JPS61205793A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPS61205793A
JPS61205793A JP60044534A JP4453485A JPS61205793A JP S61205793 A JPS61205793 A JP S61205793A JP 60044534 A JP60044534 A JP 60044534A JP 4453485 A JP4453485 A JP 4453485A JP S61205793 A JPS61205793 A JP S61205793A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage device
vessel
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044534A
Other languages
Japanese (ja)
Inventor
Koichi Murata
村田 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60044534A priority Critical patent/JPS61205793A/en
Publication of JPS61205793A publication Critical patent/JPS61205793A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To shorten a time necessary for accumulating heat into the heat accumulator and permit to utilize the heat accumulator as a high-temperature heat source in heat dissipation as much as possible by a method wherein the mixture of a melting substance, effecting phase change between solid and liquid at a predetermined temperature, and a metal having good heat conductivity is sealed into a vessel. CONSTITUTION:The vessel 1 of metal is provided with heat radiating plates 2 and the mixture of melting substance 5 and metallic particles 6 having good heat conductivity is sealed air-tightly into the vessel 1. Paraffin or the like, for example, is employed as the melting substance 5 and iron, aluminum or the like is employed as the metallic particles. Upon accumulating heat, heat is transferred from the wall surface of the vessel 1 to the metallic particles 6 and heating is effected quickly into the inner part of the heat accumulator by good heat conductivity due to the mutual contact between the metallic particles 6. On the other hand, upon dissipating heat, the surface of the heat accumulator is cooled and the surface temperature of the accumulator is reduced. However, heat, dissipated from the inside of the heat accumulator, may be transferred to the surface of the vessel nicely and quickly due to the good heat conductivity of the metallic particles 6.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は融解物質を用いた蓄熱器に関するものである。[Detailed description of the invention] [Technical field of invention] The present invention relates to a heat storage device using a molten material.

[発明の技術的背mとその問題点] 第4図に従来の蓄熱器を示す。[Technical background of the invention and its problems] Figure 4 shows a conventional heat storage device.

1は金属からなる容器で放熱板2が装着され容器1には
融解物質が封入されており、融解物質は固体状融解物質
3ど液状融解物質4となっている。・蓄熱器は周囲から
加熱され蓄熱されている状態を示している。
Reference numeral 1 denotes a container made of metal, and a heat sink 2 is attached to the container 1. A molten substance is sealed in the container 1, and the molten substance is a solid molten substance 3 and a liquid molten substance 4.・The heat storage device is heated from the surrounding area and is storing heat.

蓄熱前の蓄熱器は融解物質は全域が固体状融解物質3に
なっており、容器1が加熱され蓄熱段階=    1 
  − に入ると容器1の壁面近傍の融解物質は融解湿度に達し
て液化し液状融解物質4になる。にって蓄熱過程におい
て蓄熱器内部は第4図に示寸ように容器の壁面近くは液
状、内部は固体状の融解物質が存在する。この場合蓄熱
器に蓄えられる熱は容器1の壁面から液状融解物質4に
伝達され、液状融解物質4は図中矢印のように対流して
固体状融解物質3に伝達され固体状融解物質3が加熱さ
れて液状融解物質4に変り熱が蓄えられる。対流による
熱の伝達は自然対流によるもので固体状融解物質3が全
部液状になり蓄熱器の定格いっばいまで熱を蓄えるには
長時間を要する。
In the heat storage device before heat storage, the entire area of the molten material is solid molten material 3, and the container 1 is heated and the heat storage stage = 1
- Upon entry, the molten substance near the wall of the container 1 reaches the molten humidity and liquefies into a liquid molten substance 4. Therefore, during the heat storage process, inside the heat storage device, as shown in FIG. 4, there is a molten substance that is liquid near the wall of the container and solid inside. In this case, the heat stored in the heat storage device is transferred from the wall of the container 1 to the liquid molten substance 4, and the liquid molten substance 4 is transferred to the solid molten substance 3 through convection as shown by the arrow in the figure. It is heated and turns into a liquid molten substance 4, which stores heat. The heat transfer by convection is due to natural convection, and it takes a long time for the solid molten substance 3 to completely become liquid and store heat up to the maximum rating of the heat storage device.

逆に蓄熱器が放熱するときは容器1の壁面が低温になる
から壁面近くの融解物質は固化し、第4図とは逆に壁面
近くは固体、内部は液状となる。
Conversely, when the heat storage device radiates heat, the wall surface of the container 1 becomes low temperature, so the molten substance near the wall solidifies, and contrary to FIG. 4, the material near the wall becomes solid and the inside becomes liquid.

よって液状融解物質4が固化するとき大量の熱を放出す
るが“直接容器1の壁面に放出せず、既に固化した融解
物質3に放出するため、放出された熱は固化した固体状
融解物質3を熱伝導によって容器1の壁面に達し、蓄熱
器から放出される。以、トを図示すると第5図になる。
Therefore, when the liquid molten substance 4 solidifies, a large amount of heat is released, but it is not directly released to the wall of the container 1, but is released to the already solidified molten substance 3, so the released heat is transferred to the solidified molten substance 3. The heat reaches the wall surface of the container 1 by heat conduction and is released from the heat storage device.

蓄熱器内部の湿度を11、蓄熱器の表面湿度を12とす
ると、蓄熱時において12は急−に昇し一定に保持され
る。tlは蓄熱器に注入された融解物質が全部液状にな
るまで次第に上がしti=t2で蓄熱が完了する。次に
放熱においては蓄熱器表面は冷却されて蓄熱器の表面湿
度t2は下がり容器壁面に近い融解物質は固化する。こ
のため蓄熱器内部からこの固化した融解物質を熱を通過
するためには容器壁面湿度は蓄熱器内部湿度すなわち融
解物質の融解湿度より低くなる。第5図においてはt 
1−t 2の湿度差によって放熱されている。このため
、蓄熱器表面温iは12以上になり得ず蓄熱時のt2の
湿度すなわち融解物質の融解湿度に極めて近い渇麿で放
熱を利用することができない。
If the humidity inside the heat storage device is 11 and the surface humidity of the heat storage device is 12, then 12 rises rapidly and is kept constant during heat storage. tl is gradually increased until all of the molten material injected into the heat storage device becomes liquid, and heat storage is completed at ti=t2. Next, during heat radiation, the surface of the heat storage device is cooled, and the surface humidity t2 of the heat storage device decreases, and the molten substance near the wall surface of the container solidifies. Therefore, in order to pass heat through the solidified molten material from inside the heat storage device, the container wall surface humidity becomes lower than the internal humidity of the heat storage device, that is, the melting humidity of the molten material. In Figure 5, t
Heat is radiated by a humidity difference of 1-t2. Therefore, the heat storage surface temperature i cannot exceed 12, and heat radiation cannot be utilized at the humidity at t2 during heat storage, that is, at a temperature extremely close to the melting humidity of the molten substance.

以上説明したごとく融解物質が固体から液体、液体から
固体と変化して人品の熱を吸収、放熱を行う蓄熱器では
蓄熱時間は短時間で、放熱時に出来るだけ高温の熱源と
して利用できることが望ましい。
As explained above, in a heat storage device in which the molten substance changes from solid to liquid and from liquid to solid to absorb and radiate heat from human objects, it is desirable that the heat storage time is short and that it can be used as a heat source as high as possible when radiating heat. .

[発明の目的] 本発明は上記問題点を除去ηるために成されたもので、
蓄熱器の蓄熱に要する時間を短縮し、放熱において出来
るだ【プ高温熱源として利用できる蓄熱器を得ることを
目的とする。
[Object of the invention] The present invention has been made in order to eliminate the above problems,
The purpose of this invention is to shorten the time required for heat storage in a heat storage device, improve heat radiation, and obtain a heat storage device that can be used as a high-temperature heat source.

[発明の概要] 上記目的を達成するために本発明においては蓄熱器に注
入される融解物質に熱伝導が良好な金属からなる粒子、
繊維、織布、線等を混合し、蓄熱器の容器壁面と容器内
の融解物質の熱の伝達をこれら混合物の良熱伝導性を利
用して効果的に行い蓄熱器内部において融解物質の相変
化を一様にしている。
[Summary of the Invention] In order to achieve the above object, the present invention includes particles made of a metal with good thermal conductivity in the molten substance injected into the heat storage device.
Fibers, woven fabrics, wires, etc. are mixed to effectively transfer the heat between the wall surface of the heat storage container and the molten material inside the container by utilizing the good thermal conductivity of the mixture. It evens out the changes.

[発明の実施例] 本発明の一実施例を第1図に示す。同図は蓄熱器の正面
図で部分断面を示しこれによって内部の状態を示してい
る。第2図は第1図におりるIV部の拡大図である。
[Embodiment of the Invention] An embodiment of the present invention is shown in FIG. This figure is a front view of the heat storage device, showing a partial cross section, thereby showing the internal state. FIG. 2 is an enlarged view of section IV in FIG. 1.

1は金属からなる容器で放熱板2が装着され、容器1に
は融解物質5と熱伝導が良好な金属粒子6の混合物が気
密に封入されている。融解物質5には例えばパラフィン
等を用い、金属粒子には鉄、アルミニウム等を用いる。
Reference numeral 1 denotes a metal container to which a heat sink 2 is attached, and a mixture of a molten substance 5 and metal particles 6 having good thermal conductivity is hermetically sealed in the container 1. For example, paraffin or the like is used for the molten substance 5, and iron, aluminum, or the like is used for the metal particles.

以上の構成にJ:りなる本実施例の作用について説明す
る。蓄熱時、容器1が加熱されると容器1の壁面に接す
る融解物質5と金属粒子6に熱が伝達され融解物質5は
融解熱を吸収して液化する。
The operation of this embodiment, which is based on the above configuration, will be explained. During heat storage, when the container 1 is heated, heat is transferred to the molten substance 5 and metal particles 6 that are in contact with the wall surface of the container 1, and the molten substance 5 absorbs the heat of fusion and liquefies.

金属粒子6に伝導された熱は互に接触し合う金属粒子6
に伝導され蓄熱器の内部へ効果的に熱が運ばれ金属粒子
6の周囲にある融解物質5に熱を与え融解物質5が液化
し蓄熱される。
The heat conducted to the metal particles 6 is transferred to the metal particles 6 that are in contact with each other.
The heat is effectively carried to the inside of the heat accumulator, giving heat to the molten substance 5 around the metal particles 6, and the molten substance 5 liquefies and stores heat.

一方、放熱に当っては融解物質5が固化するときに融解
熱を放出し金属粒子6が加熱され相互に接触する金属粒
子6を伝導して容器1の壁面に熱が伝導され蓄熱器表面
に熱が放出される。
On the other hand, regarding heat dissipation, when the molten substance 5 solidifies, it releases heat of fusion, heats the metal particles 6, conducts the metal particles 6 in contact with each other, conducts the heat to the wall surface of the container 1, and transfers it to the surface of the heat storage device. Heat is released.

蓄熱時に当って蓄熱器の容器1の壁面から金属粒子6へ
熱が伝導され金属粒子6の相互に接触によって金属の良
熱伝導性によって蓄熱器の内部まで加熱が速やかに行わ
れる。第3図に本実施例による蓄熱器の湿度と時間の特
性を示す。第3図の蓄熱の状態に見るように、蓄熱器の
内部湿度t1ど蓄熱器容器1の表面湿度t2の湿度差が
金属粒子6の良熱伝導性によって小さくなり内部湿度t
1が容器1の表面湿度t2と同値になるところで蓄熱が
完了する。
During heat storage, heat is conducted from the wall surface of the container 1 of the heat storage device to the metal particles 6, and as the metal particles 6 come into contact with each other, the interior of the heat storage device is quickly heated due to the good thermal conductivity of the metal. FIG. 3 shows the humidity and time characteristics of the heat storage device according to this example. As seen in the state of heat storage in FIG. 3, the difference between the internal humidity t1 of the heat storage device and the surface humidity t2 of the heat storage container 1 becomes smaller due to the good thermal conductivity of the metal particles 6, and the internal humidity t
1 becomes the same value as the surface humidity t2 of the container 1, heat storage is completed.

一方、放熱において蓄熱器の表面が冷却され蓄熱器表面
湿度[2は低下する。しかし、金属粒子6の良熱伝導性
によって蓄熱器の内部からの放熱が良好にまた速やかに
容器表面に熱伝導される。
On the other hand, during heat radiation, the surface of the heat storage device is cooled, and the heat storage surface humidity [2] decreases. However, due to the good thermal conductivity of the metal particles 6, the heat dissipated from the inside of the heat storage device is well and quickly conducted to the surface of the container.

このため蓄熱器内部湿度t1と表面湿度t2にあまり大
差が無く、融解物質の融解湿度に極めて近い高温熱源と
しての利用が効果的に出来る。
Therefore, there is not much difference between the internal humidity t1 and the surface humidity t2 of the heat storage device, and the heat storage device can be effectively used as a high-temperature heat source that is extremely close to the melting humidity of the molten substance.

尚、融解物質5と混合される金属粒子6の代りに金属繊
維、金属繊維からなる網や織布、これらの切片、そして
金属線や金属チップが用いられる。
Note that instead of the metal particles 6 to be mixed with the molten substance 5, metal fibers, nets or woven fabrics made of metal fibers, pieces thereof, metal wires, and metal chips are used.

[発明の効果] 本発明においては、融解物質に金属を混合することによ
り蓄熱器の蓄熱時間を短かくすることができ、高温熱源
としての利用効率が良く、比較的一定湿度での放熱時間
を長くすることができる蓄熱器を提供Jることかできる
[Effects of the invention] In the present invention, by mixing metal into the molten substance, the heat storage time of the heat storage device can be shortened, the efficiency of use as a high-temperature heat source is high, and the heat radiation time at a relatively constant humidity can be shortened. It is possible to provide a heat storage device that can be made longer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による蓄熱器の一実施例を示す正面図、
第2図は第1図にお()るIvの拡大図、第3図は本発
明による蓄熱器の澗麿、時間特性を示す概略図、第4図
は従来の蓄熱器を示す正面図、第5図は従来の蓄熱器の
湿度時間特性を示す概略図である。 1・・・容器、2・・・放熱板、5・・・融解物質、6
・・・金属粒子。 代理人 弁理士 則近憲佑(ばか1名)AOに− 一屑JS
FIG. 1 is a front view showing an embodiment of a heat storage device according to the present invention;
FIG. 2 is an enlarged view of Iv in FIG. 1, FIG. 3 is a schematic diagram showing the temperature and time characteristics of the heat storage device according to the present invention, and FIG. 4 is a front view showing a conventional heat storage device. FIG. 5 is a schematic diagram showing the humidity time characteristics of a conventional heat storage device. 1... Container, 2... Heat sink, 5... Melting substance, 6
...Metal particles. Agent Patent Attorney Kensuke Norichika (one idiot) to AO - Ichiku JS

Claims (1)

【特許請求の範囲】[Claims] 所定湿度にて固体及び液体間の層変化を行なう融解物質
と、熱伝導の良好な金属との混合物を容器内に封入した
ことを特徴とする蓄熱器。
A heat storage device characterized in that a mixture of a molten substance that undergoes a layer change between solid and liquid at a predetermined humidity and a metal with good thermal conductivity is sealed in a container.
JP60044534A 1985-03-08 1985-03-08 Heat accumulator Pending JPS61205793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044534A JPS61205793A (en) 1985-03-08 1985-03-08 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044534A JPS61205793A (en) 1985-03-08 1985-03-08 Heat accumulator

Publications (1)

Publication Number Publication Date
JPS61205793A true JPS61205793A (en) 1986-09-11

Family

ID=12694172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044534A Pending JPS61205793A (en) 1985-03-08 1985-03-08 Heat accumulator

Country Status (1)

Country Link
JP (1) JPS61205793A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217196A (en) * 1987-03-05 1988-09-09 Nippon Kapuseru Prod:Kk Latent heat type heat storage material
JPH05163485A (en) * 1991-12-13 1993-06-29 Mitsubishi Cable Ind Ltd Heat storage material
JPH0640759U (en) * 1992-03-10 1994-05-31 中国電力株式会社 Heat storage type heating device
US7998433B2 (en) 2006-04-04 2011-08-16 Samsung Electronics Co., Ltd. Valve unit and apparatus having the same
WO2013015258A1 (en) * 2011-07-27 2013-01-31 シャープ株式会社 Heat storage member
US8499793B2 (en) 2006-04-04 2013-08-06 Samsung Electronics Co., Ltd. Valve unit and reaction apparatus having the same
ITPG20130019A1 (en) * 2013-04-18 2014-10-19 Lorenzo Bicili PASSIVE CONDITIONING SYSTEM FOR TECHNICAL ROOM
CN106440862A (en) * 2016-08-31 2017-02-22 苏州唫道鼎保温科技有限公司 Air exchanging and energy storing device and energy storing apparatus
KR20180039376A (en) * 2016-10-10 2018-04-18 한양대학교 산학협력단 Latent heat regenerative material and manufacturing method thereof
WO2019220998A1 (en) * 2018-05-16 2019-11-21 株式会社テックスイージー Packaged beverage temperature adjustment device, and heat transfer member
JP2019203689A (en) * 2019-09-06 2019-11-28 株式会社テックスイージー Packaged drink temperature regulator, and heat transfer member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935786A (en) * 1982-08-20 1984-02-27 Taisei Corp Latent heat storage body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935786A (en) * 1982-08-20 1984-02-27 Taisei Corp Latent heat storage body

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217196A (en) * 1987-03-05 1988-09-09 Nippon Kapuseru Prod:Kk Latent heat type heat storage material
JPH05163485A (en) * 1991-12-13 1993-06-29 Mitsubishi Cable Ind Ltd Heat storage material
JPH0640759U (en) * 1992-03-10 1994-05-31 中国電力株式会社 Heat storage type heating device
US8920753B2 (en) 2006-04-04 2014-12-30 Samsung Electronics Co., Ltd. Valve unit and apparatus having the same
US7998433B2 (en) 2006-04-04 2011-08-16 Samsung Electronics Co., Ltd. Valve unit and apparatus having the same
US8499793B2 (en) 2006-04-04 2013-08-06 Samsung Electronics Co., Ltd. Valve unit and reaction apparatus having the same
US9482473B2 (en) 2011-07-27 2016-11-01 Sharp Kabushiki Kaisha Gelatinous latent heat storage member with benard cell regions
WO2013015258A1 (en) * 2011-07-27 2013-01-31 シャープ株式会社 Heat storage member
ITPG20130019A1 (en) * 2013-04-18 2014-10-19 Lorenzo Bicili PASSIVE CONDITIONING SYSTEM FOR TECHNICAL ROOM
CN106440862A (en) * 2016-08-31 2017-02-22 苏州唫道鼎保温科技有限公司 Air exchanging and energy storing device and energy storing apparatus
KR20180039376A (en) * 2016-10-10 2018-04-18 한양대학교 산학협력단 Latent heat regenerative material and manufacturing method thereof
WO2019220998A1 (en) * 2018-05-16 2019-11-21 株式会社テックスイージー Packaged beverage temperature adjustment device, and heat transfer member
JP2019199995A (en) * 2018-05-16 2019-11-21 株式会社テックスイージー Temperature regulator for beverage in container
CN115265037A (en) * 2018-05-16 2022-11-01 泰克斯机电有限公司 Container-packed beverage temperature adjusting device and heat transfer member
US11971213B2 (en) 2018-05-16 2024-04-30 Tex E.G. Co., Ltd. Container-contained beverage temperature adjustment apparatus and heat transfer member
JP2019203689A (en) * 2019-09-06 2019-11-28 株式会社テックスイージー Packaged drink temperature regulator, and heat transfer member

Similar Documents

Publication Publication Date Title
EP1264343B1 (en) Apparatus and method for passive phase change thermal management
US4057101A (en) Heat sink
JPS61205793A (en) Heat accumulator
CN101971310B (en) Method of forming a thermo pyrolytic graphite-embedded heatsink
JP2588633B2 (en) Temperature control mechanism for electronic equipment mounted on satellites and spacecraft
CN105916350B (en) A kind of terminal device and associated method
JPS6022279B2 (en) heat storage device
JP2004071926A (en) Manufacture of cooling device
JPH02115693A (en) Latent heat accumulation system
JP2523688B2 (en) Semiconductor package
JPH0345298B2 (en)
JP2588119B2 (en) Filling method of inorganic heat storage agent in heat storage device and inorganic heat storage agent
JPS59137789A (en) Latent-heat type heat accumulator
JPS5924356B2 (en) heat storage device
JPS6013877A (en) Thermal energy storage device
JPS6356476B2 (en)
JP2000139692A (en) Electromagnetic induction heat type rice boiler
JPS62272090A (en) Cooling apparatus
JPH01234792A (en) Heat accumulating device
JPS61101795A (en) Latent heat accumulator
JPS61295493A (en) Heat storage device
JPS63317579A (en) Pretreatment of heat storage material
CN109346451A (en) A kind of radiator of high power device
JP2800329B2 (en) Latent heat storage material
JPS6120778Y2 (en)