JPS61204944A - Insulating film forming method - Google Patents

Insulating film forming method

Info

Publication number
JPS61204944A
JPS61204944A JP60044569A JP4456985A JPS61204944A JP S61204944 A JPS61204944 A JP S61204944A JP 60044569 A JP60044569 A JP 60044569A JP 4456985 A JP4456985 A JP 4456985A JP S61204944 A JPS61204944 A JP S61204944A
Authority
JP
Japan
Prior art keywords
insulating film
film
forming
temperature
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044569A
Other languages
Japanese (ja)
Inventor
Yoshitaka Furukawa
古川 吉孝
Osamu Mikami
修 三上
Masamichi Okamura
岡村 正通
Yukihiro Hirota
幸弘 廣田
Tomoko Kuki
久木 智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60044569A priority Critical patent/JPS61204944A/en
Publication of JPS61204944A publication Critical patent/JPS61204944A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide an insulating film forming method suitable for manufacture of mainly InP field effect transistors and characterized by excellent interface characteristics of III-V compound semiconductors and capability of forming practical gate insulating film, by using phosphorus trichloride (PCl3) and ammonia (NH3) as materials for the insulating film, and specifying a film forming temperature. CONSTITUTION:In forming an insulating film including phosphorus as well as P3N5, phosphorus trichloride (PCl3) and ammonia (NH3) are used as raw materials, and a chemical vapor deposition method is used at a temperature region of 350-250 deg.C. When the film is made at a temperature lower than 250 deg.C, its insulating resistance is low and the film cannot be used as a gate insulating film, Meanwhile, at a temperature higher than 350 deg.C, thermal deterioration of the surface of a semiconductor cannot be avoided, and an accumulating layer cannot be formed on a P-type substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は、■−v族化合物半導体(燐化インジウムIn
P)を用いる電界効果トランジスタのゲート絶縁膜など
の絶縁膜形成法に関するものである。 [従来技術] 従来、InPt界効果トランジスタ用のゲート絶縁膜と
して、アルミナ、酸化珪素、燐化窒素(P3N、)等の
化学的気相堆積膜が用いられてきた。化学堆桔において
は、ゲート絶縁膜の構成元素が半導体の構成元素に近い
ことが、界面での相n拡散の点からは9ましい、この点
で、従来研究されてきた燐化窒素vA(P3Ns)は、
InPの構成要素である燐(P)を含むことから、好都
合である。 しかしながら、ホスフィン(PH,)とアンモニア(N
H3)を用いる通常の方法を用いてP3N、を形成する
ためには、InP基板を500℃以−ヒに加熱する必要
があり、基板表面の熱劣化は不可避であ特慴がA +<
劣化11、高性能なlS形電界効饗ト−ア・パ スタを
実現することがで、粉なかった。 [11的] 壬こr、本命11の[目的は、I−V族化合物゛I′:
導体客・の!A! u’ii特性i、債ね、第2かも実
用に酎にるゲート絶縁11り紮珪ぞ+&することができ
、Etと11.てIFIP屯界効’N hランジスタの
製作に供(7て好適な絶縁膜j[箇表、法り提供するこ
とにある。 [、q jll (7)構成1 、”の、1らな目的を達成jるために、未発
[Technical field] The present invention relates to a ■-v group compound semiconductor (indium phosphide In
This invention relates to a method of forming an insulating film such as a gate insulating film of a field effect transistor using P). [Prior Art] Conventionally, chemical vapor deposition films of alumina, silicon oxide, nitrogen phosphide (P3N, etc.) have been used as gate insulating films for InPt field effect transistors. In chemical deposition, it is desirable for the constituent elements of the gate insulating film to be close to the constituent elements of the semiconductor from the point of view of phase n diffusion at the interface. P3Ns) is
This is advantageous because it contains phosphorus (P), which is a constituent of InP. However, phosphine (PH, ) and ammonia (N
In order to form P3N using the usual method using H3), it is necessary to heat the InP substrate to 500°C or higher, and thermal deterioration of the substrate surface is unavoidable.
We were able to realize a high-performance lS-type field effect chamber with no deterioration and no powder. [11th objective] Ikor, favorite 11 [Objective is IV group compound ゛I':
Conductor customer! A! U'ii characteristics i, bond, the second one can be practically used for gate insulation 11 ri +&, and Et and 11. The purpose of this is to provide a list of suitable insulating films for the production of IFIP field effect Nh transistors. In order to achieve

【!1は、
ρ、N1、と回じ〈燐を含む絶縁膜の形成に際11、玉
用化燐(PC93) ドア 7 fニア (NH3)を
原材車1とI=−(用い、かつ350℃〜250℃の温
度領域での化学気相堆積法を用いる。 本命1!1は、従来の技術とは、使用している材料物質
が異なり、かつ膜形成が半導体基板に熱劣化を与えない
温度領域でi−+7藺な点が異なる。 [1”極側1 以トに図+I’iiを谷間して本発明の詳細な説明する
。 第1図は本発明の一1゛施例であり、ここriは?l美
製反応管、2は反応管1のまわりに配置した市気炉、3
および4は反応管1の分岐された入[15は反1v ’
t? 1の出口、6は反応管1内に配置されたInP基
板である。7は反応管1の軸方向の&A I!’1分/
Iiの一例をyf<す。 人■3より、アルゴンガスで希釈したアンモニアガス(
51%〜20%)を 人f】41弧よりPC立、ノ人気
を含むアルゴンガスを、それぞれ、反応管l内器、゛供
給する。反応管lの一例として、内径8■の石))反応
管を使用する場合、アンモニアガスを魔3)5cc/s
inで人[]3より導入17、一方温室に保たれたPG
fLうなアルゴンガスでバブルさせたものを、さらにア
ルゴンガス50cc/winで希釈して人口4より反応
管l内に導入する6反范管1中におかれたInP)1(
板6を300℃で5分間加熱することにより、  In
P基板6トには厚さo、t g■の窒化溝膜を堆積する
ことができた。 第2図は、l、述の未発I11方法により、膜形成温度
300℃でp形1nP)、(板1−に窒化溝膜を厚さ0
.1μ偉程度形成した後、その膜トに金電極を形成]7
た阿Isタイオードにおいて、半導体および金属間で測
定した電圧(v)−8埴(pF)特性である。測定周波
数は83 、3 Hzとした。 未発IJ+により形俵、シた窒化溝膜を用いた場合、第
2図から1!1らかなように、p形1mP基板に一5V
程度印加することにより、絶縁膜容にに等1.7い容(
3が得られている。すなわち、p形1nP基板に菩積層
の形成が可能になっていることがわかる。このことば、
半導体の価電子帯近傍の界面準位Iffが小、さいこと
を毬味する。 競に、)−3ツブのQ電中心がつくる電場の77−ロ/
散乱は ″f半導体禁11奮1)全域の界面準位′と1
3に俵イlす−ると考λられる。したがって、本発明じ
より形喰1〜た窒化溝膜の場合、クーロン散乱が小さく
なると考えられるから、この絶縁膜を応用1.たn−ブ
ーヤンネルMIS形電界効采トランジスタの”χ効移動
度を制限する安置が少なくなり、高い実効移動度が期待
される。 用いた化学気相堆積では、l−、述した本発明方法で1
−述の温度範囲(250℃〜350℃)でも窒化燐1漠
を形成することかでjる。しかし、250℃以下の低い
温度で製作した膜の場合には絶縁抵抗が低く、ゲート絶
縁膜として使用することができなかった。−力、 35
0℃以上の高い温度では、半導体表面の熱劣化を避ける
ことができず、p形基板に蓄稙層を形成することは不可
1針であった。 第3図に、膜形成温1バが350℃の場合にP形InP
基板トに′循化燐膜を形成し、第2図につj述べたよう
にして形成した暦ISダイオードの゛電圧(V)−容:
1)(pF)特性を示1゜測定周波数は83.8Hzと
しt−0第2図の場合(膜形成温度300℃)とは異な
り、゛重圧−7Vを印加しても8賃は全く増加せず、ノ
エルミレベルがピンニングされていることがわかる。こ
のことは、半導体の価電子帯近傍に界血準イQ密1ff
が多数存在することを5a味する。 したがって、]]り形IA 編Iffが350℃以上、
の場合には、MIS形電界効果I・ランジスタのゲート
絶縁膜次に 本発明により形成した絶縁膜を用いて1作
した反転形InP−NIs形電界効果トランジスタのド
レイン電流−ドレイン電圧特性を第4図に示す、この特
性かられかるように、このトランジスタは電界効果トラ
ンジスタとしての特性を示し。 実効電子移動度としてfQQOc+s2/V a se
cを越える偵を得た。この値は、従来の高温プロセスで
作成した窒化溶脱(P3Ns)を用いた場合に比べて、
2桁程度大きい値である。これは、低温状態で絶縁膜を
形成したことの効果およびこれに伴う前述した界面準位
密度の低減化に起因している。 MIS形電界効果トランジスタの他の電気的特性として
、ドレイン電流のドリフト特性を測定した結果、ドリフ
トは見られず、104秒後においてもほぼ一定のドレイ
ン電流を維持することができた。これは、ゲート絶縁膜
のち密性が高いので、膜中の電子捕獲準位が極めて少な
いためと判断される。 [勿」 果I L)I−説明したように、未発11によれば 絶縁膜と
゛ト導体との界面特性が良好な絶縁膜を形成す゛るごと
ができ、これにより電気的特性の良好な電界効果トラン
ジスタを構成することができる。1.かも、本発明方法
は、絶縁膜形成温度を制御するのみでよいから、優れた
特性を有する半導体装δを容易に製請することができる
というkなる利(!!、がある。
[! 1 is
ρ, N1, and 11, when forming an insulating film containing phosphorus, use chemical phosphorus (PC93) door 7 fnia (NH3) with raw material car 1 and I=-(and 350℃~250℃) A chemical vapor deposition method is used in the temperature range of ℃.The main advantage is that the material used is different from the conventional technology, and the film is formed in a temperature range that does not cause thermal deterioration of the semiconductor substrate. i-+7 differs in one point. ri is a beautiful reaction tube, 2 is a city air furnace placed around reaction tube 1, and 3 is a beautiful reaction tube.
and 4 is the branched input of reaction tube 1 [15 is anti-1v'
T? 1 and 6 are InP substrates placed inside the reaction tube 1. 7 is &A I! in the axial direction of reaction tube 1. '1 minute/
An example of Ii is yf<. From person 3, ammonia gas diluted with argon gas (
Argon gas containing 51% to 20%) was supplied from the PC 41 arc to the reaction tube inner vessel, respectively. As an example of a reaction tube, when using a stone)) reaction tube with an inner diameter of 8mm, ammonia gas is heated at 3) 5cc/s.
Introduced from human[]3 in 17, while PG kept in greenhouse
fL was bubbled with argon gas, further diluted with 50 cc/win of argon gas, and introduced into the reaction tube 1 from the population 4. 6 InP placed in the reaction tube 1) 1 (
By heating the plate 6 at 300°C for 5 minutes, In
A nitride trench film with a thickness of o and t g could be deposited on the P substrate 6 . Figure 2 shows a film formed by forming a nitride groove film on a plate 1- with a p-type 1nP film at a film formation temperature of 300°C and having a thickness of 0 by the above-mentioned undeveloped I11 method.
.. After forming a film with a thickness of about 1 μm, a gold electrode is formed on the film]7
This is the voltage (v) - 8 pF (pF) characteristic measured between a semiconductor and a metal in a diode. The measurement frequency was 83.3 Hz. When using a nitride groove film formed by undeveloped IJ+, a voltage of 15V is applied to a p-type 1mP substrate, as shown in Figure 2.
By applying a degree of
3 is obtained. That is, it can be seen that it is possible to form a phosphor layer on a p-type 1nP substrate. This word,
It is important to note that the interface state Iff near the valence band of a semiconductor is small. 77-ro/ of the electric field created by the Q electric center of )-3
Scattering is caused by ``f semiconductor inhibition 11
It is considered that the bales are filled in at 3. Therefore, in the case of the nitrided groove film of the present invention, Coulomb scattering is considered to be reduced, so this insulating film can be applied to In the chemical vapor deposition method used, the method of the present invention described above reduces 1
- Even in the above temperature range (250° C. to 350° C.), phosphorus nitride is still formed. However, in the case of a film manufactured at a low temperature of 250° C. or lower, the insulation resistance was low and it could not be used as a gate insulating film. -power, 35
At temperatures as high as 0° C. or higher, thermal deterioration of the semiconductor surface cannot be avoided, making it impossible to form a grainy layer on the p-type substrate. Figure 3 shows that when the film formation temperature 1 is 350°C, P-type InP
The voltage (V)-capacity of the IS diode formed by forming a circulating phosphorus film on the substrate and as described in FIG. 2 is as follows:
1) Shows (pF) characteristics 1°The measurement frequency is 83.8Hz, and unlike the case of t-0 in Figure 2 (film formation temperature 300°C), even when applying a heavy pressure of -7V, the 8% value does not increase at all. You can see that the Noelmi level is pinned. This means that near the valence band of the semiconductor there is a near-field quasi-Q density 1ff.
5a taste that there are many. Therefore, ]]riform IA edition Iff is 350℃ or more,
In the case of , the drain current-drain voltage characteristics of an inverted InP-NIs field effect transistor manufactured using the insulating film formed according to the present invention are as follows: As can be seen from the characteristics shown in the figure, this transistor exhibits characteristics as a field effect transistor. As effective electron mobility, fQQOc+s2/V a se
I got a spy that exceeds c. This value is higher than that when using nitriding leaching (P3Ns) made using a conventional high-temperature process.
This value is about two orders of magnitude larger. This is due to the effect of forming the insulating film at a low temperature and the accompanying reduction in the interface state density described above. As other electrical characteristics of the MIS type field effect transistor, the drift characteristics of the drain current were measured, and as a result, no drift was observed, and a substantially constant drain current could be maintained even after 104 seconds. This is considered to be because the gate insulating film is highly dense, so there are extremely few electron capture levels in the film. [Of course] As explained, according to 11, it is possible to form an insulating film with good interfacial properties between the insulating film and the conductor, and as a result, an electric field with good electrical properties can be formed. An effect transistor can be constructed. 1. Moreover, since the method of the present invention only requires controlling the temperature for forming the insulating film, it has the advantage that semiconductor devices δ having excellent characteristics can be manufactured easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による窒化燐絶縁膜形成法を実施するた
めの装置の一例を示す図、 第2図は本発明による絶縁膜の電圧−6星特性図。 第3図はlIg彫成編成温度50℃の場合の電圧−6績
特性図、 第4図は本発明による絶縁膜を用いた半導体装とのトレ
イン電圧−ドレイン電流特性図である。 1・・・反応管、 2・・・電気炉、 3.4・・・反応管人口、 5・・・反応管出口。 6・・・InP基板1 7・・・温度分布。
FIG. 1 is a diagram showing an example of an apparatus for carrying out the method for forming a phosphorous nitride insulating film according to the present invention, and FIG. 2 is a voltage-6 star characteristic diagram of the insulating film according to the present invention. FIG. 3 is a voltage-series characteristic diagram when the lIg carving and knitting temperature is 50° C., and FIG. 4 is a train voltage-drain current characteristic diagram of a semiconductor device using an insulating film according to the present invention. 1... Reaction tube, 2... Electric furnace, 3.4... Reaction tube population, 5... Reaction tube outlet. 6...InP substrate 1 7...Temperature distribution.

Claims (1)

【特許請求の範囲】 化学的気相堆積法により絶縁膜を形成する にあたって、前記絶縁膜の材料として三塩化燐(PCl
_3)およびアンモニア(NH_3)を用い、化学的気
相堆積法により前記絶縁膜を形成するときの膜形成温度
を250℃〜350℃の範囲にすることを特徴とする絶
縁膜形成法。
[Claims] When forming an insulating film by a chemical vapor deposition method, phosphorus trichloride (PCl) is used as a material for the insulating film.
_3) and ammonia (NH_3), and forming the insulating film by chemical vapor deposition at a film forming temperature in the range of 250°C to 350°C.
JP60044569A 1985-03-08 1985-03-08 Insulating film forming method Pending JPS61204944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044569A JPS61204944A (en) 1985-03-08 1985-03-08 Insulating film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044569A JPS61204944A (en) 1985-03-08 1985-03-08 Insulating film forming method

Publications (1)

Publication Number Publication Date
JPS61204944A true JPS61204944A (en) 1986-09-11

Family

ID=12695130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044569A Pending JPS61204944A (en) 1985-03-08 1985-03-08 Insulating film forming method

Country Status (1)

Country Link
JP (1) JPS61204944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928207A (en) * 2013-01-10 2014-07-16 罗伯特·博世有限公司 Soft Magnetic Composite Material And Method For Manufacturing Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928207A (en) * 2013-01-10 2014-07-16 罗伯特·博世有限公司 Soft Magnetic Composite Material And Method For Manufacturing Same
CN103928207B (en) * 2013-01-10 2018-02-23 罗伯特·博世有限公司 Soft magnetic composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
Lehninger et al. A review on Ge nanocrystals embedded in SiO2 and high‐k dielectrics
US4804640A (en) Method of forming silicon and aluminum containing dielectric film and semiconductor device including said film
US5512519A (en) Method of forming a silicon insulating layer in a semiconductor device
CN102122614B (en) Method for manufacturing silicon oxynitride gate oxide layer
Joyce et al. Silicon oxide and nitride films deposited by an rf glow-discharge
JP2006210818A (en) Semiconductor element and its manufacturing method
Yamaguchi et al. Study of boron nitride gate insulators onto InP grown by low‐temperature chemical vapor deposition
JPH04225571A (en) Thin-film transistor
JPS61204944A (en) Insulating film forming method
CN103943481B (en) Method for avoiding negative bias temperature instability of device
US3303069A (en) Method of manufacturing semiconductor devices
JP2019145570A (en) Method of manufacturing silicon carbide semiconductor device, and silicon carbide semiconductor device
JPS637624A (en) Method of diffusing material providing conductivity type into compound semiconductor material of group iii-v
US4331710A (en) Method of forming an insulation film on semiconductor device surface
US4546372A (en) Phosphorous-nitrogen based glasses for the passivation of III-V semiconductor materials
US3709726A (en) Semiconductor devices
KR940005290B1 (en) Method of forming a dielectric film and semiconductor device including said film
JPS5867072A (en) Manufacture of semiconductor device
JPS5863139A (en) Forming insulated film on semiconductor crystal
US4010290A (en) Method of fabricating an ensulated gate field-effect device
JPS62160718A (en) Manufacture of semiconductor device by diffusing dopant intosemiconductor substance from oxide of the dopant
JP2000150508A (en) Insulating film forming method for semiconductor element
Ohkawa et al. Highly reliable gate oxidation using catalytic water vapor generator (WVG) for MOS device fabrication
Trinidad et al. Effect of thermal annealing in H 2 atmosphere of SiC x O y films obtained by HFCVD technique
JPS5917529B2 (en) Manufacturing method of semiconductor device