JPH0640759U - Heat storage type heating device - Google Patents

Heat storage type heating device

Info

Publication number
JPH0640759U
JPH0640759U JP1189692U JP1189692U JPH0640759U JP H0640759 U JPH0640759 U JP H0640759U JP 1189692 U JP1189692 U JP 1189692U JP 1189692 U JP1189692 U JP 1189692U JP H0640759 U JPH0640759 U JP H0640759U
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage body
heating device
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1189692U
Other languages
Japanese (ja)
Inventor
恒雄 高木
孝夫 浅川
文雄 吉屋
哲義 石田
秀則 日高
生男 高鷹
優 森川
忠幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP1189692U priority Critical patent/JPH0640759U/en
Publication of JPH0640759U publication Critical patent/JPH0640759U/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

(57)【要約】 【目的】 蓄熱材の割れに起因する各部の熱伝導及び熱
伝達の低下を防止する。 【構成】 蓄熱体11を伝熱容器12内に固体蓄熱材1
3と蓄熱温度域で液体となる物質14とを収納して形成
したことを特徴とする。また、前記固体蓄熱材13とし
ては、マグネシアを主成分とする物質を用いることがで
き、前記蓄熱温度域で液体となる物質14としては、硝
酸ナトリウムと亜硝酸ナトリウムと硝酸カリウムの混合
物を用いることができる。 【効果】 熱膨張と収縮の繰り返しにより固体蓄熱材1
3に割れが生じても、この割れ内に熱伝導性が良好な液
体14が浸入するため、蓄熱体11の有効熱伝導率、電
気ヒータ3と蓄熱体11間の熱伝達、蓄熱体11と空気
8間の熱伝達の経時的低下を防止でき、蓄熱式暖房装置
1の暖房出力等の経時的低下を避けることができる。
(57) [Summary] [Purpose] To prevent deterioration of heat conduction and heat transfer of each part due to cracking of heat storage material. [Structure] The heat storage body 11 is placed in a heat transfer container 12 to form a solid heat storage material 1
3 and a substance 14 that becomes a liquid in the heat storage temperature range are housed and formed. Further, a substance containing magnesia as a main component can be used as the solid heat storage material 13, and a mixture of sodium nitrate, sodium nitrite, and potassium nitrate can be used as the substance 14 that becomes a liquid in the heat storage temperature range. it can. [Effect] Solid heat storage material 1 by repeated thermal expansion and contraction
Even if a crack occurs in the crack 3, the liquid 14 having good thermal conductivity enters the crack, so that the effective thermal conductivity of the heat storage body 11, heat transfer between the electric heater 3 and the heat storage body 11, and the heat storage body 11. The heat transfer between the air 8 can be prevented from decreasing with time, and the heating output of the heat storage type heating device 1 and the like can be prevented from decreasing with time.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、蓄熱式暖房装置に係り、特に蓄熱体の単位容積当たりの暖房熱負荷 が大きく、且つ小形コンパクト化された蓄熱式暖房装置に関する。 The present invention relates to a heat storage type heating device, and more particularly to a heat storage type heating device in which a heating heat load per unit volume of a heat storage body is large and which is small and compact.

【0002】[0002]

【従来の技術】[Prior art]

従来の夜間電力等を利用した蓄熱式暖房装置の一例を図2に示す。図示のよう に、蓄熱式暖房装置1は、保温材により保温された容器6内に蓄熱体2を収納し 、この蓄熱体2を電気ヒータ3により加熱し、この蓄熱体2に熱を蓄えておき、 暖房需要時には、送風機4を駆動して空気8を蓄熱体2の表面に供給し、この空 気8と蓄熱体2の熱交換により空気8を加熱し、温風9として装置外部へ取り出 すようにしたものが知られている。また、暖房需要量の変動要求に対しては、風 量調整ダンパ5の開度を調整し温風9の風量を変化させて対応するようになって いる。このような従来の蓄熱式暖房装置1の蓄熱体2には、主にマグネシアレン ガが用いられている。 FIG. 2 shows an example of a conventional heat storage type heating device using nighttime electric power. As shown in the figure, the heat storage type heating device 1 stores a heat storage body 2 in a container 6 kept warm by a heat insulating material, heats the heat storage body 2 by an electric heater 3, and stores heat in the heat storage body 2. When heating is required, the blower 4 is driven to supply the air 8 to the surface of the heat storage body 2, and the air 8 is heated by the heat exchange between the air 8 and the heat storage body 2, and is taken as warm air 9 to the outside of the device. It is known that it was put out. Further, in response to a demand change for the heating demand, the opening of the air volume adjustment damper 5 is adjusted to change the air volume of the warm air 9 to respond. A magnesia longa is mainly used for the heat storage body 2 of such a conventional heat storage type heating device 1.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし、上記従来の技術では、熱膨張と収縮とを繰り返し受けることによる蓄 熱体2の割れについて、十分な配慮がなされていないことから、次に述べるよう な問題があった。 例えば、蓄熱体2は入熱時には500〜700℃に加熱され、放熱時には室温 〜300℃に冷却される。蓄熱体2がマグネシアレンガの場合、100℃当たり 0.1〜0.2%の熱膨張をするから、急激な加熱又は冷却が行われると、熱応 力によって蓄熱体2に亀裂が生じる可能性がある。この亀裂のため、蓄熱体2の 表面又は内部に空気層ができると、蓄熱体2自体の有効熱伝導率、電気ヒータ3 と蓄熱体2間の熱伝達、蓄熱体2と空気8間の熱伝達が低下する。蓄熱体2自体 の有効熱伝導率が低下すると、蓄熱体2の表面部分だけしか有効な蓄熱に利用さ れなくなる。その結果、蓄熱体全体としての入熱特性及び出熱特性が低下する。 また、電気ヒータ3と蓄熱体2間の熱伝達が低下すると、電気ヒータ3の発生熱 が蓄熱体2に伝わりにくくなるため、電気ヒータ3の温度が上昇し、電気ヒータ 3が焼損するという問題が生じる。また、蓄熱体2と空気8間の熱伝達が低下す ると、それらの間の熱交換効率低下し、蓄えられた熱を取り出しにくくなるため 、最大暖房出力及び有効蓄熱量が低下するという問題が生じる。その結果、全体 として熱出力特性が低下する。 However, in the above-mentioned conventional technique, sufficient consideration is not given to cracking of the heat storage body 2 due to repeated thermal expansion and contraction, and therefore there are the following problems. For example, the heat storage body 2 is heated to 500 to 700 ° C. at the time of heat input and cooled to room temperature to 300 ° C. at the time of heat radiation. When the heat storage body 2 is magnesia brick, the heat storage body undergoes thermal expansion of 0.1 to 0.2% per 100 ° C. Therefore, if rapid heating or cooling is performed, the heat storage body 2 may be cracked due to thermal reaction. There is. Due to this crack, when an air layer is formed on the surface or inside of the heat storage body 2, the effective thermal conductivity of the heat storage body 2 itself, the heat transfer between the electric heater 3 and the heat storage body 2, the heat between the heat storage body 2 and the air 8. Transmission is reduced. When the effective thermal conductivity of the heat storage body 2 itself decreases, only the surface portion of the heat storage body 2 can be used for effective heat storage. As a result, the heat input characteristic and the heat output characteristic of the entire heat storage body are deteriorated. Further, when the heat transfer between the electric heater 3 and the heat storage body 2 is reduced, the heat generated by the electric heater 3 is less likely to be transferred to the heat storage body 2, so the temperature of the electric heater 3 rises and the electric heater 3 burns out. Occurs. Further, if the heat transfer between the heat storage body 2 and the air 8 is reduced, the heat exchange efficiency between them is reduced, and it becomes difficult to take out the stored heat, so that the maximum heating output and the effective heat storage amount are reduced. Occurs. As a result, the heat output characteristic is deteriorated as a whole.

【0004】 本考案の目的は、蓄熱材の割れに起因する各部の熱伝導及び熱伝達の低下を防 止した蓄熱式暖房装置を提供することにある。An object of the present invention is to provide a heat storage type heating device that prevents deterioration of heat conduction and heat transfer of each part due to cracking of the heat storage material.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、本考案は、蓄熱体を伝熱容器内に固体蓄熱材と蓄 熱温度域で液体となる物質とを収納して形成したことを特徴とする。 In order to achieve the above object, the present invention is characterized in that a heat storage body is formed by housing a solid heat storage material and a substance that becomes a liquid in a heat storage temperature range in a heat transfer container.

【0006】 前記固体蓄熱材としては、マグネシアを主成分とする物質を用いることができ る。A substance containing magnesia as a main component can be used as the solid heat storage material.

【0007】 前記蓄熱温度域で液体となる物質は、硝酸ナトリウムと亜硝酸ナトリウムと硝 酸カリウムの混合物を用いることができる。As the substance that becomes a liquid in the heat storage temperature range, a mixture of sodium nitrate, sodium nitrite, and potassium nitrate can be used.

【0008】[0008]

【作用】[Action]

このように構成されることから、本考案によれば次の作用により上記目的が達 成される。 固体蓄熱材が使用中に熱応力によって亀裂を生じた場合、この亀裂内に蓄熱温 度域で液体となる物質が浸入する。その結果、亀裂に空気相が生じないことから 、蓄熱体の有効熱伝導率の低下が防止でき、また蓄熱体と熱源間及び蓄熱体と被 加熱流体間の熱伝達の低下を防止できる。したがって、暖房出力の経時変化的な 低下を防止できる。なお、蓄熱温度域で液体となる物質が硝酸ナトリウム、亜硝 酸ナトリウム及び硝酸カリウムの混合打つの場合は、熱伝導率が高いので蓄熱体 自体の有効熱伝導率を高く維持できる。 With this configuration, according to the present invention, the above object can be achieved by the following actions. When a solid heat storage material cracks during use due to thermal stress, a substance that becomes liquid in the heat storage temperature range enters this crack. As a result, the air phase does not occur in the cracks, so that the effective thermal conductivity of the heat storage body can be prevented from lowering, and the heat transfer between the heat storage body and the heat source and between the heat storage body and the heated fluid can be prevented. Therefore, it is possible to prevent the heating output from decreasing with time. When the substance that becomes liquid in the heat storage temperature range is a mixture of sodium nitrate, sodium nitrite, and potassium nitrate, the thermal conductivity is high, so the effective thermal conductivity of the heat storage body itself can be kept high.

【0009】[0009]

【実施例】【Example】

以下、本考案の実施例を図面により説明する。 図1に、本考案の一実施例の断面構成を示す。本実施例は、蓄熱体の構成のみ が図2の従来例と異なることから、従来例と同一の機能又は構成を有する部品に は、同一符号を付して説明を省略する。図示のように、蓄熱体11は耐熱性及び 熱伝導性を有する伝熱容器12内に、粒体又は/及び粉体状の固体蓄熱材13と 蓄熱温度域で液体となる物質(以下、液体という)14とを充填して形成されて いる。固体蓄熱材13としては、単位容積当たりの比熱が大きく、熱伝導率が高 く、耐熱性に優れ、かつ、安価であることが望ましいことから、例えばマグネシ ア、アルミナが適する。本実施例では、マグネシアクリンカが用いられている。 また、液体14としては、単位容積当たりの比熱が大きく、熱伝導率が高く、粘 度が低く、耐熱性に優れていることが望ましいことから、例えば硝酸ナトリウム (0〜10%)と亜硝酸ナトリウム(40〜50%)と硝酸カリウム(40〜5 0%)の混合物が適する。本実施例では、硝酸ナトリウム7%、亜硝酸ナトリウ ム49%、硝酸カリウム44%の混合物が使用されている。なお、この混合物は 142℃以下では凝固するが、その温度以上では液体である。また、図1では蓄 熱体11が1つしか表れていないが、従来と同様に、必要に応じて複数に分割し て収納する。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a sectional configuration of an embodiment of the present invention. In this embodiment, only the structure of the heat storage body is different from that of the conventional example shown in FIG. 2. Therefore, parts having the same functions or configurations as those of the conventional example are designated by the same reference numerals and description thereof will be omitted. As shown in the figure, the heat storage body 11 includes a solid heat storage material 13 in the form of granules and / or powder in a heat transfer container 12 having heat resistance and heat conductivity, and a substance that becomes a liquid in a heat storage temperature range (hereinafter, referred to as liquid 14) and 14 are filled. As the solid heat storage material 13, for example, magnesia or alumina is suitable because it is desirable that the specific heat per unit volume is high, the thermal conductivity is high, the heat resistance is excellent, and the cost is low. In this embodiment, a magnesia clinker is used. The liquid 14 preferably has a high specific heat per unit volume, a high thermal conductivity, a low viscosity, and an excellent heat resistance. Therefore, for example, sodium nitrate (0 to 10%) and nitrous acid are used. A mixture of sodium (40-50%) and potassium nitrate (40-50%) is suitable. In this example, a mixture of 7% sodium nitrate, 49% sodium nitrite and 44% potassium nitrate is used. The mixture solidifies at 142 ° C or lower, but is liquid at or above that temperature. Further, although only one heat storage body 11 is shown in FIG. 1, it is divided into a plurality of pieces as needed and stored as in the conventional case.

【0010】 このように構成される実施例の動作について次に説明する。 電気ヒータ3により蓄熱体11を加熱すると、液体14が液化するとともに固 体蓄熱体13が加熱され、それらに熱が蓄えられる。暖房使用時には、送風機4 を運転して被加熱流体である空気8を吸込み、空気8を蓄熱体11の周りに形成 された流路に通流させて加熱し、風量調整ダンパ5を介して温風9として外部に 供給する。上記の加熱と熱交換の繰返しにより蓄熱体11が加熱・冷却され、こ れによる熱膨張と収縮の繰り返しにより、従来と同様に割れを生じる。しかし、 この割れに液体14が入り込むため空気層が発生しないから、蓄熱体11の有効 熱伝導率の低下、電気ヒータ3と蓄熱体11間の熱伝達の低下、蓄熱体11と空 気8間の熱伝達の低下等の現象が生じない。したがって、従来装置に見られたよ うな経時的に熱出力が低下する現象は生じない。The operation of the embodiment thus configured will be described below. When the heat storage body 11 is heated by the electric heater 3, the liquid 14 is liquefied and the solid heat storage body 13 is heated, and heat is stored in them. When heating is used, the blower 4 is operated to suck in the air 8 which is the fluid to be heated, and the air 8 is caused to flow through the flow path formed around the heat storage body 11 to heat it, and the air is adjusted via the air volume adjustment damper 5. It is supplied to the outside as wind 9. By repeating the above heating and heat exchange, the heat storage body 11 is heated and cooled, and due to the repeated thermal expansion and contraction, cracks occur as in the conventional case. However, since the liquid 14 enters the cracks and no air layer is generated, the effective thermal conductivity of the heat storage body 11 is reduced, the heat transfer between the electric heater 3 and the heat storage body 11 is reduced, and the space between the heat storage body 11 and the air 8 is reduced. The phenomenon such as the decrease in heat transfer does not occur. Therefore, the phenomenon that the heat output decreases with time as seen in the conventional device does not occur.

【0011】 図3と図4を用いて、上記実施例と従来の蓄熱式暖房装置の暖房特性の比較を 示す。 図3は、上記実施例と従来例の、暖房熱量の蓄熱回数による推移を示す。電気 ヒータ3が焼損しないようにその表面温度を600℃に保ちながら蓄熱体に入熱 した場合、従来の装置では、蓄熱回数が増加すると、前記したように電気ヒータ 3と蓄熱材2の間の熱伝達が低下して、電気ヒータ3の温度が過度に上昇するの で入熱可能な時間が短縮され、入熱量即ち暖房熱量が減少することが観察された 。これに対し、本実施例装置は、入熱時間の短縮をする必要がなく、暖房熱量の 減少も生じなかった。A comparison of heating characteristics between the above-described embodiment and the conventional heat storage type heating device will be described with reference to FIGS. 3 and 4. FIG. 3 shows the transition of the heating heat quantity according to the number of times of heat storage in the above-mentioned embodiment and the conventional example. When heat is input to the heat storage body while keeping the surface temperature of the electric heater 3 at 600 ° C. so that the electric heater 3 does not burn out, in the conventional device, when the number of heat storage increases, as described above, the electric heater 3 and the heat storage material 2 are separated from each other. It has been observed that the heat transfer is reduced and the temperature of the electric heater 3 is excessively increased, so that the heat input time is shortened and the heat input amount, that is, the heating heat amount is reduced. On the other hand, in the device of this example, it was not necessary to shorten the heat input time, and the heating heat quantity did not decrease.

【0012】 図4は、本実施例と従来の装置の入熱完了直後における暖房装置の入口と出口 の空気温度差の推移を示す。暖房装置の入口と出口の空気温度差が、従来の蓄熱 式暖房装置においては急速に減少したが、本実施例の装置においては変化が見ら れなかった。FIG. 4 shows the transition of the air temperature difference between the inlet and the outlet of the heating device immediately after the completion of heat input in this embodiment and the conventional device. The air temperature difference between the inlet and the outlet of the heating device rapidly decreased in the conventional heat storage heating device, but no change was observed in the device of the present embodiment.

【0013】[0013]

【考案の効果】[Effect of device]

以上説明したように、本考案によれば、熱膨張と収縮の繰り返しにより固体蓄 熱材に割れが生じても、この割れ内に熱伝導性が良好な液体が浸入するため、蓄 熱体の有効熱伝導率、電気ヒータと蓄熱体間の熱伝達、蓄熱体と空気間の熱伝達 の経時的低下を防止でき、蓄熱式暖房装置の暖房出力等の経時的低下を避けるこ とができるという効果がある。 As described above, according to the present invention, even if a crack occurs in the solid heat storage material due to repeated thermal expansion and contraction, a liquid having good thermal conductivity enters into the crack, so that It is possible to prevent the effective heat conductivity, the heat transfer between the electric heater and the heat storage body, and the heat transfer between the heat storage body and the air from decreasing with time, and to prevent the heating output of the heat storage type heating device from decreasing with time. effective.

【0014】 その結果、暖房熱量の経時的低下を見込まなくてよいから、蓄熱体の単位容積 当たりの暖房熱量を従来よりも大きくでき、装置を小形化できる。As a result, since it is not necessary to expect the heating heat quantity to decrease with time, the heating heat quantity per unit volume of the heat storage body can be made larger than in the conventional case, and the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例の蓄熱式暖房装置の断面構成
を示す図である。
FIG. 1 is a diagram showing a cross-sectional configuration of a heat storage type heating device according to an embodiment of the present invention.

【図2】従来例の蓄熱式暖房装置の断面構成を示す図で
ある。
FIG. 2 is a diagram showing a cross-sectional configuration of a conventional heat storage type heating device.

【図3】蓄熱特性に関する本考案の実施例と従来例との
比較を示す一例である。
FIG. 3 is an example showing a comparison between an example of the present invention and a conventional example regarding heat storage characteristics.

【図4】蓄熱特性に関する本考案の実施例と従来例との
比較を示す一例である。
FIG. 4 is an example showing a comparison between an example of the present invention and a conventional example regarding heat storage characteristics.

【符号の説明】[Explanation of symbols]

1 蓄熱式暖房装置 2 蓄熱材 3 電気ヒータ 4 送風機 5 風量調整ダンパ 6 保温容器 11 蓄熱体 12 伝熱容器 13 固体蓄熱材 14 液体 1 Heat Storage Type Heating Device 2 Heat Storage Material 3 Electric Heater 4 Blower 5 Air Volume Adjustment Damper 6 Heat Retaining Container 11 Heat Storage Body 12 Heat Transfer Container 13 Solid Heat Storage Material 14 Liquid

フロントページの続き (72)考案者 吉屋 文雄 広島県広島市中区小町4番33号 中国電力 株式会社営業部内 (72)考案者 石田 哲義 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)考案者 日高 秀則 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)考案者 高鷹 生男 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)考案者 森川 優 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)考案者 藤原 忠幸 東京都千代田区大手町二丁目6番2号 バ ブコック日立株式会社内Front page continuation (72) Fumio Yoshiya 4-33 Komachi, Naka-ku, Hiroshima City, Hiroshima Prefecture Sales Department, Chugoku Electric Power Co., Inc. (72) Tetsuyoshi Ishida 3-36 Takaramachi, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Research In-house (72) Hidenori Hidaka, No. 36, Takara-cho, Kure-shi, Hiroshima, Babcock-Hitachi Co., Ltd., Kure Laboratory (72) In-house creator, Takeo Takataka 6-9, Takara-cho, Kure-shi, Hiroshima, Babcock-Hitachi, Kure Plant ( 72) Inventor Yu Morikawa 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Kure Factory (72) Inventor Tadayuki Fujiwara 2-6-2 Otemachi, Chiyoda-ku, Tokyo Babcock Hitachi Ltd.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 蓄熱体と、この蓄熱体を加熱する加熱源
と、前記蓄熱体と前記加熱源とが収納され前記蓄熱槽の
表面に被加熱流体を通流する流路が形成されてなる保温
容器とを含んでなる蓄熱式暖房装置において、前記蓄熱
体が伝熱容器内に固体蓄熱材と蓄熱温度域で液体となる
物質とを収納して形成されたことを特徴とする蓄熱式暖
房装置。
1. A heat storage body, a heating source for heating the heat storage body, the heat storage body and the heating source are housed, and a flow path is formed on the surface of the heat storage tank for passing a fluid to be heated. In a heat storage type heating device including a heat retention container, the heat storage body is formed by accommodating a solid heat storage material and a substance that becomes a liquid in a heat storage temperature region in a heat transfer container. apparatus.
【請求項2】 請求項1において、前記固体蓄熱材が、
マグネシアを主成分とする物質であることを特徴とする
蓄熱式暖房装置。
2. The solid heat storage material according to claim 1,
A heat storage type heating device characterized by being a substance whose main component is magnesia.
【請求項3】 請求項1において、前記蓄熱温度域で液
体となる物質は、硝酸ナトリウムと亜硝酸ナトリウムと
硝酸カリウムの混合物であることを特徴とする蓄熱式暖
房装置。
3. The heat storage type heating device according to claim 1, wherein the substance that becomes a liquid in the heat storage temperature range is a mixture of sodium nitrate, sodium nitrite, and potassium nitrate.
JP1189692U 1992-03-10 1992-03-10 Heat storage type heating device Pending JPH0640759U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189692U JPH0640759U (en) 1992-03-10 1992-03-10 Heat storage type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189692U JPH0640759U (en) 1992-03-10 1992-03-10 Heat storage type heating device

Publications (1)

Publication Number Publication Date
JPH0640759U true JPH0640759U (en) 1994-05-31

Family

ID=11790494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189692U Pending JPH0640759U (en) 1992-03-10 1992-03-10 Heat storage type heating device

Country Status (1)

Country Link
JP (1) JPH0640759U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017449A (en) * 2006-12-08 2011-01-27 United Technologies Corp <Utc> Turbine system, and system and method for supplying energy to supercritical carbon dioxide turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205793A (en) * 1985-03-08 1986-09-11 Toshiba Corp Heat accumulator
JPS6225640A (en) * 1985-07-25 1987-02-03 松下電工株式会社 Heat accumulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205793A (en) * 1985-03-08 1986-09-11 Toshiba Corp Heat accumulator
JPS6225640A (en) * 1985-07-25 1987-02-03 松下電工株式会社 Heat accumulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017449A (en) * 2006-12-08 2011-01-27 United Technologies Corp <Utc> Turbine system, and system and method for supplying energy to supercritical carbon dioxide turbine

Similar Documents

Publication Publication Date Title
US3381113A (en) Heat storage apparatus
US2808494A (en) Apparatus for storing and releasing heat
US2856506A (en) Method for storing and releasing heat
EP0004058B1 (en) Heat storage device
CA2356728A1 (en) Heat storage type heater and method of controlling input and output of heat of the same
FR2143468B1 (en)
JP2000097498A (en) High temperature heat storage tank
CA2001505A1 (en) Pipe apparatus in heat accumulator
FR2436807A1 (en) PRODUCT SUITABLE FOR STORING AND TRANSPORTING THERMAL ENERGY
JPH0640759U (en) Heat storage type heating device
JP2700897B2 (en) Heat storage device
CN210921815U (en) Heat exchange unit for gas water heater or wall-mounted furnace and gas water heater or wall-mounted furnace
US3791136A (en) Hot-gas engine
JPS6113141B2 (en)
JP2620958B2 (en) Heat storage device
US2215519A (en) Hot air furnace
JPH0345297B2 (en)
JPS6248995B2 (en)
JPH0443291A (en) Heat storage element
JP3055218B2 (en) Heat storage floor heating system
SU1105686A1 (en) Hydraulic heat drive
CN2268874Y (en) Instant heatpipe hot air apparatus
SU573279A2 (en) Electrical soldering iron
SU775527A1 (en) Air heater
SU425372A1 (en) ELECTRIC HEATER