JPS61205626A - Hydrolysis of uranium hexafluoride - Google Patents

Hydrolysis of uranium hexafluoride

Info

Publication number
JPS61205626A
JPS61205626A JP4585685A JP4585685A JPS61205626A JP S61205626 A JPS61205626 A JP S61205626A JP 4585685 A JP4585685 A JP 4585685A JP 4585685 A JP4585685 A JP 4585685A JP S61205626 A JPS61205626 A JP S61205626A
Authority
JP
Japan
Prior art keywords
ejector
gas
aqueous solution
pure water
uo2f2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4585685A
Other languages
Japanese (ja)
Other versions
JPH0432769B2 (en
Inventor
Shinichi Hasegawa
伸一 長谷川
Masao Sekine
関根 将男
Motokazu Yoshikawa
吉川 元和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP4585685A priority Critical patent/JPS61205626A/en
Publication of JPS61205626A publication Critical patent/JPS61205626A/en
Publication of JPH0432769B2 publication Critical patent/JPH0432769B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an aqueous solution of UO2F2 having uniform concentration, easily, by contacting UF6 gas with pure cooling water at the tip of an ejector to effect the continuous decomposition of the gas, transferring the produced aqueous solution of UO2F2 in a receptor tank, measuring the concentration of the UO2F2, and feeding back the measured value to the ejector system. CONSTITUTION:Cooled pure water is supplied to the core tube 7a of the ejector 7 from the top, and UF6 gas is supplied to the side of the ejector 7 in a manner sucked toward the core tube 7a. The pure water is made to contact with the UF6 gas at the tip of the nozzle 7b of the ejector 7, and the UF6 gas is hydrolyzed to form an aqueous solution of UO2F2. The UO2F2 solution is introduced into a receptor tank 8 stirred by the circulation process. The concentration of UO2F2 is measured automatically in the receptor tank 8, and the measured value is fed back to the automatic control valves 14, 25 for the control of the flows of pure water and UF6 gas. The size of apparatus can be reduced and an aqueous solution of UO2F2 having uniform concentration can be produced continuously by this process.

Description

【発明の詳細な説明】 (産業分野) 本発明は六フッ化ウランを連続的に加水分解して一定濃
度のフッ化ウラニル水溶液とする六フッ化ウランの加水
分解法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field) The present invention relates to a method for hydrolyzing uranium hexafluoride in which uranium hexafluoride is continuously hydrolyzed to obtain an aqueous uranyl fluoride solution having a constant concentration.

(従来技術とその問題点) 発電用原子炉燃料の原料である二酸化ウラン粉末の製造
法として、重ウラン酸アンモニウム(ADU)を経由す
るADU法が広く用いられている。
(Prior Art and its Problems) As a method for producing uranium dioxide powder, which is a raw material for nuclear reactor fuel for power generation, the ADU method using ammonium deuterate (ADU) is widely used.

すなわち、この方法は固体の六フッ化ウラ/(UFs)
を加熱気化させ、この六フッ化クランガスに純水を接解
し加水分解してフッ化ウラニル(UO2F2 )の希薄
水溶液とし、この水溶液にアンモニア水溶液を加えて重
ウラン酸アンモニウム(ADU)を沈殿させ、さらにこ
れをr過乾燥後、焙焼還元工程を経てU 02粉末を得
る方法である。
That is, this method uses solid ura hexafluoride/(UFs)
is heated and vaporized, and this hexafluoride crane gas is fused with pure water and hydrolyzed to form a dilute aqueous solution of uranyl fluoride (UO2F2), and an ammonia aqueous solution is added to this aqueous solution to precipitate ammonium deuterate (ADU). In this method, the powder is further overdried and then subjected to a roasting and reduction process to obtain U 02 powder.

しかしながら、この転換加工工程において、所定の物性
を有するUO!粉末をバラツキなく得るためには、上記
の諸工程の操業条件を一定条件に維持することが必要で
あり、特にADUの沈殿条件は重要である。このADU
の沈殿条件に大きな影響を及ぼす因子として、フッ化ウ
ラニル水溶液のウラン濃度があり、六フッ化ウランを加
水分解する工程において、ウラン濃度の一定なフッ化ウ
ラニル(UO2F2)水溶液を製造することが必要であ
り、さらに量産のためには六フッ化ウランの加水分解を
連続的に行なうこ゛とも要求される。
However, in this conversion process, UO! In order to obtain powder without variation, it is necessary to maintain the operating conditions of the above-mentioned steps at constant conditions, and the precipitation conditions of ADU are particularly important. This ADU
The uranium concentration of the uranyl fluoride aqueous solution is a factor that greatly affects the precipitation conditions of uranyl fluoride.In the process of hydrolyzing uranium hexafluoride, it is necessary to produce a uranyl fluoride (UO2F2) aqueous solution with a constant uranium concentration. Moreover, for mass production, it is also required to continuously hydrolyze uranium hexafluoride.

従来技術の問題点として、次の如きものが挙げられる。Problems with the prior art include the following.

(110Faの加水分解法としてはスクラバ一方式が一
般的である。この方法は加水分解カラムの下方よりUF
sF2ガス給し、上方から純水をスプレーしてUO,F
、の水溶液をつくる方法で、気液の接触率(反応率)を
上げるため、カラム内にテレジット等の充填材を入れる
場合が多く、反応装置は比較的大きなものとなる。
(The general method for hydrolyzing 110Fa is to use a scrubber type.This method uses UF from the bottom of the hydrolysis column.
Supply sF2 gas and spray pure water from above to UO, F.
In order to increase the gas-liquid contact rate (reaction rate), a packing material such as telesitite is often placed in the column, and the reaction apparatus is relatively large.

(2)一定濃度のU Os F を水溶液をつくる場合
にはバッチ連続方式にならざるを得す、複雑なシーケン
ス操作が必要となる。
(2) When preparing an aqueous solution of U Os F at a constant concentration, a continuous batch method is required, and a complicated sequence of operations is required.

(発明の目的) 本発明の目的は上記の従来技術の問題点を解決し、六フ
ッ化ウランを加水分解して一定濃度のフッ化ウラニル水
溶液をコンパクトな装置で連続製造する方法を提供する
にある。
(Objective of the Invention) The object of the present invention is to solve the problems of the prior art described above and to provide a method for continuously producing an aqueous uranyl fluoride solution of a constant concentration by hydrolyzing uranium hexafluoride using a compact device. be.

この目的を達成すべく、本発明者らは検討した結果、U
 F aガスは水と容易に反応するものであシ、かつ水
との反応は発熱反応で約100 kca l/mo 1
UFsの反応熱が発生し、そのため、UO,Fffiの
液温が上昇することに着目し、あらかじめ所定温度に冷
却した状態の純水をエジェクターの上方から供給し、−
万エジエクターの側方からは吸引された形でUFsF2
ガス給することにより、非常にコンパクトな装置で容易
にUFaガスを連続加水分解することができ、かつ該加
水分解されたあとのUOtFx水溶液を液比型測定用の
受槽に受は入れ、液比型からtyotpx濃度を求め、
その測定値をエジェクターに供給されるUFaガス及び
純水のそれぞれの調節弁にフィードバックすることによ
り、一定濃度のUO,F!水溶液を連続的に製造できる
ことを見出し、本発明に到達した。
In order to achieve this objective, the present inventors have studied and found that U
Fa gas easily reacts with water, and the reaction with water is an exothermic reaction of about 100 kcal/mo 1
Focusing on the fact that the reaction heat of UFs is generated, which causes the liquid temperature of UO and Fffi to rise, pure water that has been cooled to a predetermined temperature is supplied from above the ejector.
UFsF2 is sucked in from the side of the 1000-degree ejector.
By supplying gas, UFa gas can be easily and continuously hydrolyzed with a very compact device, and the hydrolyzed UOtFx aqueous solution is received in a receiver tank for liquid ratio measurement, and the liquid ratio is measured. Determine the tyotpx concentration from the mold,
By feeding back the measured values to the respective control valves of UFa gas and pure water supplied to the ejector, a constant concentration of UO, F! It was discovered that an aqueous solution can be produced continuously, and the present invention was achieved.

(発明の構成) すなわち、本発明によれば、六フッ化ウランを加水分解
する方法において、あらかじめ4〜20℃に冷却した純
水をエジェクターの上方から該エジェクターの中心管内
に供給するとともに該エジェクターの側方から該エジェ
クターの中心管方向に吸引された形で六フッ化ウランガ
スを供給し、該エジェクター先端部にて該純水と該六フ
ッ化ウランを接触させ、該六フッ化ウランを加水分解し
てフッ化ウラニル水溶液とし、該フッ化ウラニル水溶液
を、ポンプ循環方式で攪拌している受槽に導入し、該受
槽にて該フッ化つ2ニルのa度を自動測定し、該測定値
を上記エジェクターに供給される六フッ化ウラ/ガス及
び純水の各流量調整弁にフィードバックすることにより
、一定濃度のフッ化ウラニル水溶液を連続して製造する
ことを特徴とする六7フ化ウランの加水分解法、が得ら
れる。
(Structure of the Invention) That is, according to the present invention, in a method for hydrolyzing uranium hexafluoride, pure water cooled in advance to 4 to 20° C. is supplied from above the ejector into the central pipe of the ejector, and the ejector The uranium hexafluoride gas is supplied in the form of suction from the side toward the central pipe of the ejector, and the pure water and the uranium hexafluoride are brought into contact at the tip of the ejector, and the uranium hexafluoride is hydrated. The uranyl fluoride aqueous solution is decomposed, and the uranyl fluoride aqueous solution is introduced into a receiving tank which is stirred by a pump circulation method, and the a degree of the uranyl fluoride is automatically measured in the receiving tank, and the measured value is The uranium hexafluoride is characterized in that an aqueous uranyl fluoride solution of a constant concentration is continuously produced by feeding back the uranyl hexafluoride/gas and pure water to the respective flow rate adjustment valves supplied to the ejector. A hydrolysis method is obtained.

次に、本発明を図面によって説明する。Next, the present invention will be explained with reference to the drawings.

図面は本発明の一実施例のフローシート図である。The drawing is a flow sheet diagram of one embodiment of the present invention.

図において、 1は純水、2は冷却器(熱交換器)3は冷水、4は凡ガ
ス、5はUFeガス、6はフィードバック回路、7はエ
ジェクター(加水分解器)、8は濃度測定用U O* 
F を貯槽、9はI)ff自動測定器、lOはポンプ、
11はUO*Fm水溶液、12はオーバフロー(次工m
)、13はポンプ循環路、14は純水の流J#に8!l
整弁、15はUFs’)fi量調整弁である。
In the figure, 1 is pure water, 2 is a cooler (heat exchanger), 3 is cold water, 4 is ordinary gas, 5 is UFe gas, 6 is a feedback circuit, 7 is an ejector (hydrolyzer), and 8 is for concentration measurement. U O *
F is the storage tank, 9 is the I)ff automatic measuring device, IO is the pump,
11 is UO*Fm aqueous solution, 12 is overflow (next process m
), 13 is the pump circulation path, 14 is the pure water flow J#, 8! l
15 is a UFs')fi amount adjusting valve.

図において、UF・と反応させる純水1を熱交換器2で
あらかじめ4〜20℃に冷却しておく。冷却が4℃未満
では純水が凍結する可能性があり、温度側(財)上好ま
しくなく、また20℃を越える場合には、UFsとの反
応によってUO*Fg 水溶液の液温が6()℃以上に
上昇するので、反応装置上また次式のようVCHFf1
g気が発生するのでいずれも不適当である。
In the figure, pure water 1 to be reacted with UF. is cooled in advance to 4 to 20°C in a heat exchanger 2. If the cooling is less than 4℃, the pure water may freeze, which is unfavorable from a temperature standpoint, and if it exceeds 20℃, the temperature of the UO*Fg aqueous solution will decrease to 6() due to the reaction with UFs. Since the temperature rises above ℃, VCHFf1 on the reactor is also
Both are inappropriate because they generate gas.

U F@ +2 Ht04UO* F * +4 HF
さらに、本発明では純水とURガスとの接触、反応はエ
ジェクター7の先端部で行なう。すなわち、エジェクタ
ー7の上方から所定温度に冷却された純水をエジェクタ
ー7の中心管7a内に供給し、エジェクター7の四方か
らはエジェクター7の中心管7a方向に吸引された形で
UPIガスを供給し、ノズル7bの先端部にて純水とU
 Fsガスを接触させてUF・の加水分解を行なわせる
。ノズル7bの材質は耐食性材料のテフロン等が好まし
い。
U F@ +2 Ht04UO* F * +4 HF
Furthermore, in the present invention, the contact and reaction between pure water and UR gas is carried out at the tip of the ejector 7. That is, pure water cooled to a predetermined temperature is supplied from above the ejector 7 into the central pipe 7a of the ejector 7, and UPI gas is supplied from all sides of the ejector 7 in the form of suction towards the central pipe 7a of the ejector 7. Then, at the tip of the nozzle 7b, pure water and U
Contact with Fs gas causes hydrolysis of UF. The material of the nozzle 7b is preferably a corrosion-resistant material such as Teflon.

加水分解で生成したUOmFt水溶液はボン7′10に
よるポンプ循環方式により攪拌している受槽8に導入さ
れる。受槽8では一定高さの液柱における差圧ΔPを測
定することにより、’UOgFよ水溶液のU O! F
 t ill iKを自動的に求め、この値をエジェク
ター7に供給する純水およびUF・ガス流量の自動調節
弁14及び15にフィードバックすることにより、一定
s度のUOlF、水溶液を連続して製造することが可能
となる。
The UOmFt aqueous solution produced by hydrolysis is introduced into the receiving tank 8, which is being stirred by a pump circulation system using a bong 7'10. In the receiver tank 8, by measuring the differential pressure ΔP in the liquid column at a constant height, the 'UOgF of the aqueous solution! F
By automatically determining t ill iK and feeding this value back to the automatic control valves 14 and 15 for the pure water supplied to the ejector 7 and the UF/gas flow rate, UOLF and aqueous solution at a constant degree of s are continuously produced. becomes possible.

本発明ではエジェクター7における純水とUF。In the present invention, pure water and UF are used in the ejector 7.

ガスの供給方法により両者を密接に接触せしめてUF・
ガスの加水分解を起こさせるので加水分解装置の小型化
を可能とする。
UF/
Since the gas is hydrolyzed, it is possible to downsize the hydrolysis device.

(発明の効果) 本発明は上記の構成をとることによって、次の効果を示
すことができる。
(Effects of the Invention) By adopting the above configuration, the present invention can exhibit the following effects.

(1)コンパクトな加水分解装置で一定濃度のUOxF
m水溶液を連続して製造することができる。また、コン
パクトな装置であるため、臨界安全管理上も好ましい。
(1) A constant concentration of UOxF with a compact hydrolysis device
m aqueous solutions can be produced continuously. Moreover, since it is a compact device, it is also preferable in terms of criticality safety management.

(21UF@ガス圧を高めることな(、加水分解するこ
とができ、UF6の加熱温度をあまり高める必要がな(
亡とから安全である。
(21UF@Can be hydrolyzed without increasing the gas pressure, and there is no need to increase the heating temperature of UF6 too much.
safe from death.

(3)UFsを吸引して加水分解することができるため
、UF、シリンダーの残留UFs量を少なくできる。
(3) Since UFs can be suctioned and hydrolyzed, the amount of UFs remaining in the UF and cylinder can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例に使用される装置系統図である
。 図において、 l−一一一純水 2−一一一冷却器(熱交換器) 3−一一一冷水 4−−−− N2ガス 5−−−− UF、ガス 6−−−−フイードバツク回路 7−−−〜エジエクター 7a−m−エジエクターの中心管 7b−m−エジエクターのノズル 8−一一〜濃度測定用U Ox F を受槽9−一一一
濃度自動測定器 10−−−−ポンプ 11−−−− UO*FtOx液 12−−−−オーバーフロー 13−−−−ボ/ブ循璋路 14−−−一純水の流量調節弁
The drawing is a system diagram of an apparatus used in an embodiment of the present invention. In the figure, 1-111 pure water 2-111 cooler (heat exchanger) 3-111 cold water 4---- N2 gas 5---- UF, gas 6---- Feedback circuit 7-----Ejector 7a-m-Ejector central pipe 7b-m-Ejector nozzle 8-11~Concentration measurement U Ox F receiving tank 9-111 Concentration automatic measuring device 10---Pump 11 --- UO*FtOx liquid 12 --- Overflow 13 --- Bo/B circulation path 14 --- Pure water flow rate control valve

Claims (1)

【特許請求の範囲】[Claims] (1)六フッ化ウランを加水分解する方法において、あ
らかじめ4〜20℃に冷却した純水をエジェクターの上
方から該エジェクターの中心管内に供給するとともに該
エジェクターの側方から該エジェクターの中心管方向に
吸引された形で六フッ化ウランガスを供給し、該エジェ
クター先端部において該純水と該六フッ化ウランガスと
を接触させ、該六フッ化ウランを加水解してフッ化ウラ
ニル水溶液とし、該フッ化ウラニル水溶液をポンプ循環
方式により攪拌している受槽に導入し、該受槽にて該フ
ッ化ウラニルの濃度を自動測定し、該測定値を該エジェ
クターに供給される六フッ化ウランガス及び純水の各流
量調整弁にフィードバックすることにより、一定濃度の
フッ化ウラニル水溶液を連続して製造することを特徴と
する六フッ化ウランの加水分解法。
(1) In a method of hydrolyzing uranium hexafluoride, pure water pre-cooled to 4 to 20°C is supplied from above the ejector into the center pipe of the ejector, and from the side of the ejector in the direction of the center pipe of the ejector. uranium hexafluoride gas is supplied in a suctioned form, and the pure water and the uranium hexafluoride gas are brought into contact at the tip of the ejector, and the uranium hexafluoride is hydrolyzed to form a uranyl fluoride aqueous solution. A uranyl fluoride aqueous solution is introduced into a receiving tank that is being stirred by a pump circulation method, the concentration of the uranyl fluoride is automatically measured in the receiving tank, and the measured value is used to add uranium hexafluoride gas and pure water to be supplied to the ejector. A uranium hexafluoride hydrolysis method characterized by continuously producing a uranyl fluoride aqueous solution at a constant concentration by feeding back to each flow rate adjustment valve.
JP4585685A 1985-03-08 1985-03-08 Hydrolysis of uranium hexafluoride Granted JPS61205626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4585685A JPS61205626A (en) 1985-03-08 1985-03-08 Hydrolysis of uranium hexafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4585685A JPS61205626A (en) 1985-03-08 1985-03-08 Hydrolysis of uranium hexafluoride

Publications (2)

Publication Number Publication Date
JPS61205626A true JPS61205626A (en) 1986-09-11
JPH0432769B2 JPH0432769B2 (en) 1992-06-01

Family

ID=12730846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4585685A Granted JPS61205626A (en) 1985-03-08 1985-03-08 Hydrolysis of uranium hexafluoride

Country Status (1)

Country Link
JP (1) JPS61205626A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394997A (en) * 1965-04-12 1968-07-30 Gen Electric Method of preparing uranium diuranate
JPS5039435A (en) * 1973-08-10 1975-04-11
JPS5126389U (en) * 1974-08-16 1976-02-26
JPS5788033A (en) * 1980-11-18 1982-06-01 Mitsubishi Heavy Ind Ltd Converting method for uranium hexafluoride into uranium oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394997A (en) * 1965-04-12 1968-07-30 Gen Electric Method of preparing uranium diuranate
JPS5039435A (en) * 1973-08-10 1975-04-11
JPS5126389U (en) * 1974-08-16 1976-02-26
JPS5788033A (en) * 1980-11-18 1982-06-01 Mitsubishi Heavy Ind Ltd Converting method for uranium hexafluoride into uranium oxide

Also Published As

Publication number Publication date
JPH0432769B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
WO2022007378A1 (en) Apparatus and process for continuously preparing titanium oxychloride solution
JP2003238122A (en) Method and apparatus for producing nitrogen trifluoride
JPS60200830A (en) Manufacture of fine powder metal oxide from aqueous solutionor solid mixture of metal nitrate
CN205011544U (en) Retrieve in fluorine -containing useless nitric acid processing apparatus of fluorine and nitric acid respectively
JP2015526378A (en) Germanium gas production apparatus and monogermane gas production method using the same
JPS61205626A (en) Hydrolysis of uranium hexafluoride
KR890004803B1 (en) Process for conversion of uf6 to uo2
CN109437134A (en) The preparation method and device of nitrogen oxides
CN112126971B (en) Crystal growth process control method based on solution concentration online estimation
Maw-Chwain et al. Conversion of UF6 to UO2: A quasi-optimization of the ammonium uranyl carbonate process
ES8701691A1 (en) Process and apparatus for the preparation of sinterable uraniumdioxide.
US4120936A (en) Process for conversion of UF6 to UO2
EP0498138A1 (en) Process for converting uranyl compounds to UO2 via ADU
Yamagishi A new internal gelation process for fuel microsphere preparation without cooling initial solutions
JPS621580B2 (en)
CN113061076A (en) Preparation method of chloro-tert-pentane
JPH03128366A (en) Preparation of trichloroisocyanuric acid
CA1096583A (en) Method of preparation of uranium tetrafluoride
CN110217763A (en) A kind of preparation method of LiFSI
EP0377521B1 (en) High yield sodium hydrosulfite generation
US7776302B1 (en) Fluorine extraction systems and associated processes
CN117205831A (en) Used for preparing UO 3 Is fed into the process
JP4023531B2 (en) Heavy nitrogen production method and heavy nitrogen production apparatus
US2725278A (en) Manufacture of uranium tetrachloride
Hueston Nuclear grade uranium tetrafluoride by the moving bed process