JPS61204877A - Working method for negative pressure floating head slider - Google Patents

Working method for negative pressure floating head slider

Info

Publication number
JPS61204877A
JPS61204877A JP4525185A JP4525185A JPS61204877A JP S61204877 A JPS61204877 A JP S61204877A JP 4525185 A JP4525185 A JP 4525185A JP 4525185 A JP4525185 A JP 4525185A JP S61204877 A JPS61204877 A JP S61204877A
Authority
JP
Japan
Prior art keywords
head slider
negative pressure
floating head
parallel plane
etching method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4525185A
Other languages
Japanese (ja)
Inventor
Akio Hori
堀 昭夫
Shigehisa Suzuki
栄久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4525185A priority Critical patent/JPS61204877A/en
Publication of JPS61204877A publication Critical patent/JPS61204877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

PURPOSE:To work a negative pressure floating head slider to required working precision quickly and inexpensively by working a parallel plane by the dry etching method and working an inverted taper part by grinding. CONSTITUTION:The most important dimensions of the negative pressure floating head slider are a recess depth H1 in the air inflow end and a recess depth H2 in the air outflow end, and it is necessary to work them with high precision, and normally, the recess depth H1 is set to <=5mum, and the recess depth H2 is set to >=5mum and <=50mum. In this case, a parallel plane 7 is worked by what is called the dry etching method like the ion beam etching method, the sputter- etching method, or the plasma etching method. Meanwhile, an inverted taper surface 8 is worked by conventional grinding.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は磁気ディスク装置に用いられる浮動ヘッドス
ライダに関するもので、特に、負圧形の浮動ヘッドスラ
イダの加]二方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a floating head slider used in a magnetic disk drive, and particularly relates to two methods for applying a negative pressure type floating head slider.

[従来の技術] 一般に磁気ディスク装置には、磁気記録媒体の走行によ
って生ずる動圧を利用して、微小な隙間まで浮上する浮
動ヘッドスライダが用いられている。この浮動ヘッドス
ライダには磁気コアとコイルとからなる記録・再生用磁
気ヘッドが形成されている。磁気ヘッドは磁気記録媒体
面に近接するほど高い記録密度と大きな出力を得ること
ができるため、通常浮動ヘッドスライダの磁気記録媒体
と対向するスライダ面の最小隙間位置、つまりスライダ
の空気流出端に配置される。そして、この最小隙間量は
、スライダ面の形状、負荷力、空気流による流体力によ
って決定される。
[Prior Art] Magnetic disk drives generally use a floating head slider that flies up to a minute gap by using dynamic pressure generated by the running of a magnetic recording medium. This floating head slider has a recording/reproducing magnetic head formed of a magnetic core and a coil. The closer the magnetic head is to the magnetic recording medium surface, the higher the recording density and the greater the output. Therefore, the magnetic head is usually placed at the minimum gap position between the slider surface facing the magnetic recording medium of a floating head slider, that is, at the air outflow end of the slider. be done. The minimum clearance amount is determined by the shape of the slider surface, the load force, and the fluid force caused by the air flow.

最小隙間量を小さくするには、バネによパる負荷力を増
加させるのが最も簡単である。ところがコンタクト・ス
タート・ストップ方式を採用した浮動ヘッドスライダの
場合には、磁気記録媒体が停止状態の時に、浮動ヘッド
スライダと磁気記録媒体とが接触しているので、バネに
よる負荷力を増加させると、磁気記録媒体の起動・停止
時に浮動ヘッドスライダと磁気記録媒体間の摩擦力が大
きくなり、浮動ヘッドスライダと磁気記録媒体の接触面
において損傷を生ずる可能性が増し、ついには磁気ヘッ
ドが損傷を起こす場合がある。これに対して負荷力を増
大させず、スライダ面に生ずる  ・流体力の負圧力に
よって負荷力の不足を補い、最小隙間を小さくする、負
圧形の浮動ヘッドスライダが、最近提案されている。
The easiest way to reduce the minimum clearance amount is to increase the load force exerted by the spring. However, in the case of a floating head slider that uses the contact start-stop method, the floating head slider and the magnetic recording medium are in contact with each other when the magnetic recording medium is in a stopped state. When the magnetic recording medium is started or stopped, the frictional force between the floating head slider and the magnetic recording medium increases, increasing the possibility of damage at the contact surface between the floating head slider and the magnetic recording medium, and eventually causing damage to the magnetic head. It may occur. On the other hand, a negative pressure type floating head slider has recently been proposed that does not increase the load force and compensates for the lack of load force by using the negative pressure generated by the fluid force to reduce the minimum clearance.

第2図はこのような負圧形浮動ヘッドスライダの斜視図
、第3図は第2図に示した負圧形浮動ヘッドスライダの
x−X切断線による断面図である。
FIG. 2 is a perspective view of such a negative pressure type floating head slider, and FIG. 3 is a sectional view taken along line XX of the negative pressure type floating head slider shown in FIG.

(1)は負圧形浮動ヘッドスライダ、(2)は負圧形浮
動ヘッドスライダの磁気記憶媒体の走行方向に沿って、
その両縁に配設されたサイドレール、(3)は磁気記録
媒体の走行によって生ずる空気流に対して前方に位置す
る空気流入端、(4)は前記空気流に対して後方に位置
する空気流出端、(5)は前記空気流入端(3)側に位
置し磁気記録媒体に対向して前記空気より正圧の流体力
を発生するためのテーパ面、(6)はテーパ面(5)の
後方に位置し前記空気流により正圧の流体力を発生する
ための浮動面、(7)は両サイドレール(2)の間の空
気流入端(3)にあって、浮動面(6)に平行で、且つ
、浮動面(6)よりくぼんで配設された平行平面、(8
)は平行平面(7)の後方にあって平行平面(7)から
連続して形成され、しかも前記空気流により負圧の流体
力を発生するための逆テーパ面である。
(1) is a negative pressure type floating head slider, (2) is a negative pressure type floating head slider along the running direction of the magnetic storage medium,
Side rails are disposed on both edges, (3) is an air inlet end located in front of the air flow generated by the running of the magnetic recording medium, and (4) is an air inlet end located at the rear with respect to the air flow. An outflow end, (5) is a tapered surface located on the air inflow end (3) side and faces the magnetic recording medium to generate a positive pressure fluid force from the air, and (6) is a tapered surface (5). A floating surface (7) located at the rear of the airflow for generating a positive fluid force by the air flow, is located at the air inflow end (3) between both side rails (2), and is located at the floating surface (6). A parallel plane (8) parallel to
) is a reverse tapered surface that is formed continuously from the parallel plane (7) at the rear of the parallel plane (7), and is used to generate a negative pressure fluid force by the air flow.

以上のような負圧形浮動ヘッドスライダにおいて、矢印
Uで示した方向に空気流が流れるとテーパ面(5)と浮
動面(6)には、正圧の流体力がアλ−4− 逆テーパ面(8)には負圧の流体力が発生し、これら流
体力に外部からのバネ力(図示せず)を′加えた3つの
力によりバランスが保たれるため、浮動ヘッドスライダ
と磁気記録媒体との接触面における損傷を防ぎ、且つ、
最小隙間を小さくすることができる。
In the negative pressure type floating head slider as described above, when airflow flows in the direction shown by arrow U, a positive pressure fluid force is applied to the tapered surface (5) and the floating surface (6). A negative pressure fluid force is generated on the tapered surface (8), and the balance is maintained by three forces, which are these fluid forces plus an external spring force (not shown), so that the floating head slider and magnetic Preventing damage on the contact surface with the recording medium, and
The minimum gap can be reduced.

このような負圧形浮動ヘッドスライダの従来の加工方法
としては、研削及び研磨による加工方法が一般的であっ
た。
The conventional processing method for such a negative pressure type floating head slider has generally been a processing method using grinding and polishing.

[発明が解決しようとする問題点] 第4図は従来の研削及び研磨による加工方法で加工され
た負圧形浮動ヘッドスライダの空気流入端側の正面図で
ある。
[Problems to be Solved by the Invention] FIG. 4 is a front view of the air inlet end side of a negative pressure type floating head slider processed by the conventional processing method of grinding and polishing.

図において、(9)は研削加工のための回転砥石、Rは
回転砥石〈9)の研削面エツジ部の丸みである。
In the figure, (9) is a rotary whetstone for grinding, and R is the roundness of the edge portion of the grinding surface of the rotary whetstone (9).

このように研削及び研磨により浮動ヘッドスライダを加
工する場合には、テーパ面(5)及び浮動面(6)の加
工は、良好な加工精度で行うことができるが、平行平面
(7)と逆テーパ面(8)とからなる部分の加工は、加
工精度の点で困難を伴うものであった。
When processing a floating head slider by grinding and polishing in this way, the tapered surface (5) and floating surface (6) can be processed with good processing accuracy, but the parallel surface (7) and the Machining the portion consisting of the tapered surface (8) was difficult in terms of machining accuracy.

すなわち、負圧形浮動ヘッドスライダにおいて最も重要
な寸法は、第3図に示した空気流入端におけるくぼみf
f1H1と、空気流出端におけるくぼみ量目2であり、
これら)11 、 H2の値は直接浮動ヘッドスライダ
の負圧性能に影響を与えるから高精度に加工される必要
があるが、くぼみ量1」1は5μm以下、くぼみ量H2
は5μm以上で50μm以下の範囲に設定されるのが普
通である。
In other words, the most important dimension in a negative pressure type floating head slider is the depression f at the air inlet end shown in Figure 3.
f1H1 and the depression amount at the air outflow end 2,
11) The value of H2 directly affects the negative pressure performance of the floating head slider, so it must be processed with high precision.
is usually set in a range of 5 μm or more and 50 μm or less.

このため、これらくぼみ量H1及びH2の加工精度は当
然ミクロンオーダになり、特に、くぼみiHlの加工精
度は厳しくなる。さらに、回転砥石(9)の研削面の表
面形状をミクロンオーダで制御することは難しいことか
ら、その表面形状を複写することによって形成している
Therefore, the machining accuracy of these indentations H1 and H2 is naturally on the order of microns, and the machining accuracy of the indentation iHl is particularly severe. Furthermore, since it is difficult to control the surface shape of the grinding surface of the rotary grindstone (9) on the order of microns, the surface shape is formed by copying the surface shape.

しかし、平行平面(7)と逆テーパ面(8)の表面加工
精度も当然その影響を受けて、数ミクロンのばらつきが
出てしまうのである。特に、平行′、・7冴 平面(7)部分のくぼみMHIは5μm以下と微小であ
るが故に数ミクロンの誤差は致命的である。
However, the surface machining accuracy of the parallel plane (7) and the reverse tapered surface (8) is naturally affected by this, resulting in variations of several microns. In particular, since the concavity MHI in the parallel ′,·7 plane (7) portion is as small as 5 μm or less, an error of several microns is fatal.

また、サイドレール(2)の側面と平行平面(7)で形
成される角部は、これらの両面が垂直に交わることが望
ましいが、回転砥石(9)の研削面エツジ部の丸みによ
り、第4図に示すJ:うな曲面R状の角部にならざるを
得す、この曲面Rの形状も負圧形浮動ヘッドスライダの
浮動特性に影響を与え、ばらつきの要因となる。
In addition, it is desirable that the corner formed by the side surface of the side rail (2) and the parallel plane (7) intersect perpendicularly, but due to the roundness of the edge of the grinding surface of the rotary grindstone (9), The shape of the curved surface R shown in FIG. 4 has to be an R-shaped corner. The shape of this curved surface R also affects the floating characteristics of the negative pressure type floating head slider and becomes a cause of variation.

このように、平行平面(7)のような微小くぼみ量の領
域を、回転砥石(9)で加工することは加工ti[の点
で@題があった。
As described above, machining a region with a minute depression such as the parallel plane (7) using the rotary grindstone (9) has a problem in terms of machining ti[.

この発明は上記のような問題点を改善するためになされ
たもので、微小領域を加工す介のに適した加工技術を、
従来の研削加工と併用することにより、負圧形浮動ヘッ
ドスライダを精度良好に加工する方法を提供づ゛るもの
である。
This invention was made to improve the above-mentioned problems, and it provides a processing technology suitable for processing minute areas.
By using this method in combination with conventional grinding, it is possible to provide a method for processing a negative pressure type floating head slider with good precision.

[問題点を解決するための手段] この発明に係る浮動ヘッドスライダの加工方法は、平行
平面(7)をドライエツチング法により加工し、他の部
分を研削加工により加工するものである。
[Means for Solving the Problems] A method for processing a floating head slider according to the present invention is to process the parallel plane (7) by dry etching, and process the other parts by grinding.

[作用] この発明において、浮動ヘッドスライダの平行平面(7
)は、ドライエツチング法により加工されるため、他の
部分と比べて特に加工精度が良好となる。
[Function] In this invention, the parallel plane (7
) is processed by the dry etching method, so the processing accuracy is particularly good compared to other parts.

[発明の実施例] 第1図はこの発明による加工方法にて加工した負圧形浮
動ヘッドスライダの一例を示す空気流入端側の正面図で
ある。
[Embodiments of the Invention] FIG. 1 is a front view of an air inlet end side showing an example of a negative pressure type floating head slider processed by the processing method according to the invention.

この例では、負圧形浮動ヘッドスライダの平行平面(7
)を、イオンビームエツチング法、スパッタエツチング
法、或いはプラズマエツチング法などのいわゆるドライ
エツチング法で加工している。
In this example, the parallel plane (7
) is processed by a so-called dry etching method such as an ion beam etching method, a sputter etching method, or a plasma etching method.

ここで、ドライエツチング法について簡単に説明する。Here, the dry etching method will be briefly explained.

第5図はドライエツチング法の原理図である。FIG. 5 is a diagram showing the principle of the dry etching method.

図において、(11)はエツチングガスの雰囲気、(l
la>は供給されるエツチングガス供給口、(11b)
は真空ポンプにより引かれるエツチングガス排出口、(
12)は平行に配置した平面電極、(13)は高周波電
力源、(14)は被加工材料、(15)は被加工材料上
のレジスト膜である。
In the figure, (11) is the etching gas atmosphere, (l
la> is an etching gas supply port, (11b)
is the etching gas outlet drawn by the vacuum pump, (
12) are plane electrodes arranged in parallel, (13) is a high frequency power source, (14) is a material to be processed, and (15) is a resist film on the material to be processed.

このようなドライエツチング法の原理は、真空ポンプに
より1〜10−5Torr減圧したエツチングガスの雰
囲気(11〉中に平行に配置した平面電極(12)の間
に、高周波電力源(13)、から数100 KHlから
マイクロ波領域までの周波数の高周波電力を供給すると
、エツチングガスの雰囲気(11)は励起されて、放電
しプラスYが発生したり陽イオンや励起状態の原子(ラ
ジカル)が発生するため、これらのプラズマやイオンや
ラジカルの物理的衝撃や科学反応性を利用して、一方の
電極(12)上に置かれた被加工材料(14)の加工す
べき部分の原子を気化して除去し、エツチングするとい
うものである。
The principle of such a dry etching method is that a high frequency power source (13) is connected between plane electrodes (12) arranged in parallel in an etching gas atmosphere (11) whose pressure is reduced to 1 to 10-5 Torr by a vacuum pump. When high-frequency power with a frequency ranging from several 100 KHl to the microwave region is supplied, the etching gas atmosphere (11) is excited and discharged, generating positive Y, positive ions, and excited atoms (radicals). Therefore, the physical impact and chemical reactivity of these plasmas, ions, and radicals are used to vaporize atoms in the part to be processed of the workpiece material (14) placed on one electrode (12). It is removed and etched.

従来の湿式エツチング法では、第6図に示すように被加
工材料〈14)にサイドエツチング及びアンダカット部
分(16)が生じてしまい、得られる加工物品の寸法、
形状は、レジスト膜(15)の寸法、形状から大幅にず
れたものとなってしまうが、ドライエツチング法では、
電極構造、被加工材料の配置、エツチングガスの種類と
圧力などによって、エツチング断面形状を制御すること
ができ、第7図に示すように、はとんどサイドエツチン
グなしに加工することも可能であり、精密加工に適して
いる。
In the conventional wet etching method, as shown in FIG. 6, side etching and undercut portions (16) occur in the workpiece material (14), resulting in the dimensions of the resulting workpiece being
The shape will deviate significantly from the dimensions and shape of the resist film (15), but with the dry etching method,
The etching cross-sectional shape can be controlled by adjusting the electrode structure, the arrangement of the material to be processed, the type and pressure of the etching gas, etc., and as shown in Figure 7, it is also possible to process without side etching in most cases. Yes, suitable for precision machining.

このように、ドライエツチング法において、エツチング
が深さ方向のみに進み横方向に進まないのは、イオンや
ラジカルの運動に指向性をもたせることができるためで
ある。
In this way, in the dry etching method, etching progresses only in the depth direction and does not progress in the lateral direction, because the movement of ions and radicals can be given directionality.

また、ド、ライエツチング法における加工速度は、従来
の研削加工に、比べてか4家り遅いためドライエツチン
グ法は微小量の加工に適している。
Furthermore, the processing speed in the dry etching method is approximately 4 degrees slower than that in conventional grinding processing, so the dry etching method is suitable for processing minute amounts.

ここで、第1図の説明に戻る。Here, we return to the explanation of FIG.

このようなドライエツチング法により加工すれば、サイ
ドレール(2)と平行平面(7)とで構成される直角部
Δ部は、丸みを帯びない正確な垂直の角部を形成するこ
とが可能になる。また、ドライエツチング法は上記のよ
うに基本的には微小量の加工に適している方法であり、
平行平面(7)部分の空気流入端におけるくぼみ量1」
1のような5μm以下の微小領域の加工には最適で、非
常に高精度な加工が可能となる。一方、逆テーパ面(8
)をドライエツチング法にて加工するのは、加工量が多
くなりづぎて不適切である。空気流出端におけるくぼみ
量]」2は5μmμmトート0μm以下の範囲にあるか
ら、この程度の吊になると、エツチングする際エツチン
グされてはい【ノない部分、例えば、テーパ而(5)や
浮動面(6)を防御するために覆っていたレジスト膜(
15)の方が先にエツチングされてしまい、エツチング
不可能になることがある。また、たとえ強固なレジスト
膜(15)があったとしでも加工に長時間を必要とし、
高価な加工法となる。したがって逆テーパ面(8)の加
工には従来の研削加工が適する。
If processed using such a dry etching method, the right angle portion Δ consisting of the side rail (2) and the parallel plane (7) can be formed into an accurate vertical corner that is not rounded. Become. In addition, as mentioned above, the dry etching method is basically suitable for processing minute quantities.
Amount of concavity 1 at the air inflow end of the parallel plane (7)
It is most suitable for machining minute areas of 5 μm or less, such as No. 1, and enables extremely high-precision machining. On the other hand, the reverse tapered surface (8
) using the dry etching method is inappropriate because the amount of processing increases. The amount of indentation at the air outlet end]2 is in the range of 5 μm to 0 μm or less, so with this degree of suspension, there will be no etching during etching, such as the taper (5) or the floating surface ( 6) The resist film (
15) may be etched first, making etching impossible. In addition, even if there is a strong resist film (15), processing requires a long time,
This is an expensive processing method. Therefore, conventional grinding is suitable for processing the reverse tapered surface (8).

研削加工では第4図に示した曲面R状の角部と同様、サ
イドレール(2)と逆テーパ面(8)とで形成される角
部が丸みをおびるが、研削量が5μm以上で50μm以
下の範囲で、その量が多量になるため、それだCノ浮動
特性への影響が小さくなり、実際にはほとんど無視でき
るほどになる。また研削加工はドライエツチング法より
精度は悪くなるが、研削量が多量になるだけ精度の許容
範囲も広くなり、実用上問題はなくなる。
In the grinding process, the corner formed by the side rail (2) and the reverse tapered surface (8) becomes rounded, similar to the curved R-shaped corner shown in Fig. 4, but if the amount of grinding is 5 μm or more, it becomes 50 μm. In the following range, the amount becomes large, so that the influence on the floating characteristics of C becomes small, and in fact becomes almost negligible. Furthermore, although the accuracy of the grinding process is lower than that of the dry etching method, the tolerance range for accuracy becomes wider as the amount of grinding increases, and there is no problem in practical use.

また、逆テーパ部(8)をより高精度に加工するために
は次に説明する研削加工を用いる。
Further, in order to process the reverse tapered portion (8) with higher precision, the following grinding process is used.

まず、平行平面(7)をドライエツチング法により加工
したスライダ素材(1)を用意する。次いで、加工途中
の浮動ヘッドスライダに関Jる第8図の空気流出端側の
正面図及び第9図の斜視図に示すように、サイドレール
(2)と逆テーパ面(8)どの一対の境界部に、細幅(
W)の細溝(17)を、回転駆動された砥石(18)に
よつて、逆テーパ面(8)の表面に沿うように研削し、
穿設する。その後、両軸溝(17)で画成された領域を
、幅広の砥石で研削加工することにより、逆テーパ面(
8)を形成することができる。
First, a slider material (1) with a parallel plane (7) processed by dry etching is prepared. Next, as shown in the front view of the air outlet end side in Fig. 8 and the perspective view in Fig. 9 regarding the floating head slider in the middle of processing, which pair of side rail (2) and reverse tapered surface (8) At the border, add a narrow width (
The narrow groove (17) of W) is ground along the surface of the reverse tapered surface (8) using a rotationally driven grindstone (18),
to drill. Thereafter, by grinding the area defined by both shaft grooves (17) with a wide grindstone, the reversely tapered surface (
8) can be formed.

この方法によれば、従来の研削加工にお【ノる曲面R状
の角部の丸みをほとんど解消することができ、良好な逆
テーパ面(8)の形成ができる。
According to this method, it is possible to almost eliminate the roundness of the corners of the curved surface R-like shape that occurs in conventional grinding processing, and it is possible to form a good reverse tapered surface (8).

L発明の効果] 以上のように、この発明は、磁気記録媒体の走行方向に
沿って配設された一対のサイドレール間の浮動面よりも
くぼんで配設された平行平面と、前記平行平面の空気流
出側に位置し、前記平行平面から連続して形成された逆
テーパ面の加工を、前記平行平面においては微小量の加
工に適し、且つ、高精度な加工が可能なドライエツチン
グ法で加工し、逆テーパ部においてはドライエツチング
法よりは多量な加工に適し、且つ、迅速な加工が可能な
研削加工にて加工するものであるから、必要な加工精度
に、迅速、且つ、安価に負圧形浮動iト ヘッドスライダを加工することが可能になる。
[Effects of the Invention] As described above, the present invention provides a parallel plane that is recessed below a floating surface between a pair of side rails that are disposed along the running direction of a magnetic recording medium, and The inverted tapered surface, which is located on the air outflow side of the plane and is formed continuously from the parallel plane, is processed using a dry etching method that is suitable for processing minute amounts and that allows high-precision processing on the parallel plane. The reverse taper part is processed by grinding, which is suitable for large-volume processing and can be processed quickly, rather than dry etching, so it can achieve the required processing accuracy quickly and at low cost. It becomes possible to process a negative pressure type floating IT head slider.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の加工法にて加工された負圧形浮動ヘ
ッドスライダの空気流入端側正面図、第2図は負圧形浮
動ヘッドスライダの斜視図、第3図は第2図の負圧形浮
動ヘッドスライダのX−x切断による断面図、第4図は
従来の加工法にて加工された負圧形浮動ヘッドスライダ
の空気流入端側の正面図、第5図はドライエツチング法
の原理を示す原理図、第6図は従来の湿式エツチング法
による加工例を示す図、第7図はドライエツチング法に
よる加工例を示す図、第8図は加工途中の負圧形浮動へ
ッドスラ身ダの空気流出側の正面図、第9図は加工途中
の負圧形浮動ヘッドスライダの斜視図である。 図において、 (1)・・・負圧形浮動ヘッドスライダ、(2)・・・
サイドレール、  (6)・・・浮動面、(7)・・・
平行平面、    < i > ・・・逆テーパ面、(
17)・・・細溝、 である。 なお、図中、同−符号及び同一記号は、同一または相当
部分を示す。
Fig. 1 is a front view of the air inlet end side of a negative pressure type floating head slider processed using the processing method of the present invention, Fig. 2 is a perspective view of the negative pressure type floating head slider, and Fig. 3 is the same as Fig. 2. A cross-sectional view of the negative pressure type floating head slider taken along the line X-x. Figure 4 is a front view of the air inflow end side of the negative pressure type floating head slider processed using the conventional processing method. Figure 5 is a dry etching method. Fig. 6 shows an example of processing using the conventional wet etching method, Fig. 7 shows an example of processing using the dry etching method, and Fig. 8 shows a negative pressure type floating head slurry during processing. FIG. 9 is a front view of the air outflow side of the body, and a perspective view of the negative pressure type floating head slider during processing. In the figure, (1)...Negative pressure type floating head slider, (2)...
Side rail, (6)...Floating surface, (7)...
Parallel plane, <i>...Reverse tapered surface, (
17)...Narrow groove. In addition, in the figures, the same reference numerals and the same symbols indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)磁気記録媒体の走行方向に沿って配設された一対
のサイドレールと、 前記サイドレールの浮動面よりもくぼんで配設された平
行平面と、 前記平行平面の空気流出側に位置し、前記平行平面から
連続して形成された逆テーパ面を有する負圧形浮動ヘッ
ドスライダにおいて、 上記平行平面をドライエッチング法にて加工すると共に
、上記逆テーパ面を研削加工にて加工することを特徴と
する負圧形浮動ヘッドスライダの加工方法。
(1) A pair of side rails disposed along the running direction of the magnetic recording medium, a parallel plane disposed recessed from the floating surface of the side rail, and a parallel plane disposed on the air outflow side of the parallel plane. , in a negative pressure type floating head slider having an inverted tapered surface continuously formed from the parallel plane, the parallel plane is processed by dry etching, and the inverted tapered surface is processed by grinding. Processing method for the characteristic negative pressure type floating head slider.
(2)逆テーパ面の研削加工は、両サイドガイドと逆テ
ーパ面との一対の境界部に細溝を穿設し、次いで逆テー
パ面を研削により形成することを特徴とする上記特許請
求の範囲第1項に記載の負圧形浮動ヘッドスライダの加
工方法。
(2) The grinding process of the reverse tapered surface is characterized in that a narrow groove is bored at the boundary between a pair of both side guides and the reverse tapered surface, and then the reverse tapered surface is formed by grinding. A method for processing a negative pressure type floating head slider according to scope 1.
JP4525185A 1985-03-07 1985-03-07 Working method for negative pressure floating head slider Pending JPS61204877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4525185A JPS61204877A (en) 1985-03-07 1985-03-07 Working method for negative pressure floating head slider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4525185A JPS61204877A (en) 1985-03-07 1985-03-07 Working method for negative pressure floating head slider

Publications (1)

Publication Number Publication Date
JPS61204877A true JPS61204877A (en) 1986-09-10

Family

ID=12714050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4525185A Pending JPS61204877A (en) 1985-03-07 1985-03-07 Working method for negative pressure floating head slider

Country Status (1)

Country Link
JP (1) JPS61204877A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210666A (en) * 1990-05-25 1993-05-11 Seagate Technology, Inc. Self-loading air bearing slider with a relieved leading edge
US5515219A (en) * 1993-09-08 1996-05-07 Seagate Technology, Inc. Simplified self-loading head slider
US6055127A (en) * 1996-11-13 2000-04-25 Seagate Technology, Inc. Disc head slider having surface discontinuities to minimize fly stiction
US6188547B1 (en) 1998-06-04 2001-02-13 Seagate Technology Llc Slider with pressure relief trenches
US6215621B1 (en) 1997-11-07 2001-04-10 Seagate Technology Llc Multi-tier bearing with deposited tier
US6603639B1 (en) 1998-07-21 2003-08-05 Seagate Technology Llc Slider for disc storage system
US6934122B2 (en) 2000-07-28 2005-08-23 Seagate Technology Llc Disc head slider with sub-ambient pressure cavity bottom surfaces of differing depths
US7054108B2 (en) 2001-10-10 2006-05-30 Seagate Technology Llc Slider for a data storage device having improved stiction control with reduced interference with air bearing pressurization
CN102730945A (en) * 2012-07-18 2012-10-17 哈尔滨工业大学 Large-area contact type machining device for fused quartz by plasma discharge machining

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210666A (en) * 1990-05-25 1993-05-11 Seagate Technology, Inc. Self-loading air bearing slider with a relieved leading edge
US5515219A (en) * 1993-09-08 1996-05-07 Seagate Technology, Inc. Simplified self-loading head slider
US5624581A (en) * 1993-09-08 1997-04-29 Seagate Technology, Inc. Process for forming a simplified self-loading head slider
US6055127A (en) * 1996-11-13 2000-04-25 Seagate Technology, Inc. Disc head slider having surface discontinuities to minimize fly stiction
US6215621B1 (en) 1997-11-07 2001-04-10 Seagate Technology Llc Multi-tier bearing with deposited tier
US6188547B1 (en) 1998-06-04 2001-02-13 Seagate Technology Llc Slider with pressure relief trenches
US6445543B1 (en) 1998-06-04 2002-09-03 Seagate Technology Llc Slider with pressure relief trenches
US6603639B1 (en) 1998-07-21 2003-08-05 Seagate Technology Llc Slider for disc storage system
US6934122B2 (en) 2000-07-28 2005-08-23 Seagate Technology Llc Disc head slider with sub-ambient pressure cavity bottom surfaces of differing depths
US7209323B2 (en) 2000-07-28 2007-04-24 Seagate Technology Llc Slider having cavity floor with differing depths
US7054108B2 (en) 2001-10-10 2006-05-30 Seagate Technology Llc Slider for a data storage device having improved stiction control with reduced interference with air bearing pressurization
CN102730945A (en) * 2012-07-18 2012-10-17 哈尔滨工业大学 Large-area contact type machining device for fused quartz by plasma discharge machining

Similar Documents

Publication Publication Date Title
JP2781467B2 (en) Disk head slider with air support
EP0107411B1 (en) Floating head slider
JPS59132416A (en) Magnetic head slider assembly
JPS61204877A (en) Working method for negative pressure floating head slider
JP2779529B2 (en) Floating head slider
US5406432A (en) Air bearing magnetic head sliders with separate center rail segments
JPH02183478A (en) Negative pressure type magnetic head slider and its manufacture
JP3740186B2 (en) Manufacturing method of magnetic head slider
US5156704A (en) Method for fabricating magnetic head air bearing sliders
JP3936084B2 (en) Magnetic head and manufacturing method thereof
JPS62110680A (en) Floating type slider
JPH07287954A (en) Magnetic head, magnetic recording and reproducing device and manufacture of magnetic head
US5685064A (en) Process of manufacturing a magnetic head slider assembly
JPH10283611A (en) Thin film magnetic head
JP2940023B2 (en) Processing method using loose abrasive
GB2309331A (en) Manufacture of slider utilising an organic protective layer
JPH11219574A (en) Magnetic head and magnetic disk device
JPH11144418A (en) Levitation head slider and magnetic disk device
JP2874484B2 (en) Floating head slider and rotating disk storage device
JPH08167131A (en) Forming method of rail for floating thin film magnetic head, thin film magnetic head and magnetic disk device
JPH0512820A (en) Magnetic head
JPH04188479A (en) Magnetic head
JP2000215425A (en) Magnetic head and its production
JPS63113989A (en) Floating head slider
JPS629572A (en) Manufacture of negative pressure type floating head slider