JPS61206251A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS61206251A
JPS61206251A JP60046399A JP4639985A JPS61206251A JP S61206251 A JPS61206251 A JP S61206251A JP 60046399 A JP60046399 A JP 60046399A JP 4639985 A JP4639985 A JP 4639985A JP S61206251 A JPS61206251 A JP S61206251A
Authority
JP
Japan
Prior art keywords
region
layer
type
conductivity type
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60046399A
Other languages
Japanese (ja)
Other versions
JPH0654798B2 (en
Inventor
Akira Kawakatsu
川勝 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60046399A priority Critical patent/JPH0654798B2/en
Publication of JPS61206251A publication Critical patent/JPS61206251A/en
Publication of JPH0654798B2 publication Critical patent/JPH0654798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain high gains with excellent reproducibility while enabling operation at high speed, and to improve load driving capability by forming a first conduction type third region diffused from the surface of an epitaxial layer to the side surface of a second region and demarcating the side surface and base of an epitaxial layer in an island region by the second region and the third region. CONSTITUTION:An N<+> type buried diffusion layer 2 is shaped to a P<-> type silicon substrate 1, an silicon oxide film 10 is formed, and boron ions are implanted while using a resist 11 as a mask, and annealed in an inactive atmosphere. An N-type epitaxial layer 4 is shaped, and isolated by an element isolation silicon oxide film 3. Boron is buried into the N<+> type buried layer 2 in high concentration as a rule at that time, and an active P-type layer is not formed yet. An inactive P-type layer 51 is diffused and shaped to the N-type epitaxial layer 4, boron made to be contained in the buried diffusion layer 2 is diffused upward through the heat treatment of the layer 4 to form an active P-type layer 52, and an N-type layer 6 is isolated from the epitaxial layer 4. A P<+> type layer 7 is diffused and shaped, and the opening of an N<+> layer for the ohmic contact of the N-type layer 6 is bored. The current gains of a PNP transistor are controlled by the diffusion depth of the P<+> type layer 7.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高集積かつ高性能なパイ4−ラ盤の半導体
集積回路装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a highly integrated and high-performance piezoelectric semiconductor integrated circuit device.

(従来の技術) 第2図は特願昭58−104260号公報によシ開示さ
れたバイポーラ朦半導体集積回路装置の断面構造図であ
り、lはP″″屋シリコン基板、2はN” U埋込層、
3は素子分離シリコン酸化膜である。
(Prior Art) FIG. 2 is a cross-sectional structural diagram of a bipolar semiconductor integrated circuit device disclosed in Japanese Patent Application No. 58-104260, where l is a P'''' silicon substrate and 2 is a N''U. embedded layer,
3 is an element isolation silicon oxide film.

ここでNff1埋込層2上には、N−Rエピタキシャル
層4、P型層5が形成されておシ、このP型層5には、
N型層6が形成されている。
Here, an N-R epitaxial layer 4 and a P-type layer 5 are formed on the Nff1 buried layer 2, and this P-type layer 5 has the following characteristics:
An N-type layer 6 is formed.

P型層6には、P” ffi層7とN+型層8が形成さ
れており、N型層6はペース、P型層5はコレクタ、P
 型層7はエミッタとするPNP )ランジスタが形成
されている。
The P type layer 6 is formed with a P” ffi layer 7 and an N+ type layer 8, where the N type layer 6 is a paste, the P type layer 5 is a collector, and the P type layer 5 is a collector.
The type layer 7 is formed with a PNP transistor serving as an emitter.

また、N型層6をエミッタ、P型層5をペース、N+型
埋込層2tl−コレクタとするNPN トランジスタが
形成されてお9、これらのPNP )ランノスタとNP
N)ランソスタが分離酸化膜3によって周囲を画定され
たシリコン島領域内に併合形成され、独立したr−)を
構成している。
In addition, an NPN transistor is formed in which the N-type layer 6 is the emitter, the P-type layer 5 is the base, and the N+-type buried layer 2tl-collector.
N) A run source is formed in a silicon island region surrounded by an isolation oxide film 3, and constitutes an independent r-).

第3図は上記f−)の等価回路であシ、Qt −Q−は
各々上記PNP )ランジスタおよびNPN)ランゾス
タである。また、第2図および第3図において、■は0
.7〜0.9vの電源電極、Gは接地電極、工は入力電
極、0.、0..0.は出力電極であり、0、、O,、
O,ハN−エピタキシャル層4との界面にショットキバ
リヤダイオード(以下SB’Dと呼ぶ)Dt 、 I)
t 、 Daを構成し、互いに分離されている。
FIG. 3 is an equivalent circuit of the above f-), and Qt-Q- are the above-mentioned PNP) transistor and NPN) transistor, respectively. Also, in Figures 2 and 3, ■ is 0
.. 7-0.9v power supply electrode, G is the ground electrode, G is the input electrode, 0. ,0. .. 0. is the output electrode, 0,,O,,
A Schottky barrier diode (hereinafter referred to as SB'D) Dt, I) is placed at the interface with the O, CN-epitaxial layer 4.
t and Da and are separated from each other.

上記ダートの動作は第3図の等価回路から明らかなよう
に、集積注入論理(Integrated Injec
tionLogic:以下工!Lと呼ぶ)とほぼ同等で
あシ、複数のダートの出力を互いに結線して、次段ダー
トの入力とするワイヤードアンド(Wired AND
 ) ニよって論理を構成する飽和型デソタル論理ダー
トである。
As is clear from the equivalent circuit in FIG. 3, the operation of the dart described above is based on the integrated injection logic.
tionLogic: Hereafter! Wired AND (referred to as L), which connects the outputs of multiple darts to each other and inputs them to the next dart.
) It is a saturated desotal logic dart that constitutes logic by D.

なお、第2図のN+を層8は、接地電極GをN型層6と
オーミック性接続するために設けられたもので、N型層
6の不純物濃度が十分に高い場合には不要となる。
Note that the N+ layer 8 in FIG. 2 is provided to ohmically connect the ground electrode G to the N-type layer 6, and becomes unnecessary if the impurity concentration of the N-type layer 6 is sufficiently high. .

通常の工!Lにおいては、PNP)ランソスタQ1を横
思(ラテラル)トランジスタ、NPN)、yyジスタQ
!を倒立動作縦型(パーティカル)トランジスタで構成
するため、両トランソスタの特性が不十分であるのく対
し、第2図に示す構造では、PNP )ランソスタQ8
、NPN)ランソスタQ、をともに頭方向動作の縦型ト
ランジスタで構成しているため無効電力が少く、高速動
作に適した構造になっている。
Normal work! In L, PNP) lateral transistor Q1, NPN), yy transistor Q
! Since the Q8 is composed of inverted-operation vertical (particle) transistors, the characteristics of both transostors are insufficient.However, in the structure shown in FIG.
, NPN) and Lansostar Q are both constructed of vertical transistors that operate in the head direction, resulting in low reactive power and a structure suitable for high-speed operation.

したがって、I”Lと同等の高集積性を保ち、I”Lよ
シも高速に動作する集積回路装置を実現させ得る構造で
ある。
Therefore, it is possible to realize an integrated circuit device that maintains a high degree of integration comparable to that of I"L and operates at a higher speed than I"L.

(発明が解決しようとする問題点) しかしながら、既存の技術によって、上記構造を形成す
るには、P型層5、N型層6、P 塩層7を順次拡散形
成する3重拡散トランジスタをPNP )ランソスタQ
1として用いる必要があった。
(Problems to be Solved by the Invention) However, in order to form the above structure using the existing technology, a triple diffusion transistor in which a P-type layer 5, an N-type layer 6, and a P-salt layer 7 are sequentially diffused is used as a PNP transistor. ) Lansosta Q
It was necessary to use it as 1.

しかし、一般に高性能のトランジスタを3重拡散によっ
て得ることは極めて困難であり、再現性にも乏しいとい
う欠点がある。
However, it is generally extremely difficult to obtain high-performance transistors by triple diffusion, and there are drawbacks such as poor reproducibility.

また、P型層5は低濃度に形成することが必要なle、
NPN)ランノスタQ、のペース抵抗が大きくなυ、高
速動作を阻害し、さらに横方向注入による無効電力が大
きく、高い電流増幅率を得ることが困難となる。
In addition, the P-type layer 5 has le, which needs to be formed at a low concentration,
The large pace resistance υ of the (NPN) lannostar Q impedes high-speed operation, and furthermore, the reactive power due to lateral injection is large, making it difficult to obtain a high current amplification factor.

この問題点を回避するためには、NPNトランジスタの
不活性ペースを高濃度化する新たな写真蝕刻工程と拡散
工程が要求され、工程の複雑化を招く欠点がある。
In order to avoid this problem, a new photolithography process and a diffusion process are required to increase the concentration of the inactive paste of the NPN transistor, which has the drawback of complicating the process.

この発明は、前記従来技術がもっている問題点のうち、
3重拡散による高性能トランジスタの製造の困難性と、
高速動作の阻害と高電流増幅率を得ることの困難性と、
工程の複雑化という点について解決した半導体集積回路
装置の製造方法を提供するものである。
This invention solves the problems of the above-mentioned prior art.
Difficulties in manufacturing high-performance transistors using triple diffusion,
Obstruction of high-speed operation and difficulty in obtaining high current amplification factors,
The present invention provides a method for manufacturing a semiconductor integrated circuit device that solves the problem of process complexity.

(問題点を解決するための手段) この発明は、半導体集積回路装置の製造方法において、
第1導電型半導体基体の一主面の表面の所定個所に第2
導電屋の第1領域を形成してその一部に第1導電型不純
物を導入した後第2導電屋エピタキシヤル層を成長して
複数の真領域に分割する素子分離を行い、この島領域に
第1導電型の高濃度の第2領域と第1導電盤不純物を上
方拡散させて第1導電をの第3領域を形成して島領域の
エピタキシャル層を第2領域と第3領域によって側面と
底面を画定された第4領域と第5領域とに分割する工程
を導入したものである。
(Means for Solving the Problems) The present invention provides a method for manufacturing a semiconductor integrated circuit device.
A second conductive type semiconductor substrate is placed at a predetermined location on the main surface of the first conductivity type semiconductor substrate.
After forming the first conductive region and introducing impurities of the first conductivity type into a part thereof, a second conductive epitaxial layer is grown to perform element isolation to divide it into a plurality of true regions. A second region having a high concentration of the first conductivity type and a first conductive plate impurity are diffused upward to form a third region having the first conductivity, and the epitaxial layer of the island region is side-walled by the second region and the third region. This method introduces a step of dividing the bottom surface into a defined fourth region and a fifth region.

(作 用) この発明によれば、半導体集積回路装置の製造方法に以
上のような工程を導入したので、第1領域から第1導電
型の高濃度の第2領域を拡散で形成され、そのイオン注
入ドーズ量により、PNPトランノスタの電流利得をそ
のエミッタの拡散深さにより独立に制御できかつ第3領
域の低抵抗により第2の領域の横方向への無効電流性入
金抑制するように作用し、したがって、前記問題点を除
去できる。
(Function) According to the present invention, since the above-described steps are introduced into the method for manufacturing a semiconductor integrated circuit device, the second region having a high concentration of the first conductivity type is formed from the first region by diffusion, and the second region is formed by diffusion. Depending on the ion implantation dose, the current gain of the PNP transnoster can be controlled independently by the diffusion depth of its emitter, and the low resistance of the third region acts to suppress reactive current deposits in the lateral direction of the second region. , Therefore, the above problem can be eliminated.

(実施例) 以下、この発明の半導体集積回路装置の製造方法の実施
例について図面に基づき説明する。第1図囚ないし第1
図■はその一実施例の工程説明図である。この第1図囚
〜第1図■において、第2図と同一部分には同一符号を
付して説明する。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor integrated circuit device of the present invention will be described with reference to the drawings. Figure 1 Prisoner or 1st
Figure ■ is a process explanatory diagram of one example. The same parts as in FIG. 2 are given the same reference numerals and explained in FIG.

まず第1図囚のように、半導体基体としてのp−盤シリ
コン基板1にN+型埋込拡散層2を形成したのち、表面
に薄いシリコン酸化膜10を形成し、レソスト11をマ
スクとして、硼素なイオン注入し、不活性雰囲気中でア
ニールする。
First, as shown in FIG. 1, an N+ type buried diffusion layer 2 is formed on a p-board silicon substrate 1 as a semiconductor substrate, a thin silicon oxide film 10 is formed on the surface, and a boron layer is formed using a resist 11 as a mask. ion implantation and annealing in an inert atmosphere.

N+星埋込拡散層2の形成にはエピタキシャル層程での
オートドープの少いアンチモンを不純物として用いるの
が適当であり、表面濃度は10′9〜10” cm−”
程度、層抵抗は50Ω/口以下、好ましくは20〜30
Ω/口程度が好適である。
For forming the N+ star buried diffusion layer 2, it is appropriate to use antimony as an impurity, which is less autodoped than the epitaxial layer, and the surface concentration is 10'9 to 10"cm-".
The layer resistance is 50 Ω/mouth or less, preferably 20 to 30
Approximately Ω/mouth is suitable.

また、硼素のドーズ量はlX101A〜5 X 10’
3程度が適当であり、素子分離を完全にするためのチャ
ンネルストップ層(図示していない)を兼ねることがで
きる。なお、イオン注入のマスクとしては、厚い酸化膜
若しくはその他の材料としてもよい0 次いで、第1図の)のように、不純物濃度101101
O前後、厚、さ2〜3μmのN型エピタキシャル層4を
形成し、公知の方法によって素子分離シリコン酸化膜3
によシ分離を行なう。その後、素子領域表面に酸化膜を
形成し、不活性Pを層形成用の開口を行なう。
In addition, the dose of boron is 1X101A~5X10'
A thickness of about 3 is appropriate, and can also serve as a channel stop layer (not shown) for complete element isolation. Note that as a mask for ion implantation, a thick oxide film or other material may be used.
An N-type epitaxial layer 4 with a thickness of 2 to 3 μm is formed before and after O, and an element isolation silicon oxide film 3 is formed by a known method.
Perform proper separation. Thereafter, an oxide film is formed on the surface of the element region, and an opening for forming an inactive P layer is formed.

この時点では、破線で示した領域にイオン注入されてい
る硼素は通例高濃度のN+型埋込層2に埋没しており、
まだ活性P型層は形成されていない0 次に、第1図(Oのように、複数の島領域に分割する素
子分離を行うために、不活性P型層51をNff1工ピ
タキシヤル層4に拡散形成し、PNP)ランソスタのエ
ミッタ用の開口を行なう。不活性P型層51は表面濃度
1019〜10宜03−3程度の高濃度に形成され、そ
の熱処理によって、埋込拡散層2内に含まれていた硼素
が上方拡散して活性P型層52を形成し、不活性P型層
51と接続して、N型層6をエピタキシャル層4から分
離する。
At this point, the boron ions implanted in the region indicated by the broken line are usually buried in the highly concentrated N+ type buried layer 2.
The active P-type layer 51 has not yet been formed. Next, as shown in FIG. Diffusion formation and opening for emitter of PNP) lansoster. The inactive P-type layer 51 is formed to have a high surface concentration of about 1019 to 1003-3, and the heat treatment causes boron contained in the buried diffusion layer 2 to diffuse upward and form the active P-type layer 52. is formed and connected to the inactive P-type layer 51 to separate the N-type layer 6 from the epitaxial layer 4 .

次に、第1図0に示すように、PNP)ランソスタのエ
ミッタとなるPM層7を拡散形成し、N型層6のオーミ
ックコンタクト用N+層の開口を行う。このP+型層7
の拡散深さによって、PNP )ランソスタの電流利得
が制御される。
Next, as shown in FIG. 1, a PM layer 7 which will become an emitter of a PNP (PNP) lansoster is formed by diffusion, and an opening is made in the N+ layer for an ohmic contact of the N-type layer 6. This P+ type layer 7
The diffusion depth of PNP) controls the current gain of the lansostar.

引続き、第1図[F]のようにN+温層8を拡散形成し
、通常のコンタクトホール開口、金属配線工程を経て、
第2図に示したのと同様の半導体集積回路装置が完成さ
れる。
Subsequently, as shown in FIG. 1 [F], an N+ warm layer 8 is formed by diffusion, and after the usual contact hole opening and metal wiring process,
A semiconductor integrated circuit device similar to that shown in FIG. 2 is completed.

このようK、この発明の実施例の製造方法によれば、N
PN)ランジスタの電流利得は硼素のイオン注入ドーズ
量により、またPNP)ランソスタの電流利得はP+型
層7の拡散深さにより、それぞれ独立に制御できるので
再現性よく高利得を得ることが可能となる。
In this way, K, according to the manufacturing method of the embodiment of the present invention, N
The current gain of the PN) transistor can be controlled independently by the boron ion implantation dose, and the current gain of the PNP transistor can be controlled independently by the diffusion depth of the P+ type layer 7, so it is possible to obtain a high gain with good reproducibility. Become.

また、P型層は活性P型層52と不活性P型層51の二
つの部分よシ成シ、NPNトランソスタの活性ペースと
なる活性P型層52を取りまくNPN)ランソスタのベ
ース抵抗は著しく減少し、また、横方向への無効電流注
入が大幅に抑制され、スイッチング周波数が改善され、
高速動作が可能となる。
In addition, the P-type layer is formed by forming two parts, the active P-type layer 52 and the inactive P-type layer 51, and the base resistance of the NPN transistor surrounding the active P-type layer 52, which is the active pace of the NPN transistor, is significantly reduced. In addition, lateral reactive current injection is significantly suppressed, and the switching frequency is improved.
High-speed operation is possible.

既に述べたように、第2図に示す半導体集積回路装置U
I”Lと同じ動作をする。通常のI”LではPNP )
ランジスタのエミッタ接地電流利得は1〜4程度である
のに対し、この発明の製造方法によシ得られる半導体集
積回路装置においては、100以上とすることも容易で
あシ、無効電力が減少し、かつ論理振幅がSBDによっ
てほぼ半減するため、低消費電力性が著しく向上する。
As already mentioned, the semiconductor integrated circuit device U shown in FIG.
Same operation as I"L. Normal I"L is PNP)
While the common emitter current gain of a transistor is approximately 1 to 4, in the semiconductor integrated circuit device obtained by the manufacturing method of the present invention, it can easily be increased to 100 or more, and reactive power is reduced. , and since the logic amplitude is approximately halved by the SBD, low power consumption is significantly improved.

一方、I”LのNPN)ランソスタは、複数のコレクタ
を持つ場合、電流利得は10以下、通例5以下であり、
遮断周波数も50 MHz程度と低いが、この発明によ
って得られる半導体集積回路装置においては、100以
上の利得I GHz前後の遮断周i数が容易に得られる
ため、著しく高速性、負荷駆動能力が向上する。
On the other hand, when an I"L NPN) run source has multiple collectors, the current gain is 10 or less, usually 5 or less,
Although the cutoff frequency is also low at about 50 MHz, in the semiconductor integrated circuit device obtained by this invention, a gain of 100 or more and a cutoff frequency i of around GHz can be easily obtained, resulting in significantly improved high speed and load driving ability. do.

また、従来の3重拡散法と比較して、この発明の製造方
法では素子分離のチャンネルガツト層形成と同時に活性
P型層52を形成することができるため、実質的に写真
蝕刻工程および拡散工程が各1回減少し、工程が短縮さ
れる利点がある。
Furthermore, compared to the conventional triple diffusion method, the manufacturing method of the present invention allows the active P-type layer 52 to be formed at the same time as the formation of the channel gutt layer for device isolation, so that the photolithography process and the diffusion process are substantially the same. There is an advantage that the number of steps is reduced by one and the steps are shortened.

さらに、この発明の製造方法により、P+型層7および
Nff1層8を用いて通常のパイポーラトランソスタを
同一基板上に形成することが可能であり、高利得のPN
P)ランソスタや抵抗素子が形成できることは言うまで
もない。
Furthermore, according to the manufacturing method of the present invention, it is possible to form a normal bipolar transistor on the same substrate using the P+ type layer 7 and the Nff1 layer 8.
P) Needless to say, it is possible to form a lansostar and a resistance element.

したがって、この発明の製造方法により得られる第2図
に示されるような半導体集積回路装置は、デジタル・ア
ナログ回路混載型などに代表される複合集積回路装置に
適し、特に、その動作がI2Lと同じであることから、
従来I”Lによって製造されていた製品群に広範な応用
分野がある。
Therefore, the semiconductor integrated circuit device as shown in FIG. 2 obtained by the manufacturing method of the present invention is suitable for a composite integrated circuit device represented by a digital/analog circuit mixed type, and in particular, its operation is the same as that of I2L. Since it is,
The product range traditionally produced by I"L has a wide range of applications.

! (発明の効果) 以上詳細に説明したように、この発明によれば、第1導
電型の半導体基体上の第2導電型の第1の領域に第1導
電塑の不純物を導入して、その上に第2導電型のエピタ
キシャル層を成長させ、エピタキシャル層の一部の底面
に第1導電型の不純物を上方拡散させて第2領域を形成
するとともに、この第2領域の側面にエピタキシャル層
の表面から拡散させた第1導電型の第3の領域を形成し
て島領域のエピタキシャル層を第2領域と第3領域によ
って側面と底面を画定するようにしたので、以下に列挙
するごとき効果を奏する。
! (Effects of the Invention) As described above in detail, according to the present invention, impurities of the first conductive plastic are introduced into the first region of the second conductivity type on the semiconductor substrate of the first conductivity type. An epitaxial layer of a second conductivity type is grown on the epitaxial layer, and an impurity of the first conductivity type is diffused upward into the bottom surface of a part of the epitaxial layer to form a second region, and an epitaxial layer is grown on the side surface of the second region. By forming the third region of the first conductivity type diffused from the surface and defining the side and bottom surfaces of the epitaxial layer of the island region by the second region and the third region, the effects listed below can be achieved. play.

(1)再現性よく高利得が得られる。(1) High gain can be obtained with good reproducibility.

(2)高速動作が可能となるとともに負荷駆動能力が向
上する。
(2) High-speed operation is possible and load driving ability is improved.

(3)低消費電力性が著しく向上する。(3) Low power consumption is significantly improved.

(4)工程が短縮される。(4) The process is shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図囚ないし第1図■はこの発明の半導体集積回路装
置の製造方法の一実施例の工程説明図、第2図は従来の
半導体集積回路装置の断面図、第3図は第2図の半導体
集積回路装置の等価回路図である。 1・・・P−型シリコン基板、2・・・N”ffi埋込
拡散層、3・・・素子分離シリコン酸化膜、4・・・N
型エピタキシャル層、51・・・不活性P型層、52・
・・活性Pffi層、6・・・NM層、7・・・PW層
、8・・・N 型層。 特許出願人 沖電気工業株式会社 第1図 第1図 12図 第3図
1 to 1 are process explanatory diagrams of an embodiment of the method for manufacturing a semiconductor integrated circuit device of the present invention, FIG. 2 is a sectional view of a conventional semiconductor integrated circuit device, and FIG. FIG. 2 is an equivalent circuit diagram of a semiconductor integrated circuit device of FIG. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... N''ffi buried diffusion layer, 3... Element isolation silicon oxide film, 4... N
type epitaxial layer, 51... inactive P type layer, 52.
...Active Pffi layer, 6...NM layer, 7...PW layer, 8...N type layer. Patent applicant: Oki Electric Industry Co., Ltd. Figure 1 Figure 1 Figure 12 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)第1導電型半導体基体の一主面の選択された表面
に高濃度の第2導電型の第1領域を形成し、この第1領
域の一部に第1導電型不純物を導入する工程と、前記半
導体基体の一主面上に第2導電型エピタキシャル層を成
長させ、このエピタキシャル層を複数の島領域に分割す
る素子分離を行なう工程と、前記島領域の選択された表
面から第1導電型の高濃度の第2領域を形成すると同時
に、前記第1導電型不純物を上方拡散させて、前記第2
領域に延在する第1導電型の第3領域を形成し、前記島
領域のエピタキシャル層を前記第2領域と第3領域によ
つて側面と底面を画定された第4領域と残余の第5領域
とに分割する工程と、前記第4領域の表面に第1導電型
の第6領域と第2導電型の第7領域とを形成する工程と
を有することを特徴とする半導体集積回路装置の製造方
法。
(1) A highly concentrated first region of the second conductivity type is formed on a selected main surface of the first conductivity type semiconductor substrate, and a first conductivity type impurity is introduced into a part of the first region. a step of growing an epitaxial layer of a second conductivity type on one main surface of the semiconductor substrate and performing element isolation of dividing the epitaxial layer into a plurality of island regions; At the same time as forming a highly-concentrated second region of one conductivity type, the first conductivity type impurity is diffused upward to form the second region of high concentration.
forming a third region of the first conductivity type extending in the region; and forming a sixth region of a first conductivity type and a seventh region of a second conductivity type on the surface of the fourth region. Production method.
(2)半導体基体をシリコン基体とし、第1導電型不純
物を硼素とすることを特徴とする特許請求の範囲第1項
記載の半導体集積回路装置の製造方法。
(2) The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the semiconductor substrate is a silicon substrate and the first conductivity type impurity is boron.
(3)第1導電型をP型とし、第2導電型をN型とし、
前記第6領域をエミッタ、第4領域をベースとし、第2
領域および第3領域をコレクタとするPNPバイポーラ
トランジスタと、第4領域および第7領域をエミッタ、
第2領域および第3領域をベース、第1領域および第5
領域をコレクタとするNPNバイポーラトランジスタと
を構成することを特徴とする特許請求の範囲第1項およ
び第2項記載の半導体集積回路装置の製造方法。
(3) the first conductivity type is P type, the second conductivity type is N type,
The sixth region is an emitter, the fourth region is a base, and the second region is an emitter.
A PNP bipolar transistor whose collectors are the region and the third region, and whose emitters are the fourth region and the seventh region.
2nd area and 3rd area as base, 1st area and 5th area as base
3. The method of manufacturing a semiconductor integrated circuit device according to claim 1, further comprising forming an NPN bipolar transistor having a region as a collector.
JP60046399A 1985-03-11 1985-03-11 Method for manufacturing semiconductor integrated circuit device Expired - Lifetime JPH0654798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60046399A JPH0654798B2 (en) 1985-03-11 1985-03-11 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60046399A JPH0654798B2 (en) 1985-03-11 1985-03-11 Method for manufacturing semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS61206251A true JPS61206251A (en) 1986-09-12
JPH0654798B2 JPH0654798B2 (en) 1994-07-20

Family

ID=12746072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60046399A Expired - Lifetime JPH0654798B2 (en) 1985-03-11 1985-03-11 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0654798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247941B2 (en) 2000-10-20 2007-07-24 Silverbrook Research Pty Ltd Printed circuit board assembly with strain-alleviating structures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247941B2 (en) 2000-10-20 2007-07-24 Silverbrook Research Pty Ltd Printed circuit board assembly with strain-alleviating structures
US7307354B2 (en) 2000-10-20 2007-12-11 Silverbrook Research Pty Ltd Integrated circuit (IC) carrier assembly incorporating an integrated circuit (IC) retainer
US7402894B2 (en) 2000-10-20 2008-07-22 Silverbrook Research Pty Ltd Integrated circuit carrier
US7479697B2 (en) 2000-10-20 2009-01-20 Silverbrook Research Pty Ltd Resilient carrier assembly for an integrated circuit
US7705452B2 (en) 2000-10-20 2010-04-27 Silverbrook Research Pty Ltd Carrier assembly for an integrated circuit
US7767912B2 (en) 2000-10-20 2010-08-03 Silverbrook Research Pty Ltd Integrated circuit carrier arrangement with electrical connection islands
US7936063B2 (en) 2000-10-20 2011-05-03 Silverbrook Research Pty Ltd Carrier assembly for an integrated circuit

Also Published As

Publication number Publication date
JPH0654798B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US5109262A (en) Bipolar transistor with reduced collector resistance
JPH01198069A (en) Bipolar transistor
JPH0365025B2 (en)
JP2590295B2 (en) Semiconductor device and manufacturing method thereof
JPH0499384A (en) Thyristor and manufacture thereof
JPS62277745A (en) Semiconductor integrated circuit
JPH0613556A (en) Integrated structure and manufacture thereof
US6876060B2 (en) Complimentary bipolar transistor
JPS61206251A (en) Manufacture of semiconductor integrated circuit device
JPS6298663A (en) Semiconductor integrated circuit device
JP2558472B2 (en) Semiconductor integrated circuit
JPH01244660A (en) Manufacture of bi-cmos semiconductor device
JPH0416443Y2 (en)
JPS627704B2 (en)
JPS59200464A (en) Manufacture of bipolar semiconductor device
JPS5884442A (en) Manufacture of semicondtor device
GB1224802A (en) Semiconductor device and a method of manufacturing the same
CN112563324A (en) Preparation method of high-frequency bipolar transistor
JPS61207066A (en) Bi-polar transistor
JPS5854509B2 (en) Manufacturing method of semiconductor device
JPH0451067B2 (en)
JPS60192365A (en) Manufacture of thin film transistor
JPS58169956A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6124828B2 (en)
JPS6132460A (en) Manufacture of semiconductor injection integrated logic circuit device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term