れねばならない。少なくとも90%の電流効率が非
常に望ましい。
Such membranes have many desirable properties, such as good long-term chemical stability, which makes them attractive for use in the harsh chemical environments of chlor-alkali baths, although current effects are desirable. It is not very high, especially when sodium hydroxide is produced in high concentrations. As the sodium hydroxide concentration in the catholyte increases, the tendency for backward migration of hydroxide ions into the anolyte increases. This is caused by a drop in current efficiency within the tank. This increases the amount of oxygen impurities in the chlorine, and the build-up of chlorate and hypochlorite contaminants in the brine becomes polysalt, and this contaminant is necessary to maintain acceptable tank operation. Must be removed and disposed of. A current efficiency of at least 90% is highly desirable.

水酸イオンの逆方向の泳動の程度は膜の活性部
位の数および性質に関係する。しかしながら、活
性部位の数および性質、膜電位降下および機械的
強度を付与することが必要とされる膜の厚さの間
には「交換」的事情がある。すなわち、塩素・ア
ルカリ電解質槽内でフイルムを水酸イオンの逆方
向の泳動に対し著るしく不透過にするように数お
よび性質の点において活性部位を有する膜として
使用できるようにフイルムを十分厚くした場合、
電位降下を受け入れ難い程に高い。
The degree of backward migration of hydroxyl ions is related to the number and nature of active sites in the membrane. However, there is a "trade-off" between the number and nature of active sites, membrane potential drop, and membrane thickness required to provide mechanical strength. That is, the film is thick enough to be used as a membrane with active sites in number and nature such that the film is significantly impermeable to reverse migration of hydroxide ions in a chlor-alkali electrolyte bath. if you did this,
The potential drop is unacceptably high.

このため、陰極液側に高度の水酸イオン不透過
性を有する層を有する多層膜の開発が行なわれ
た。物理的強度を与える他の層はカチオンに対し
て高い透過性を有する。
For this reason, a multilayer membrane having a layer having high hydroxyl ion impermeability on the catholyte side was developed. Other layers that provide physical strength have high permeability to cations.

かかる膜は積層法又は活性部位の化学的改質又
は含浸法によつて造られた。
Such membranes have been made by lamination methods or chemical modification of active sites or impregnation methods.

積層膜は例えば米国特許第3909378号および同
第417621号に開示されている。積層膜は、ふくれ
とひずみの原因である二層の複合膜の異つた膨潤
から生じる物理的力が原因で使用中離層という潜
在的欠点を有する。
Laminated films are disclosed, for example, in US Pat. No. 3,909,378 and US Pat. No. 4,176,21. Laminated membranes have the potential disadvantage of delamination during use due to physical forces resulting from differential swelling of the two-layer composite membrane causing blistering and distortion.

オーストラリア特許第481904号は、エチレンジ
アミンで処理することによつて硫酸活性部位を有
する膜の陰極液表面層を化学的に改質することを
開示している。これにより75ミクロンまでの深さ
に対するスルホン酸基をスルホンアミド基に変え
る。スルホン酸活性基を化学的に改質する他の方
法が特開昭53−116287号に開示されており、ここ
においてはスルホン酸基をカルボン酸基に変える
ことが開示されている。このような方法は、所望
の厚さの表面層を得るには複雑かつ困難である。
更に塩素・アルカリ槽の条件における膜の化学的
安定性は、特にスルホンアミドにおいては逆に変
化する。
Australian Patent No. 481904 discloses chemically modifying the catholyte surface layer of a membrane having sulfuric acid active sites by treatment with ethylenediamine. This converts sulfonic acid groups to sulfonamide groups for depths up to 75 microns. Another method of chemically modifying sulfonic acid active groups is disclosed in JP-A-53-116287, which discloses converting sulfonic acid groups into carboxylic acid groups. Such methods are complex and difficult to obtain a surface layer of desired thickness.
Furthermore, the chemical stability of membranes under chlor-alkali bath conditions varies adversely, especially for sulfonamides.

含浸法は特開昭54−38286号に例示されている。
膜の陰極液表面はモノマーでおおわれ、次いで該
モノマーは重合し水酸イオンの通過に対しバリヤ
ーを形成する。この方法の主な欠点は、槽内の液
体による浸出に対するブロツキグポリマーの感受
性に存する。と言うのはそれが基材ポリマーと物
理的にのみ関連しそして化学的に結合していない
からである。
The impregnation method is exemplified in JP-A-54-38286.
The catholyte surface of the membrane is coated with monomer, which then polymerizes to form a barrier to the passage of hydroxyl ions. The main drawback of this method lies in the susceptibility of the blocking polymer to leaching by the liquid in the bath. This is because it is only physically associated with the base polymer and not chemically bonded.

ここにおいて、我々はヒドロキシイオンの逆方
向の泳動に対するフルオロポリマーの選択透過膜
の抵抗性が膜の改質による著るしく増大され未改
質の膜のそれよりもより高い固定荷電濃度を与え
る方法を見出した。改質は、フルオロポリマー膜
に対しフツ素化不飽和カルボン酸モノマーの放射
重合によるグラフト重合である。
Here, we demonstrate how the resistance of fluoropolymer permselective membranes to reverse migration of hydroxy ions is significantly increased by membrane modification, giving a higher fixed charge concentration than that of unmodified membranes. I found out. The modification is a radiation polymerized graft polymerization of a fluorinated unsaturated carboxylic acid monomer onto a fluoropolymer membrane.

「グラフト共重合」はRWレンツ(Lenz)によ
る「合成高分子の有機化学(Organic Chemistry
of Synthetic High Polymers)」(インターサイ
エンス社、1967年)の251頁に定義されている。
"Graft copolymerization" is a term used in "Organic Chemistry of Synthetic Polymers" by RW Lenz.
of Synthetic High Polymers” (Interscience, 1967), p. 251.

かくして、本発明は塩素・アルカリ電解槽内で
使用される場合水酸イオンの逆方向の泳動に対す
る膜の抵抗性を改善するためフルオロポリマーの
選択透過膜を処理する方法を提供するものであ
り、該方法は膜内に遊離基部位を発生させるため
に高エネルギの放射線を用いて前記膜を照射し、
次いでフツ素化不飽和カルボン酸又はその誘導体
からなるモノマー物質で前記膜を処理しその結果
フルオロポリマーとグラフト共重合し該モノマー
物質が該膜内で共重合成分を形成することを含ん
でなる。
Thus, the present invention provides a method for treating a fluoropolymer permselective membrane to improve the membrane's resistance to reverse migration of hydroxide ions when used in a chlor-alkali electrolyzer; The method includes irradiating the membrane with high-energy radiation to generate free radical sites within the membrane;
The method then comprises treating the membrane with a monomeric material comprising a fluorinated unsaturated carboxylic acid or a derivative thereof such that the monomeric material graft copolymerizes with the fluoropolymer to form a copolymerized component within the membrane.

本発明方法によつて得られる改質フルオロポリ
マー膜は従来技術による改質膜以上の多くの利点
を有する。上記の活性部位の数の損失の代わりに
言及される硫酸膜に対比して、モノマーのカルボ
ン酸基による増加が存する。かくして膜の改質の
深さ又は程度を臨界的に制御する必要はなく、そ
して本発明方法はフルオロポリマー膜の実質的全
深さに好都合に適用される。
The modified fluoropolymer membranes obtained by the method of the invention have many advantages over modified membranes according to the prior art. In contrast to the sulfuric acid membrane mentioned above, instead of the loss of the number of active sites, there is an increase due to the carboxylic acid groups of the monomers. Thus, there is no need to critically control the depth or degree of modification of the membrane, and the method of the present invention is advantageously applied to substantially the entire depth of the fluoropolymer membrane.

更に本発明方法はフルオロポリマー膜に対する
モノマーの化学的結合に到るものであるから、そ
のようにして得られた改質膜は、基材膜と単に物
理的に関連のある従来技術の改質膜に関しての浸
出の問題に対しては影響されない。
Furthermore, because the method of the present invention leads to chemical bonding of monomers to the fluoropolymer membrane, the resulting modified membrane is superior to prior art modifications that are merely physically associated with the base membrane. It is not susceptible to leaching problems with membranes.

本発明方法が有利に適用されるフルオロポリマ
ーは、先に示された内容によつて例証される。
The fluoropolymers to which the method of the invention is advantageously applied are exemplified by what has been indicated above.

改質膜を得るために本発明方法により基材フル
オロポリマー膜に放射グラフトされることのでき
る単量体物質は、少なくとも一種の脂肪族フツ素
化不飽和カルボン酸又はその誘導体を含んでな
る。適当なカルボン酸および誘導体は次の一般
式: CF2=CF−X−COOR {式中、Xは(CF2a又は(O−CH2−CH2−O)
b−(CF2c (式中、aは0、1又はそれ以上であり、bは
0、1又はそれ以上であり、cは0、1又はそれ
以上である)であり、 Rは水素又は6個以下の炭素原子、好ましくは
3個以下を含有する低級アルキル基である) で表わされるカルボン酸およびその誘導体であ
る。
The monomeric material that can be radiation-grafted onto the base fluoropolymer membrane by the method of the invention to obtain a modified membrane comprises at least one aliphatic fluorinated unsaturated carboxylic acid or derivative thereof. Suitable carboxylic acids and derivatives have the following general formula: CF2 =CF-X-COOR {where X is ( CF2 ) a or (O- CH2 - CH2 -O)
b - (CF 2 ) c (wherein a is 0, 1 or more, b is 0, 1 or more, and c is 0, 1 or more), and R is hydrogen or a lower alkyl group containing up to 6 carbon atoms, preferably up to 3 carbon atoms) and derivatives thereof.

好ましくは「a」又は「c」のいずれも6を超
えずそして「b」は4を超えない。
Preferably neither "a" or "c" exceeds 6 and "b" does not exceed 4.

本発明で使用に好ましいモノマーには、ペンタ
フルオロ−3−ブテン酸、メチルペンタフルオロ
−3―ブテノエートおよびエチルペンタフルオロ
−3−ブテノエートが含まれる。
Preferred monomers for use in the present invention include pentafluoro-3-butenoic acid, methylpentafluoro-3-butenoate and ethylpentafluoro-3-butenoate.

グラフト共重合反応は高い開始エネルギーを必
要とする。本発明方法で用いられる放射線は100
オングストローム以下の波長並びに100eV以上の
エネルギー値を有しなければならない。グラフト
共重合を開始するために好ましく用いられる放射
線は、γ−線、X−線又は電子ビームであり;γ
−線は好ましい形態である。
Graft copolymerization reactions require high initiation energy. The radiation used in the method of the present invention is 100
It must have a wavelength of angstroms or less and an energy value of 100eV or more. The radiation preferably used to initiate the graft copolymerization is γ-rays, X-rays or electron beams; γ-rays, X-rays or electron beams;
- lines are the preferred form.

本発明方法で用いることのできる放射線グラフ
トに関しては数種の好ましい技術がある。例え
ば、モノマーと共にグラフト共重合されるべき該
モノマーを含有する液相中に膜を浸せきし、次い
で好ましくは酸素の不存在、連続的又は間欠的照
射に委ねる。別な方法として、これは幾分好まし
くない方法であるが、膜をモノマー物質を含有す
る液体と接触させる前に、該膜を予備照射する方
法である。
There are several preferred techniques for radiation grafting that can be used in the method of the present invention. For example, the membrane is immersed in a liquid phase containing the monomers to be graft copolymerized with the monomers and then subjected to continuous or intermittent irradiation, preferably in the absence of oxygen. An alternative method, which is somewhat less preferred, is to pre-irradiate the membrane before contacting it with the liquid containing the monomeric material.

モノマー物質はそれ自身液体でも、又は適当な
溶剤、好ましくはメタノール、トルエン、1,
1,2−トリクロロトリフルオロエタン(CFCl2
−CF2Cl)又は水に溶解してもよい。
The monomeric material may be liquid itself or in a suitable solvent, preferably methanol, toluene, 1,
1,2-Trichlorotrifluoroethane ( CFCl2
-CF 2 Cl) or may be dissolved in water.

本発明方法を行なうために用いられる反応溶器
の性質は狭く限定されておらずそして放射線重合
の当業者に明らかなものである。特に有効である
ことが判明した一つの技術について、第1図に基
づいて説明しよう。液状の形態にあるモノマー体
のサンプル1は、頭頂に開口を有する容器2内に
納められている。膜材料3のサンプルは開口を横
切つて伸びておりそしてシールリング4でシール
される。モノマー液体は膜と接触して蒸気を形成
しそして蒸気相内のモノマー物質は高エネルギー
の放射線の作用下で膜とグラフト共重合する。
The nature of the reaction vessel used to carry out the process of this invention is not narrowly limited and will be apparent to those skilled in the art of radiation polymerization. One technique that has been found to be particularly effective will be described with reference to FIG. A monomer sample 1 in liquid form is contained in a container 2 having an opening at the top. A sample of membrane material 3 extends across the aperture and is sealed with a sealing ring 4. The monomer liquid contacts the membrane to form a vapor and the monomer material within the vapor phase graft copolymerizes with the membrane under the action of high energy radiation.

所望により本発明方法は、フルオロポリマー膜
の片面又は両面、特に塩素・アルカリ槽内の陰極
液にさらされる面を処理するために用いられる。
本発明方法を膜の片面に適用する場合、該方法は
第2図を参照して説明される技術により好都合に
行なわれる。
Optionally, the method of the invention is used to treat one or both sides of a fluoropolymer membrane, particularly the side exposed to the catholyte in a chlor-alkali bath.
When the method of the invention is applied to one side of the membrane, it is conveniently carried out by the technique described with reference to FIG.

処理されるべき選択透過膜11の2片を互いに
連続的に接触させて共に取りつける。それらは、
スプール12上に螺旋状に巻かれておりそして中
空の円筒シリンダー13内に取りつけられる。明
らかにするため、二片が別々に第2図に示される
が、実際それらは互いに接触している。螺旋巻き
はスペーサー14によつて分離されている。二個
の膜を有する中空シリンダー13は液体又は蒸気
の形態にある単量体物質で満たされている。各膜
のさらされた表面上でグラフト重合が生起するよ
うに全体を照射する。処理後、膜をほどきそして
分離する。
The two pieces of permselective membrane 11 to be treated are mounted together in continuous contact with each other. They are,
It is helically wound onto a spool 12 and mounted within a hollow cylindrical cylinder 13. For clarity, the two pieces are shown separately in FIG. 2, but in fact they are in contact with each other. The spiral turns are separated by spacers 14. The hollow cylinder 13 with the two membranes is filled with a monomeric substance in liquid or vapor form. The entire membrane is irradiated so that graft polymerization occurs on the exposed surface of each membrane. After treatment, the membrane is unwound and separated.

「NAFION」型、すなわちテトラフルオロエ
チレンおよびパーフルオロビニルスルホニルフル
オライドの共重合から誘導される膜に適用する場
合、本法は特に有効である。グラフトされるモノ
マーの量は、フルオロポリマー膜の性能を希望に
よりどの程度改善するかにより或る程度まで決定
される。大低の場合、著るしい性能の改善は、モ
ノマーの3〜5%w/w(グラフト後、膜の重量
増加として測定)をグラフトすることにより達成
され、そして好ましくはモノマーの12%w/w未
満が導入される。
The method is particularly effective when applied to membranes of the "NAFION" type, ie derived from the copolymerization of tetrafluoroethylene and perfluorovinylsulfonyl fluoride. The amount of monomer grafted is determined in part by the desired improvement in the performance of the fluoropolymer membrane. For large and low cases, significant performance improvements are achieved by grafting 3-5% w/w of monomer (measured as membrane weight gain after grafting), and preferably 12% w/w of monomer. Less than w is introduced.

本発明方法によつて得られた改質膜は、それら
が造られる先駆物質の膜に比較し、塩素・アルカ
リ槽の陰極液室からの水酸イオンの逆方向の泳動
を防止するのにより有効である。塩素・アルカリ
槽における同様の操作条件下、それらが造られた
前駆物質。
The modified membranes obtained by the method of the invention are more effective in preventing the reverse migration of hydroxide ions from the catholyte compartment of a chlor-alkali tank than the precursor membranes from which they are made. It is. Precursors from which they were made under similar operating conditions in chlor-alkali baths.

塩素・アルカリ槽における類似の操作条件下、
それらは高い電流効率を示す。
Under similar operating conditions in a chlor-alkali tank,
They exhibit high current efficiency.

本発明の改質膜は他の電気化学システム、例え
ば分離器および/又はバツテリー内の固体電解
質、燃料セルおよびセルにおいて有用に用いられ
る。
The reforming membranes of the present invention are useful in other electrochemical systems, such as solid electrolytes in separators and/or batteries, fuel cells, and cells.

本発明を以下の実施例により非制限的に説明す
るが、例中全ての部およびパーセントは特に言及
しない限り重量単位である。
The invention is illustrated in a non-limiting manner by the following examples, in which all parts and percentages are by weight unless otherwise stated.

実施例 1 「NAFION」390のフイルムが第1図に示され
るように装置内に取りつけられ、これによりフイ
ルム3の片面が液状モノマー1(この例において
モノマーはペンタフルオロ−3−ブテン酸CF2
CF CF2COOHである)からの蒸気にさらす。酸
素が存在しない雰囲気のもとで、全体を、25℃で
6krad/時の線量率でCo61源からのγ−照射にさ
らした。吸収した線量は2.5Mradであつた。フイ
ルムの重量は4.1%だけ増加した。処理フイルム
は、電解試験槽内に取りつけられる前に30%w/
wの水酸化ナトリウム溶液に調整され、該槽は25
%w/wの水酸化ナトリウム溶液が陰極液室内で
生じ塩素が陽極で放出されるように操作された。
Example 1 A film of "NAFION" 390 is mounted in an apparatus as shown in FIG .
CF CF 2 COOH). The entire body was heated at 25°C in an oxygen-free atmosphere.
It was exposed to γ-irradiation from a Co 61 source at a dose rate of 6 krad/h. The absorbed dose was 2.5 Mrad. The weight of the film increased by 4.1%. The treated film is 30% w/w before being installed in the electrolytic test chamber.
w of sodium hydroxide solution, the tank was heated to 25 w.
% w/w sodium hydroxide solution was produced in the catholyte chamber and chlorine was released at the anode.

定常の操作条件下での電流効率(すなわち、流
した電流に等価の水酸化ナトリウムの理論収率の
パーセンテージとして表わされる生成水酸化ナト
リウムの重量)は93%であつた。未処理の
「NAFION」390の膜による類似の条件下での電
解そうの電流効率は80%であつた。
The current efficiency (ie, the weight of sodium hydroxide produced expressed as a percentage of the theoretical yield of sodium hydroxide equivalent to the applied current) under steady operating conditions was 93%. The current efficiency of electrolysis with untreated NAFION 390 membrane under similar conditions was 80%.

このことは、本発明方法の有用性を実証する。 This demonstrates the utility of the method of the invention.

実施例 2 実施例1の条件をくりかえした。ただしγ−照
射線量は15krad/hrに増加せしめたが、吸収線
量が1.5Mradとなるよう照射時間は減少せしめ
た。
Example 2 The conditions of Example 1 were repeated. However, the γ-irradiation dose was increased to 15 krad/hr, but the irradiation time was decreased so that the absorbed dose was 1.5 Mrad.

フイルムの重量増加は4.4%であつた。 The weight increase of the film was 4.4%.

実施例1と類似の電解そう操作条件下で測定し
た電流効率は92%であつた。
The current efficiency measured under electrolysis operating conditions similar to Example 1 was 92%.

実施例 3 実施例2で述べた膜の処理のための条件をくり
返しそして処理膜を、陰極液の高い水酸化ナトリ
ウム濃度(30〜34%w/w)で操作する試験電解
そう内で試験した。再たび電流効率は92%であつ
た。
Example 3 The conditions for treatment of membranes described in Example 2 were repeated and the treated membranes were tested in a test electrolysis tank operating at high sodium hydroxide concentrations (30-34% w/w) in the catholyte. . Again the current efficiency was 92%.

実施例 4〜7 「NAFION」膜の試料を実施例1において説
明したと同様の方法で試験した。ただし、使用し
たモノマーはメチルペンタフルオロ−3−ブテノ
エート(CH2=CF CF2COOCH3)であつた。
Examples 4-7 Samples of NAFION membranes were tested in a manner similar to that described in Example 1. However, the monomer used was methylpentafluoro-3-butenoate ( CH2 = CFCF2COOCH3 ) .

二種の等級の「NAFION」から誘導された膜
で処理して得られた電流効率を、試験電解そう内
の陰極液の種々の水酸化ナトリウムについて記録
した。
The current efficiencies obtained in treatment with membranes derived from two grades of "NAFION" were recorded for various sodium hydroxide catholyte solutions in test electrolyzers.

「NAFION」110の未処理のフイルムに関し、
20%w/wの水酸化ナトリウム濃度で操作する電
解そうの電流効率は58%であつた。
Regarding the unprocessed film of "NAFION" 110,
The current efficiency of the electrolyzer operating at a 20% w/w sodium hydroxide concentration was 58%.

【表】 実施例 8 実施例1の手順をくりかえしたが、使用フイル
ムは「NAFION」117であり、そして照射線量率
は全吸収線量359krdrdを得るため3.5krad/時で
あつた。
[Table] Example 8 The procedure of Example 1 was repeated, but the film used was "NAFION" 117 and the irradiation dose rate was 3.5 krad/hour to obtain a total absorbed dose of 359 krdrd.

フイルムの重量は4.7%だけ増加しそして30%
w/wの水酸化ナトリウム濃度で操作する電解そ
うに関し電流効率は60%であつた。未処理
「NAFION」117のフイルムはこれらの条件44%
の電流効率であつた。
The weight of the film increases by 4.7% and 30%
The current efficiency was 60% for the electrolyzer operating at a w/w sodium hydroxide concentration. Untreated "NAFION" 117 film meets these conditions by 44%
The current efficiency was .

実施例 9 ペンタフルオロ−3−ブテン酸の代わりにメチ
ルペンタフルオロ−3−ブテノエートを用いた以
外は実施例8の手順をくりかえした。フイルムの
重量は3.5%だけ増加しそして同じ電解そうの操
作条件下での電流効率は55%であつた。
Example 9 The procedure of Example 8 was repeated except that methyl pentafluoro-3-butenoate was used in place of pentafluoro-3-butenoic acid. The weight of the film increased by 3.5% and the current efficiency under the same electrolytic operating conditions was 55%.

実施例 10 ペンタフルオロ−3−ブテン酸の代わりにエチ
ルペンタフルオロ−3−ブテノエートを用いた以
外は実施例8の手順をくりかえした。
Example 10 The procedure of Example 8 was repeated except that ethyl pentafluoro-3-butenoate was used in place of pentafluoro-3-butenoic acid.

JP50367881A 1980-11-27 1981-11-26 Expired - Lifetime JPH0261498B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AUPE666880 1980-11-27

Publications (2)

Publication Number Publication Date
JPS57501858A JPS57501858A (en) 1982-10-14
JPH0261498B2 true JPH0261498B2 (en) 1990-12-20

Family

ID=3768853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50367881A Expired - Lifetime JPH0261498B2 (en) 1980-11-27 1981-11-26

Country Status (7)

Country Link
US (1) US4602045A (en)
EP (1) EP0065547B1 (en)
JP (1) JPH0261498B2 (en)
DE (1) DE3173537D1 (en)
MX (1) MX159745A (en)
WO (1) WO1982001882A1 (en)
ZA (1) ZA818207B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232600A (en) * 1989-05-15 1993-08-03 Pall Corporation Hydrophobic membranes
US4954256A (en) * 1989-05-15 1990-09-04 Pall Corporation Hydrophobic membranes
US5128014A (en) * 1991-03-01 1992-07-07 E. I. Du Pont De Nemours And Company Irradiation of cation exchange membranes
US5264093A (en) * 1992-04-30 1993-11-23 E. I. Du Pont De Nemours And Company Irradiation of cation exchange membranes to increse current efficiency and reduce power consumption
US5330626A (en) * 1993-02-16 1994-07-19 E. I. Du Pont De Nemours And Company Irradiation of polymeric ion exchange membranes to increase water absorption
JP3810179B2 (en) * 1996-05-10 2006-08-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing a cation exchange membrane having improved electrochemical properties
US6136274A (en) 1996-10-07 2000-10-24 Irori Matrices with memories in automated drug discovery and units therefor
CN1318075A (en) * 1998-09-15 2001-10-17 国际电力有限公司 Water based grafting
WO2002066549A1 (en) * 2001-02-22 2002-08-29 Japan Atomic Energy Research Institute Method for graft polymerization to polymer substrate
US7071271B2 (en) * 2003-10-30 2006-07-04 3M Innovative Properties Company Aqueous emulsion polymerization of functionalized fluoromonomers
US7259208B2 (en) * 2003-11-13 2007-08-21 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US7074841B2 (en) 2003-11-13 2006-07-11 Yandrasits Michael A Polymer electrolyte membranes crosslinked by nitrile trimerization
US7179847B2 (en) * 2003-11-13 2007-02-20 3M Innovative Properties Company Polymer electrolytes crosslinked by e-beam
US7265162B2 (en) * 2003-11-13 2007-09-04 3M Innovative Properties Company Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam
US7060756B2 (en) 2003-11-24 2006-06-13 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US7112614B2 (en) * 2003-12-08 2006-09-26 3M Innovative Properties Company Crosslinked polymer
US7060738B2 (en) 2003-12-11 2006-06-13 3M Innovative Properties Company Polymer electrolytes crosslinked by ultraviolet radiation
US7832171B2 (en) * 2003-12-12 2010-11-16 Dennis Erickson Construction framing system and track therefor
US7173067B2 (en) 2003-12-17 2007-02-06 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination
JP4514643B2 (en) * 2005-04-12 2010-07-28 信越化学工業株式会社 Solid polymer electrolyte membrane for direct methanol fuel cell, method for producing the same, and direct methanol fuel cell
DE102006041511A1 (en) * 2006-08-29 2008-03-20 Leibniz-Institut Für Polymerforschung Dresden E.V. Producing modified polytetrafluoroethylene (PTFE) graft copolymers comprises gas-phase reaction of PTFE powder having persistent perfluoro(peroxy) radicals with an olefinically unsaturated monomer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1371843A (en) * 1963-06-25 1964-09-11 Centre Nat Rech Scient Improvements to semi-permeable membranes
US3666693A (en) * 1969-02-17 1972-05-30 Centre Nat Rech Scient Sequential graft copolymerization of acid and basic monomers onto a perhalogenated olefin polymer
JPS551351B2 (en) * 1974-03-07 1980-01-12
JPS5223192A (en) * 1975-08-15 1977-02-21 Asahi Glass Co Ltd Preparation of improved fluoropolymer bearing cation exchange groups
JPS5248598A (en) * 1975-10-17 1977-04-18 Asahi Glass Co Ltd Method for producing alkali hydroxide
JPS5939453B2 (en) * 1976-06-23 1984-09-22 株式会社トクヤマ Method for manufacturing cation exchanger
GB1516048A (en) * 1976-09-06 1978-06-28 Asahi Glass Co Ltd Electrolysis of aqueous solution of sodium chloride
US4176215A (en) * 1978-03-13 1979-11-27 E. I. Du Pont De Nemours And Company Ion-exchange structures of copolymer blends useful in electrolytic cells
JPS6034980B2 (en) * 1979-02-05 1985-08-12 日本原子力研究所 Method for producing graft membranes with excellent dimensional stability using radiation graft polymerization method
JPS6026414B2 (en) * 1979-02-05 1985-06-24 日本原子力研究所 Novel ion exchange membrane manufacturing method
JPS55160028A (en) * 1979-05-31 1980-12-12 Asahi Chem Ind Co Ltd Improved fluorinated cation exchange membrane and production thereof
AU539988B2 (en) * 1979-12-28 1984-10-25 Ici Australia Limited Grafted cabion exchange resins
NZ195570A (en) * 1979-12-28 1983-05-31 Ici Australia Ltd Cation exchange resin based on perhalogenated fluorine-containing polymer

Also Published As

Publication number Publication date
EP0065547A1 (en) 1982-12-01
US4602045A (en) 1986-07-22
DE3173537D1 (en) 1986-02-27
JPS57501858A (en) 1982-10-14
MX159745A (en) 1989-08-16
ZA818207B (en) 1982-10-27
EP0065547B1 (en) 1986-01-15
WO1982001882A1 (en) 1982-06-10
EP0065547A4 (en) 1983-04-18

Similar Documents

Publication Publication Date Title
JPH0261498B2 (en)
US4012303A (en) Trifluorostyrene sulfonic acid membranes
US4605685A (en) Method for preparation of graft polymeric membranes
US4683040A (en) Process for electrolysis of sodium chloride
US4113922A (en) Trifluorostyrene sulfonic acid membranes
US4169023A (en) Electrolytic diaphragms, and method of electrolysis using the same
US4090931A (en) Anode-structure for electrolysis
CA1185558A (en) Process for electrolyzing water
FI68067C (en) KATJONBYTARHARTS DESS FRAMSTAELLNING OCH ANVAENDNING
US4200711A (en) Process for preparing fluorine-containing polymers having carboxyl groups
EP0545068A2 (en) Wetting of diaphragms
EP0057065B1 (en) Production of cation permselective membrane and electrolytic cell containing said membrane
KR100393440B1 (en) Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity
JPH0657723B2 (en) Novel ionic fluorinated polymer and method for producing the same
US5128014A (en) Irradiation of cation exchange membranes
JPS6128752B2 (en)
JPH0438762B2 (en)
JP3511117B2 (en) Cation exchange membrane for electrolysis and method for producing high-purity potassium hydroxide
FI73703B (en) FOERFARANDE FOER BEHANDLING AV ETT SELEKTIVT GENOMSLAEPPLIGT FLUORPOLYMERMEMBRAN.
CA1186277A (en) Fluoropolymer membranes produced by irradiation and treatment with fluorinated carboxylic acid
CA1052858A (en) Trifluorostyrene sulfonic acid membranes
JPS5940848B2 (en) Manufacturing method of cation exchange membrane
JPS621601B2 (en)
JPS5939453B2 (en) Method for manufacturing cation exchanger
JPS6327430B2 (en)