JPS6120493B2 - - Google Patents
Info
- Publication number
- JPS6120493B2 JPS6120493B2 JP9310578A JP9310578A JPS6120493B2 JP S6120493 B2 JPS6120493 B2 JP S6120493B2 JP 9310578 A JP9310578 A JP 9310578A JP 9310578 A JP9310578 A JP 9310578A JP S6120493 B2 JPS6120493 B2 JP S6120493B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- optical fiber
- furnace
- outer diameter
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 48
- 239000013307 optical fiber Substances 0.000 claims description 43
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000004017 vitrification Methods 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 2
- 230000007062 hydrolysis Effects 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000010924 continuous production Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000011810 insulating material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/01257—Heating devices therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
- C03B37/0146—Furnaces therefor, e.g. muffle tubes, furnace linings
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は光フアイバ用母材の連続製造装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for continuously manufacturing optical fiber preforms.
近年通信用光フアイバの研究が各所において活
発に行われ、光フアイバ用母材の連続製造法も確
立されるまでに至つている。この母材の連続製造
方法を第1図に示す。酸水素バーナ1によつてけ
い素ゲルマニウム、りん、ほう素などのハロゲン
化物を酸化させて、それぞれの酸化物粉末を回転
軸上に付着成長させ、50mmφ〜100mmφの棒状の
酸化物体2を作製し、次いでこの酸化物体を高温
炉透明ガラス化炉3に順次引き上げて脱泡透明ガ
ラス化を行い、高温炉の上部から連続的に光フア
イバ用母材4を引き上げる。 In recent years, research on optical fibers for communications has been actively conducted in various places, and a continuous manufacturing method for optical fiber base materials has even been established. A continuous manufacturing method for this base material is shown in FIG. Halides such as silicon germanium, phosphorus, and boron are oxidized using an oxyhydrogen burner 1, and each oxide powder is deposited and grown on a rotating shaft to produce a rod-shaped oxide object 2 with a diameter of 50 mm to 100 mm. Next, this oxide body is sequentially pulled up into a high-temperature furnace transparent vitrification furnace 3 to perform degassing and transparent vitrification, and the optical fiber base material 4 is continuously pulled up from the upper part of the high-temperature furnace.
この工程において、透明ガラス化は約1600℃〜
1800℃の温度範囲で行われるので、発熱体には主
に高温度が得られ易い高純度カーボンが使用され
ている。カーボンは、大気中で加熱されると著し
く消耗するので、カーボンを発熱体とする場合に
は、炉内雰囲気を完全な還元雰囲気に保たなけれ
ばならない。すなわち第1図において、高温炉3
から光フアイバ用母材4が引き上げられる際、高
温炉3の上部出口から大気が炉の内部に侵入する
のを防ぐような炉の構造にしなければならない。 In this process, transparent vitrification is performed at approximately 1600℃~
Since the temperature range is 1800°C, high-purity carbon, which can easily reach high temperatures, is used as the heating element. Carbon is significantly consumed when heated in the atmosphere, so when carbon is used as a heating element, the atmosphere in the furnace must be maintained in a completely reducing atmosphere. That is, in FIG. 1, the high temperature furnace 3
When the optical fiber preform 4 is pulled up from the high-temperature furnace 3, the furnace structure must be such as to prevent atmospheric air from entering the furnace from the upper outlet of the high-temperature furnace 3.
このように炉内と炉外を完全にシールする方法
として、従来は第2図に示すような製造装置を用
いて行われていた。この方法は、カーボンフエル
トまたはガラスウールなどを円板状に形成した断
熱材215を、位置決め金具213,214の間
に固定し、順次引き上げられる光フアイバ用母材
4の表面に断熱材215を接触させて炉内と炉外
のシールを行う。 A method of completely sealing the inside and outside of the furnace in this way has conventionally been carried out using a manufacturing apparatus as shown in FIG. In this method, a heat insulating material 215 made of carbon felt or glass wool or the like is fixed between positioning fittings 213 and 214, and the heat insulating material 215 is brought into contact with the surface of the optical fiber base material 4 that is pulled up one after another. Seal the inside and outside of the furnace.
しかしこのシール方法では、次の問題点があつ
た。 However, this sealing method had the following problems.
(1) 光フアイバ用母材に物理的な力が加わるの
で、酸化物粉末が付着・成長する酸化物成長面
がゆらぎ、所望の屈折率分布が得られなくなる
(光学特性が劣化する)。(1) Since physical force is applied to the optical fiber base material, the oxide growth surface on which the oxide powder adheres and grows fluctuates, making it impossible to obtain the desired refractive index distribution (optical properties deteriorate).
(2) 製造される光フアイバ用母材の外径の変化に
対応できない。(2) It cannot respond to changes in the outer diameter of the optical fiber base material being manufactured.
(3) 断熱材によつて光フアイバ用母材の表面が汚
染される。(3) The surface of the optical fiber base material is contaminated by the insulation material.
前記諸問題を解決するために、第3図に示す製
造装置を用いて母材の連続製造が行われている。
すなわち高温炉3の上部に円筒形の保護管211
を設け、この保護管211の長さまで連続製造を
行う方法がある。この方法によれば前記諸問題は
解決されるが、保護管の長さによつて製造される
母材の長さも決められてしまい、実質的な母材の
連続製造ではない。 In order to solve the above-mentioned problems, continuous production of the base material is carried out using a production apparatus shown in FIG.
That is, a cylindrical protection tube 211 is installed in the upper part of the high temperature furnace 3.
There is a method of providing a protective tube 211 and performing continuous manufacturing up to the length of the protective tube 211. Although this method solves the above-mentioned problems, the length of the base material to be manufactured is determined by the length of the protective tube, and the base material is not substantially continuously manufactured.
本発明は、光フアイバ用母材が順次引き上げら
れる高温炉の上部出口において、光フアイバ用母
材に対して無接触で、かつ炉内雰囲気と炉外雰囲
気を完全にしや断することを特徴とし、その目的
は、従来の諸問題を解消し、光フアイバ用母材の
安定な連続製造を提供することにある。以下、図
面により本発明を詳細に説明する。 The present invention is characterized in that at the upper exit of a high-temperature furnace from which optical fiber base materials are sequentially pulled up, the atmosphere inside the furnace and the atmosphere outside the furnace are completely cut off without contacting the base materials for optical fibers. The purpose is to solve the conventional problems and provide stable continuous production of optical fiber preforms. Hereinafter, the present invention will be explained in detail with reference to the drawings.
第4図は本発明の一実施例図であつて、30は
高温炉本体(透明ガラス化炉本体)で、210は
発熱体であり高純度カーボンを使用した。2は作
製した酸化物体であつて、所定の速度で引き上げ
られ、発熱体210によつて透明な光フアイバ用
母材4になる。21は光源(例えばYAGレーザ
等)、22はレンズの組み合わせで構成される光
学系、23は受光部、24は制御回路、25は記
憶回路、26はモータ、27はフアイバである。
28は15mmφから45mmφまでの範囲で任意の内径
が得られる絞り器で、その原理を第5図により説
明する。 FIG. 4 shows an embodiment of the present invention, in which 30 is a high temperature furnace body (transparent vitrification furnace body), 210 is a heating element, and high purity carbon is used. Reference numeral 2 denotes the produced oxide object, which is pulled up at a predetermined speed and becomes a transparent optical fiber base material 4 by a heating element 210. 21 is a light source (for example, a YAG laser, etc.), 22 is an optical system composed of a combination of lenses, 23 is a light receiving section, 24 is a control circuit, 25 is a storage circuit, 26 is a motor, and 27 is a fiber.
Reference numeral 28 denotes a wringer which can obtain any inner diameter within the range of 15 mmφ to 45 mmφ, and its principle will be explained with reference to FIG.
第5図aは絞り器の正面図で、31は任意の内
径を得るためのばねであつて、図示してないが12
枚使用した。各ばねの両端にピン32,33を設
け、ピン32は固定リング34の同心円上にある
ピン穴35にさし込み、このピンを支点としてば
ね31が回転する。第5図bは絞り器の側面図
で、回転リング36は第5図aには示していない
が、第5図bからわかるように、ばね31の上に
回転リング36が設けられる。ピン33は回転リ
ング36に支えられ、回転リング36を回転する
ことによつてばね31はピン32を支点として回
転する。この結果12枚のばねの重なりで絞り器の
中心に近似的な円ができ、回転リング36の回転
角により、その円の直径は大きくなつたり小さく
なつたりする。 Figure 5a is a front view of the wringer, and 31 is a spring for obtaining an arbitrary inner diameter, and 12 is not shown.
I used one. Pins 32 and 33 are provided at both ends of each spring, and the pin 32 is inserted into a concentric pin hole 35 of a fixed ring 34, and the spring 31 rotates about this pin as a fulcrum. FIG. 5b is a side view of the wringer, in which the rotating ring 36 is not shown in FIG. 5a, but it can be seen from FIG. 5b that the rotating ring 36 is provided on top of the spring 31. The pin 33 is supported by a rotating ring 36, and by rotating the rotating ring 36, the spring 31 rotates about the pin 32 as a fulcrum. As a result, an approximate circle is formed at the center of the wringer by the overlap of the 12 springs, and the diameter of the circle becomes larger or smaller depending on the rotation angle of the rotating ring 36.
次に本発明の動作を第4図により説明する。 Next, the operation of the present invention will be explained with reference to FIG.
光源22から出射された光ビームは、フアイバ
27(石英形フアイバ、多成分フアイバ、プラス
チツクフアイバ等)によつて光学系22に導かれ
る。光学系22から出射した光ビームが光フアイ
バ用母材4によつてしや断されるように光学系2
2を調整する。光学系22から出射した光ビーム
を受光部23で受光して、ここで電気信号の大小
に変換し、制御装置24によつて光フアイバ用母
材の外径変動に対応する電気信号を取り出し、そ
の電気信号を記憶回路25に記憶する。記憶回路
25によつて光フアイバ用母材4の外径変動測定
位置から絞り器28までの距離に応じた時間だけ
電気信号を遅延させた後、モータ26に電気信号
を送り、この電気信号によつてモータ26を作動
させ、連続的に引き上げられる光フアイバ用母材
4の外径に相当する分だけ絞り器28の内径を変
動させる。 A light beam emitted from the light source 22 is guided to the optical system 22 by a fiber 27 (quartz fiber, multicomponent fiber, plastic fiber, etc.). The optical system 2 is configured such that the light beam emitted from the optical system 22 is cut off by the optical fiber base material 4.
Adjust 2. The light beam emitted from the optical system 22 is received by the light receiving section 23, where it is converted into an electric signal, and the control device 24 extracts an electric signal corresponding to the outer diameter variation of the optical fiber base material. The electrical signal is stored in the memory circuit 25. After delaying the electric signal by the time corresponding to the distance from the outer diameter variation measurement position of the optical fiber base material 4 to the wringer 28 by the memory circuit 25, the electric signal is sent to the motor 26, and this electric signal is Therefore, the motor 26 is operated to vary the inner diameter of the diaphragm 28 by an amount corresponding to the outer diameter of the optical fiber preform 4 that is continuously pulled up.
また同一電気信号を外径変動測定位置から絞り
器28′までの距離に応じた時間だけ遅延させ、
前述の原理と同じようにモータ26′を作動さ
せ、絞り器28′の内径を変化させる。 In addition, the same electric signal is delayed by a time corresponding to the distance from the outer diameter variation measuring position to the wringer 28'.
Motor 26' is operated to change the inner diameter of restrictor 28' in the same manner as described above.
なお絞り器28と28′の間にガス導入部29
を設け、両絞り器間の圧力が炉内圧および外気圧
よりも高くなるようにガス流量を設定し、作製さ
れる光フアイバ用母材と絞り器との間との間隔を
ガスシールする。 Note that there is a gas introduction section 29 between the restrictors 28 and 28'.
The gas flow rate is set so that the pressure between the two constrictors is higher than the pressure inside the furnace and the outside pressure, and the space between the optical fiber base material to be manufactured and the constrictor is gas-sealed.
このガスシールで前述のように、炉内と炉外の
雰囲気をしや断する動作によつて、順次引き上げ
られる光フアイバ用母材の外径が変化しても、母
材に無接触で、かつ完全に炉内と炉外の雰囲気を
しや断することができる。 As mentioned above, with this gas seal, even if the outer diameter of the optical fiber base material that is successively pulled up changes due to the operation of cutting off the atmosphere inside and outside the furnace, it will not contact the base material. Moreover, the atmosphere inside the furnace and the atmosphere outside the furnace can be completely separated.
以下に本発明装置を使用した実験例について述
べる。 Experimental examples using the apparatus of the present invention will be described below.
光フアイバ用母材を60mm/時間の速度で引き上
げ、外径測稚装置によつて光フアイバ用母材4の
外径を測定した。外径測定位置から絞り器28ま
での距離は30mm、絞り器28′までの距離は50mm
にそれぞれ設置した。つまり光フアイバ用母材の
引き上げ速度は60mm/時間であるので、外径が測
定された箇所が絞り器28に達する時間は30分、
同じく絞り器28′に達する時間は50分である。 The optical fiber base material 4 was pulled up at a speed of 60 mm/hour, and the outer diameter of the optical fiber base material 4 was measured using an outer diameter measuring device. The distance from the outer diameter measurement position to the wringer 28 is 30 mm, and the distance to the wringer 28' is 50 mm.
were installed respectively. In other words, since the pulling speed of the optical fiber base material is 60 mm/hour, it takes 30 minutes for the part whose outer diameter is measured to reach the wringer 28.
Similarly, the time to reach the wringer 28' is 50 minutes.
光フアイバ用母材の外径変動に対する電気信号
をこの時間分だけ遅延させた後、両絞り器に連動
したモータ26,26′に電気信号を送るように
記憶回路25を調整した。両絞り器は、測定され
た母材外径よりも2mm大きく開くようにし、両絞
り器間のガス導入部からArガスを5/分流し
て両絞り器の圧力を炉内圧力および外気圧力より
も高くして、炉内雰囲気と炉外雰囲気をしや断し
た。 After delaying the electrical signal corresponding to the outer diameter variation of the optical fiber base material by this amount of time, the memory circuit 25 was adjusted so as to send the electrical signal to the motors 26, 26' linked to both the diaphragms. Both restrictors are opened 2 mm larger than the measured outer diameter of the base material, and Ar gas is divided into 5 parts from the gas introduction part between both restrictors to make the pressure in both restrictors lower than the pressure inside the furnace and the outside air pressure. The temperature was also raised to completely separate the atmosphere inside the furnace and the atmosphere outside the furnace.
第6図に時間変化に対する母材外径の変動と絞
り器28,28′の内径変化を示す。Aは母材外
径測定位置で測定された母材外径の変動で、Bは
絞り器28の内径の変化、Cは絞り器28′の内
径の変化である。 FIG. 6 shows changes in the outer diameter of the base material and changes in the inner diameter of the wringer 28, 28' over time. A is a change in the outer diameter of the base material measured at the base material outer diameter measurement position, B is a change in the inner diameter of the wringer 28, and C is a change in the inner diameter of the wringer 28'.
第6図からわかるように、本発明の装置によつ
て母材外径が変化しても、二つの絞り器の内径は
母材外径の変化に応じて変化することがわかる。
この実験では26時間の母材連続製造を行つたが、
カーボン発熱体に消耗は見られず、炉内と炉外の
雰囲気は完全にしや断されていた。製造した外径
21mmφ、長さ140cmの光フアイバ用母材のうち、
両端部と中心部の3箇所をフアイバ化して、損失
特性の長手方向の変動を調べた。この結果、波長
0.85μmでの損失は、3本の光フアイバとも2.3
〜2.4dB/Kmであり、長手方向の損失変動は見ら
れなかつた。また光フアイバ用母材の屈折率分布
によつて変化する光フアイバの帯域特性は、10Km
の光フアイバについて測定した結果、600MHz/
Km以上の値が得られ、屈折率分布の長手方向の変
動もなかつた。 As can be seen from FIG. 6, even if the outer diameter of the base material changes with the apparatus of the present invention, the inner diameters of the two squeezers change in accordance with the change in the outer diameter of the base material.
In this experiment, the base material was manufactured continuously for 26 hours.
The carbon heating element showed no wear and tear, and the atmosphere inside and outside the furnace was completely separated. Manufactured outer diameter
Among the base materials for optical fibers with a diameter of 21 mm and a length of 140 cm,
Three locations, one at both ends and one at the center, were made into fibers, and the variation in loss characteristics in the longitudinal direction was investigated. As a result, the wavelength
The loss at 0.85 μm is 2.3 for all three optical fibers.
The loss was ~2.4 dB/Km, and no loss variation in the longitudinal direction was observed. In addition, the band characteristics of optical fibers, which vary depending on the refractive index distribution of the optical fiber base material, are
As a result of measurements on optical fiber, 600MHz/
A value greater than Km was obtained, and there was no longitudinal variation in the refractive index distribution.
比較のため、第2図と第3図に示した従来の装
置を用いた方法によつて母材の連続製造を行つた
ところ、第2図に示した従来の装置では、回転す
る光フアイバ用母材に接触する断熱材が除々に消
耗してしまい、連続製造開始から6時間後には、
光フアイバ用母材と断熱材との間に2mm以上の間
隙ができてしまい、10時間の連続製造しかできな
かつた。母材の製造を終了した後、カーボン発熱
体を調べたところ、発熱体は消耗しており、初期
抵抗値0.06Ωが終了後では0.18Ωと大きくなつて
いた。 For comparison, the base material was continuously manufactured by the method using the conventional equipment shown in Figures 2 and 3. The insulation material that comes into contact with the base material gradually wears out, and 6 hours after the start of continuous production,
A gap of 2 mm or more was created between the optical fiber base material and the heat insulating material, and continuous production could only be carried out for 10 hours. After completing the production of the base material, we examined the carbon heating element and found that it was worn out, and its initial resistance had increased from 0.06Ω to 0.18Ω after completion.
製造した母材の表面には断熱材が付着してお
り、この母材を線引きして10Kmの光フアイバを製
造した結果、損失特性は波長0.85μmで2.6dB/
Kmから4.2dB/Kmであり、また帯域特性は85M
Hz/Kmから230MHz/Kmまでの“バラツキ”があ
り、両特性とも大きな変動があつた。 A heat insulating material is attached to the surface of the manufactured base material, and as a result of drawing this base material and manufacturing a 10 km optical fiber, the loss characteristic is 2.6 dB/2 at a wavelength of 0.85 μm.
Km to 4.2dB/Km, and the band characteristic is 85M
There were "variations" from Hz/Km to 230MHz/Km, and there were large fluctuations in both characteristics.
第3図に示した従来の装置を用いた方法では、
損失特性、帯域特性とも良好な結果が得られた
が、母材の連続製造は8時間しか実施できなかつ
た。 In the method using the conventional device shown in Fig. 3,
Although good results were obtained in both loss characteristics and band characteristics, continuous production of the base material could only be carried out for 8 hours.
以上説明したように、本発明の光フアイバ用母
材連続製造装置は、任意の径が得られる絞り器を
2個設け、その間をガスシールしておき、作製さ
れた透明な光フアイバ用母材の外径を光学的に測
定し、その径に応じて2個の絞り器の開き径をそ
れぞれ変化させるので、透明な光フアイバ用母材
に無接触で炉内と炉外を完全にしや断できる利点
がある。このため、製造される光フアイバの損失
特性、帯域特性とも、長手方向に極めて変動が少
ない特性を得ることができる。またカーボン発熱
体が消耗されないので、長時間の連続製造が実施
できる。さらに本発明は、市販されているカーボ
ンを発熱体とする抵抗炉において、炉内に試料を
連続的に挿入する場合、炉内の雰囲気を保つため
の装置として有効である。 As explained above, the optical fiber preform continuous production apparatus of the present invention is equipped with two diaphragms capable of obtaining an arbitrary diameter, and the space between them is sealed with gas, thereby producing a transparent optical fiber preform. The outer diameter of the fiber is optically measured, and the aperture diameter of the two diaphragms is changed according to the measured diameter, making it possible to completely disconnect the inside and outside of the furnace without contacting the transparent optical fiber base material. There are advantages that can be achieved. Therefore, it is possible to obtain the optical fiber to be manufactured with extremely little variation in both the loss characteristics and the band characteristics in the longitudinal direction. Furthermore, since the carbon heating element is not consumed, continuous production can be carried out over a long period of time. Further, the present invention is effective as a device for maintaining the atmosphere in a commercially available resistance furnace using carbon as a heating element, when samples are continuously inserted into the furnace.
第1図、第2図および第3図は従来の光フアイ
バ用母材の製造装置の概略構成図、第4図は本発
明装置の一実施例図、第5図aおよび第5図bは
本発明に用いる絞り器の正面図および側面図、第
6図は光フアイバ用母材の外径の変動と絞り器の
内径変化を示す図である。
1……ガラス微粒子合成トーチ(酸水素バー
ナ)、2……酸化物体、3……高温炉(透明ガラ
ス化炉)、4……光フアイバ用母材(ガラス母
材)、5……回転引き上げ装置、21……光源、
22……光学系、23……受光部、24……制御
装置、25……記憶回路、26,26′……モー
タ、27……光フアイバ、28,28′……絞り
器、29……ガス導入口、30……高温炉本体
(透明ガラス化炉本体)、31……羽、32,33
……ピン、34……固定リング、35……ピン
穴、36……回転リング、210……発熱体、2
11……保護管、212……出発棒、213,2
14……位置決め金具、215……断熱材。
1, 2, and 3 are schematic configuration diagrams of a conventional optical fiber base material manufacturing apparatus, FIG. 4 is an embodiment of the apparatus of the present invention, and FIGS. 5a and 5b are A front view and a side view of the diaphragm used in the present invention, and FIG. 6 are diagrams showing changes in the outer diameter of the optical fiber base material and changes in the inner diameter of the diaphragm. 1... Glass particle synthesis torch (oxyhydrogen burner), 2... Oxide object, 3... High temperature furnace (transparent vitrification furnace), 4... Base material for optical fiber (glass base material), 5... Rotary pulling Device, 21...Light source,
22...Optical system, 23...Light receiving unit, 24...Control device, 25...Storage circuit, 26, 26'...Motor, 27...Optical fiber, 28, 28'...Aperture device, 29... Gas inlet, 30...High temperature furnace body (transparent vitrification furnace body), 31...Blade, 32, 33
... Pin, 34 ... Fixed ring, 35 ... Pin hole, 36 ... Rotating ring, 210 ... Heating element, 2
11... Protection tube, 212... Starting rod, 213,2
14...Positioning metal fittings, 215...Insulating material.
Claims (1)
結母材を作製し、透明ガラス化炉において透明な
光フアイバ用母材を連続的に製造する光フアイバ
用母材の製造装置において、前記透明ガラス化炉
の上端部に任意の径を選択できる2個の絞り器
と、この2個の絞り器の間をシールするガスシー
ルおよびガラス母材の外径測定装置を設け、前記
2個の絞り器と外径測定装置を連動させるととも
に、前記ガスシールでガラス母材に無接触で炉内
と炉外の雰囲気を完全にしや断して光フアイバ用
母材を連続的に製造することを特徴とする光フア
イバ母材連続製造装置。1. In an apparatus for producing an optical fiber preform, which produces a porous sintered preform for an optical fiber by flame hydrolysis and continuously produces a transparent preform for an optical fiber in a transparent vitrification furnace, the transparent At the upper end of the vitrification furnace, there are two diaphragms that can select any diameter, a gas seal that seals between these two diaphragms, and a device for measuring the outer diameter of the glass base material. The method is characterized in that the optical fiber base material is manufactured continuously by interlocking the device and the outer diameter measuring device, and by completely cutting off the atmosphere inside and outside the furnace without contacting the glass base material with the gas seal. Optical fiber base material continuous manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9310578A JPS5520260A (en) | 1978-08-01 | 1978-08-01 | Continuously producing apparatus for optical fiber base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9310578A JPS5520260A (en) | 1978-08-01 | 1978-08-01 | Continuously producing apparatus for optical fiber base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5520260A JPS5520260A (en) | 1980-02-13 |
JPS6120493B2 true JPS6120493B2 (en) | 1986-05-22 |
Family
ID=14073236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9310578A Granted JPS5520260A (en) | 1978-08-01 | 1978-08-01 | Continuously producing apparatus for optical fiber base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5520260A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6296336A (en) * | 1985-10-21 | 1987-05-02 | Nippon Telegr & Teleph Corp <Ntt> | Production of optical fiber preform and apparatus therefor |
DE3855370T2 (en) * | 1987-02-16 | 1997-01-02 | Sumitomo Electric Industries | Oven for heating a glass preform for optical fiber and method for producing a glass preform |
FR2802916B1 (en) * | 1999-12-27 | 2002-03-15 | Cit Alcatel | PREFORM INPUT ARRANGEMENT FOR OPTICAL FIBER DRAWING OVEN, OVEN HAVING SUCH ARRANGEMENT AND PREFORM EQUIPPED TO COOPERATE WITH THIS ARRANGEMENT |
-
1978
- 1978-08-01 JP JP9310578A patent/JPS5520260A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5520260A (en) | 1980-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100283713B1 (en) | Optical fiber manufacturing method low loss at 1385 nm | |
US4145458A (en) | Method of producing internally coated glass tubes for the drawing of fiber-optic light conductors | |
GB1580152A (en) | Continuous optical fibre preform fabrication method | |
WO2004109352A1 (en) | Optical fiber having reduced viscosity mismatch | |
GB2314077A (en) | Making optical fibres by drawing rod-in-tube preforms | |
US3932160A (en) | Method for forming low loss optical waveguide fibers | |
US20110162413A1 (en) | Method of manufacturing optical fiber base material | |
JPS6120493B2 (en) | ||
JP5046500B2 (en) | Manufacturing method of glass preform for optical fiber | |
JP2001520763A (en) | Glass with artificial isotope distribution for waveguide | |
JPS6311541A (en) | Plasma torch and production of glass base material for optical fiber by using said plasma torch | |
JPS63230533A (en) | Production of optical fiber preform | |
JPH0324420B2 (en) | ||
JP3668804B2 (en) | Manufacturing method of fiber core rod for optical attenuator | |
RU2174248C2 (en) | Optic fiber with low losses at wavelength 1385 nm, method of manufacture thereof, and multichannel system employing such fiber | |
JP2739154B2 (en) | Fabrication method of high- △ fiber preform | |
JPS6046938A (en) | Manufacture of optical fiber preform | |
JPS62162639A (en) | Production of preform for w-type single mode optical fiber | |
JPH0239457B2 (en) | ||
JPH02141437A (en) | Production of optical fiber | |
JPS63162538A (en) | Production of quartz rod lens | |
JP2710446B2 (en) | Production method of rare earth doped glass | |
TOMARU et al. | Fabrication of the VAD Single-Mode Fibres | |
Schultz | Vapor phase materials and processes for glass optical waveguides | |
JPS598634A (en) | Preparation of base material for optical fiber having retained plane of polarization |