JPS61204344A - Predicting method for reducibility of sintered ore - Google Patents

Predicting method for reducibility of sintered ore

Info

Publication number
JPS61204344A
JPS61204344A JP4585385A JP4585385A JPS61204344A JP S61204344 A JPS61204344 A JP S61204344A JP 4585385 A JP4585385 A JP 4585385A JP 4585385 A JP4585385 A JP 4585385A JP S61204344 A JPS61204344 A JP S61204344A
Authority
JP
Japan
Prior art keywords
sintered ore
reducibility
particles
particle
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4585385A
Other languages
Japanese (ja)
Inventor
Kazumasu Kuriyama
栗山 和益
Shun Sato
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4585385A priority Critical patent/JPS61204344A/en
Publication of JPS61204344A publication Critical patent/JPS61204344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To predict quickly the reducibility of sintered ore with good accuracy by determining the content of FeO in the sintered ore and the quantity of the pores and ruggedness existing respectively in and on the sintered ore particles as the factors to affect the reducibility. CONSTITUTION:The sintered ore is sized and the average weight M per piece of the particles is calculated from the number N of the sized sintered ore and the total weight thereof or the weight W per piece of the sintered particles. On the other hand, the content of FeO and the total iron content (T.Fe) of the sintered ore are determined by the chemical analysis. The true density P is estimated from the prescribed equation between the total iron content and the true density of the particles. The average volume V of particles are then determined from the weight W and the true density P. On the other hand, the volume V0 of, for example, a circumscribed sphere 1 is calculated from the particle size 5 and the gap quantity epsilon indicating whether the total of the quantity of the internal pores 3 and the quantity 4 of the ruggedness on the surface of the particles is large or not is calculated by V--V. The predicted value RI<0> of the reducibility RI of the sintered ore is calculated by the prescribed equation using the above-mentioned content of Fe and the gap quantity epsilon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼結鉱被還元性管JIS法(JISM871
3)Kよることなく低コストでかつ迅速に予測する方法
に関し、この予測値に基づいて操業条件を調整し被還元
性が目標とする値に近づくよう制御すること等に用いよ
うとするものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the sintered ore reducible pipe JIS method (JISM871
3) Regarding the method of predicting quickly and at low cost without relying on K, this method is intended to be used to adjust operating conditions based on this predicted value and control so that the reducibility approaches the target value. be.

〔従来の技術〕[Conventional technology]

焼結鉱被還元性C以下RIともいう)は、高炉の燃料比
低減、溶銑中Siの低減などと重要な関連を有し、焼結
鉱品質のうちでも近年特に重視さnているものである。
Sinter reducibility (hereinafter referred to as RI) has an important relationship with reducing the fuel ratio in blast furnaces and reducing Si in hot metal, and has been particularly emphasized in recent years among sinter quality. be.

し友がって、その他の品質であるRDI、、TIなどが
高炉の要求するスペック内に収まってお1ばRIは可能
な限り高い方が好ましい。しかしてRIの制御にはRI
の測定が基本となる。この測定法としては、一般にJI
S法によっている。
Therefore, if other qualities such as RDI, TI, etc. are within the specifications required by the blast furnace, it is preferable that RI be as high as possible. However, to control RI, RI
The basic measurement is This measurement method is generally JI
It is based on the S method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のRIの測定には、RDI、TIの測定な
どと比較して長時間を要するため、RIO値を測定して
必要な対応アクションをとるのに時間を要するうえ、ア
クションをとった後のRIの確認を行うためにも長時間
を要する。
However, conventional RI measurement takes a long time compared to RDI, TI measurements, etc., so it takes time to measure the RIO value and take necessary response actions, and even after taking the action. It also takes a long time to confirm the RI.

たとえばRIをJIS  M871:jに定めらnた手
順で測定するには、試料の予熱に90分以上、還元に1
80分の時間を費やす必要があり、少くとも3時間近い
時間を要する。RIが判明するまでのこの時間は対応ア
クションをとることができず、製造過程ではこの間無駄
な原料配合を続けなけ扛ばならない。したがって、焼結
鉱RIの目標値を設定しそルを達成しようと試みてもR
Iには時系列的なバラツキが大きく、また目標値の達成
にも長時間を要する欠点を有する。そこで従来から、R
IをJIS法で定めらnた還元試験によってではなく、
画像処理を利用した焼結鉱組織の定量値からRIを予測
する手法や、特開昭59−38307号公報の如く塊鉄
鉱石毎に予めRIを測定しておき、そnらの配合割合−
などから成品焼結鉱のRIを予測する手法などが開発さ
nている。しかし、例えば画像処理を利用する場合では
試料の研磨などの工数のかかる作業を必要とするうえ機
器が高価であること、また原料の塊鉱石のRIや気孔率
から成品焼結鉱のRIを予測する場合は、焼結プロセス
を通じて大幅に性状が変化した後の焼結鉱のRIを原料
から予測するため精度が十分とは言えない、などの欠点
がある。本発明はこのような状況に鑑み、焼結鉱のRI
を迅速・低コストでかつ精度良く予測し、ま次子測値に
基づいて対応アクションを実施し、バラツキを小さく抑
えながら迅速に目標とするRIを達成することを目的と
してなされたものである。
For example, to measure RI using the procedure specified in JIS M871:j, it takes at least 90 minutes to preheat the sample and 1 hour for reduction.
It is necessary to spend 80 minutes, and it takes at least close to 3 hours. No action can be taken during this time until the RI is determined, and the manufacturing process must continue to wastefully mix raw materials during this time. Therefore, even if you set a target value for sinter RI and try to achieve it, the R
I has the disadvantage that there is large variation over time and that it takes a long time to achieve the target value. Therefore, from the past, R
I is not determined by the reduction test specified by the JIS method,
A method of predicting RI from quantitative values of sintered ore structure using image processing, or a method of measuring RI for each lump iron ore in advance as in Japanese Patent Application Laid-open No. 59-38307, and calculating the blending ratio of the
Methods for predicting the RI of finished sintered ore have been developed. However, when using image processing, for example, it requires labor-intensive work such as polishing the sample, and the equipment is expensive, and the RI of the finished sintered ore can be predicted from the RI and porosity of the raw material lump ore. In this case, the accuracy is not sufficient because the RI of the sintered ore is predicted from the raw material after the properties have changed significantly through the sintering process. In view of this situation, the present invention has been developed to improve the RI of sintered ore.
This was done with the aim of quickly and accurately predicting RI at low cost, implementing corresponding actions based on the measured values, and quickly achieving the target RI while minimizing variation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、焼結鉱の諸性状が被還元性に及ぼす影響
について詳細に検討した結果、そのFeO7と、焼結鉱
粒子内部に存在する気孔量、および粒子表面に存在する
凹凸が重要な役割を果すことを見い出し、この知見に基
づいて焼結鉱の被還元性を数式によシ精度よくかつ迅速
・低コストに予測する本発明を創案するに到った〇すな
わち、本発明は、焼結鉱を整粒し、整粒された焼結鉱の
個数と、その総重量もしくは焼結鉱粒子1個ごとの重量
とから、粒子1個当シの平均重量を算出し、この平均重
量と真密度から整粒された焼結鉱粒子1個当りの平均体
積を算出し、この平均体積と焼結鉱中のFeO量を用い
て焼結鉱の被還元性を予測することを特徴とするもので
ある0 〔作用〕 焼結鉱の還元性を表わすRIの大小を決定する要因とし
ては、気孔率鉱物量、鉱物の結晶形態、或いは気孔・鉱
物の分布状態などが考えらnる。したがって、こnら各
々のRIに対する影響を数式化すnば還元試験を行なう
ことなくRIの予測値を得ることができる0 しかるに本発明者らは、こnらの要因以外に被還元性に
支配的な影響を及ぼす別の要因が存在することを見い出
しfCo以下にこの要因につき説明する。
As a result of a detailed study on the influence of various properties of sintered ore on reducibility, the present inventors found that FeO7, the amount of pores existing inside the sintered ore particles, and the unevenness existing on the particle surface are important. Based on this knowledge, we have devised the present invention, which predicts the reducibility of sintered ore accurately, quickly, and at low cost using a mathematical formula. , the sintered ore is sized, and the average weight per particle is calculated from the number of sized sintered ore and the total weight or the weight of each sintered ore particle, and this average The average volume per sized sintered ore particle is calculated from the weight and true density, and the reducibility of the sintered ore is predicted using this average volume and the amount of FeO in the sintered ore. 0 [Operation] Factors that determine the magnitude of RI, which represents the reducibility of sintered ore, include the amount of porosity minerals, the crystalline form of minerals, and the distribution of pores and minerals. . Therefore, by formulating the influence of each of these factors on RI, it is possible to obtain a predicted value of RI without conducting a reduction test. It was discovered that there is another factor that affects fCo, and this factor will be explained below.

従来から、前記諸要因の中でも気孔率は特に被還元性に
犬なる影響を及ぼすことが指摘さnている。そこで、気
孔率の増加が被還元性を向上させる機構を考察すると、
一般の固体−ガス反応と同様気孔率が犬なる程焼結粒子
と還元ガスの接触面積が増加し反応面積が広くなる上に
粒子内を拡散するガスの拡散距離が短くなるため、還元
反応が促進さnると考えられる0ただし、この気孔率と
は、焼結鉱粒子内部に存在する気孔率であり、従来の報
告においても気孔率は主として粒子内部に存在する気孔
の気孔率を意味する。しかし、この気孔以外に、還元ガ
スとの接触面積を増大させ、かつ還元ガスの粒子内拡散
距離を短縮する同様の効果を有するものとして本発明者
等は、粒子表面に存在するマクロな凹凸に注目した結果
、この凹凸景が被還元性に支配的な影響を及ぼすことを
知った。すなわち、同一ロットから採取した焼結鉱につ
き粒子外部を研磨した粒子(第2図(ロ))を用意し、
研磨なしの粒子(第2図(イ))と共に、粒径が20±
1 ttrxのものを各々500gずつ準備してRIと
諸性状を測定し念結果、化学成分、鉱物組成、JIS気
孔率(JISM8716)などは同等であったにも拘ら
ずRIは16前後の差で(イ)タイプの方が良好であっ
た。なお、同図においてlは外接球、2は外接球と粒子
間の空隙、3は内部気孔、4は粒子表面の凹凸、5は粒
径である。
It has been pointed out that among the various factors mentioned above, porosity particularly has a significant influence on reducibility. Therefore, considering the mechanism by which increased porosity improves reducibility,
Similar to general solid-gas reactions, as the porosity increases, the contact area between the sintered particles and the reducing gas increases, the reaction area becomes wider, and the diffusion distance of the gas diffusing inside the particles becomes shorter, so the reduction reaction becomes more difficult. However, this porosity is the porosity that exists inside the sintered ore particles, and in previous reports, porosity mainly refers to the porosity of the pores that exist inside the particles. . However, in addition to these pores, the present inventors believe that macroscopic irregularities existing on the particle surface have the same effect of increasing the contact area with the reducing gas and shortening the diffusion distance of the reducing gas within the particle. As a result of paying attention to it, I learned that this uneven landscape has a dominant influence on reducibility. That is, prepare particles of sintered ore collected from the same lot with the outside polished (Fig. 2 (b)),
Along with particles without polishing (Figure 2 (a)), particles with a particle size of 20±
We prepared 500g each of 1ttrx and measured the RI and various properties.Even though the chemical composition, mineral composition, JIS porosity (JISM8716), etc. were the same, the RI was about 16 different. Type (a) was better. In the figure, l is a circumscribed sphere, 2 is a gap between the circumscribed sphere and the particle, 3 is an internal pore, 4 is an unevenness on the particle surface, and 5 is a particle size.

この結果は、焼結鉱粒子内部の気孔率をはじめとして、
その他の性状が仮に同等であっても、表面のマクロな凹
凸量によって被還元性は大きく変化することを示すもの
である。第2図の(イ)タイプの粒子は明らかに還元ガ
スとの接触面積が大きいうえ、粒子内部の任意の位置と
還元ガスが接している粒子表面との距離が短いので、被
還元性が良好であったと考えらnる。同様の効果を有す
る内部気孔の場合は還元ガスの気孔への侵入が速やかで
あ几ば問題ないが、外部と通じていない場合や狭い通路
で外部と通じておフ還元ガスの拡散速度が問題となる場
合もあることを考慮すれば、粒子表面の凹凸が被還元性
に及ぼす影響はきわめて重要なものである。
This result shows that the porosity inside the sintered ore particles, etc.
This shows that even if other properties are the same, the reducibility varies greatly depending on the amount of macroscopic unevenness on the surface. Particles of type (A) in Figure 2 obviously have a large contact area with the reducing gas, and the distance between any position inside the particle and the particle surface that is in contact with the reducing gas is short, so they have good reducibility. It is thought that it was. In the case of internal pores that have a similar effect, there is no problem if the reducing gas enters the pores quickly and cools down, but if there is no communication with the outside or there is a narrow passageway that communicates with the outside, the diffusion rate of the reducing gas becomes a problem. Taking this into consideration, the influence of the unevenness of the particle surface on the reducibility is extremely important.

かかる知見に基づけば、焼結鉱の被還元性を数式により
予測する場合、粒子表面の凹凸を数値化してこの影響を
是非とも数式中に算入しなけnばならない事に想到する
。そこで詳細な検討を加え几結果、RIの予測式には粒
子内部気孔率(以後、内部気孔率と略す)、粒子表面の
凹凸量(以後、凹凸量と略す)、FeOの3変数を取り
込めば十分に精度良いRIを推定できることが判った。
Based on this knowledge, when predicting the reducibility of sintered ore using a mathematical formula, it is necessary to quantify the unevenness of the particle surface and take this influence into the mathematical formula. Therefore, we conducted a detailed study and found that the RI prediction formula incorporates three variables: particle internal porosity (hereinafter abbreviated as internal porosity), amount of unevenness on the particle surface (hereinafter abbreviated as unevenness), and FeO. It was found that RI could be estimated with sufficient accuracy.

この変数のうち第3図に示すようにFeOは従来からR
Iと負相関にあることが報告さnており、こnは主に焼
結鉱中マグネタイト量とFeO量に相関関係があること
が原因と思わnる0すなわち化学分析によるFeO量は
、その一部はスラグ中に含まnるFeOであるが残りは
ほとんどマグネタイトに由来するものであり、マグネタ
イトは細鉱物と比較して被還元性が低いことは既に公知
である。ヘマタイト・カルシウムフェライトに関しては
特に著しい被還元性の差は認めら汎ない。シ友がって、
焼結鉱の被還元性を予測するに当、!lJ FeO量を
変数として取り込む意味は、被還元性が他に比べて目立
って低いマグネタイト量をFeO量で代表し、焼結鉱の
被還元性に影響を及ぼす鉱物相の要因を算入する事にあ
ると解釈さnる0なお、FeO量の測定は従来法によっ
て、たとえばJIS法(JISM8213)などに従う
化学分析による方法、いわゆるマグメーターによる磁気
を利用した方法などで容易に行うことができる。
Among these variables, as shown in Figure 3, FeO has traditionally been R
It has been reported that there is a negative correlation with I, and this is thought to be mainly due to the correlation between the amount of magnetite in the sintered ore and the amount of FeO. A part of the slag is FeO contained in the slag, but the rest is almost entirely derived from magnetite, and it is already known that magnetite has a lower reducibility than fine minerals. Regarding hematite and calcium ferrite, there is no particularly significant difference in reducibility. Be friends,
For predicting the reducibility of sintered ore! lJ The meaning of incorporating the amount of FeO as a variable is to represent the amount of magnetite, whose reducibility is noticeably lower than others, by the amount of FeO, and to take into account the factors of the mineral phase that affect the reducibility of sintered ore. Note that the amount of FeO can be easily measured by conventional methods, such as a chemical analysis method according to the JIS method (JISM8213), a method using magnetism using a so-called magmeter, and the like.

次に内部気孔率および凹凸量を予測式に算入する理由は
前述の如く還元ガスとの接触面積の増加、ガスの粒子内
拡散距離の短縮が被還元性を大きく左右する事にあり、
この内部気孔率の測定および凹凸量の数量化と測定は以
下の方法により同時に行えることが判明した。
Next, the reason why internal porosity and unevenness are included in the prediction formula is that, as mentioned above, increasing the contact area with the reducing gas and shortening the diffusion distance of the gas within the particle greatly influences the reducibility.
It has been found that the measurement of internal porosity and the quantification and measurement of the amount of unevenness can be carried out simultaneously by the following method.

第2図において内部気孔量が増加する場合でも、表面の
凹凸量が増加して粒子外表面と外接球との空隙量が増加
する場合でも、粒径が一定であnば粒子の固体体積、っ
まフ粒子の内部気孔を除い友部分の体積は減少する。し
たがって、粒子の外接球から固体体積を除したものC以
下、空隙量εと称す)は、内部気孔量と凹凸量の合計の
大小を表わす指数となる。そこで、内部気孔量と凹凸量
の合計を本発明では空隙量−Cとして数式中に算入した
。εの値は、外接球の体積vOから粒子の体積vlを除
することで得らするので、voとvlを求めnば、εは
決定さnる。
In Fig. 2, even if the amount of internal pores increases, or if the amount of surface irregularities increases and the amount of voids between the outer surface of the particle and the circumscribed sphere increases, if the particle size is constant, the solid volume of the particle, The volume of the outer part of the gap particle, excluding the internal pores, decreases. Therefore, the value C obtained by dividing the solid volume from the circumscribed sphere of the particle (hereinafter referred to as the void volume ε) is an index representing the magnitude of the sum of the internal pore volume and the unevenness volume. Therefore, in the present invention, the sum of the amount of internal pores and the amount of unevenness is included in the formula as the amount of voids -C. The value of ε is obtained by dividing the volume vl of the particle from the volume vO of the circumscribed sphere, so if vo and vl are determined, ε is determined.

ここでVoは粒子の粒径Doからvo=マπ(コ)3で
算出さnる。ただし、焼結鉱の粒子形状はマクロ的に見
て必ずしも球形でない場合もあるので、VOの代替とし
て外接球体績ではなく、外接直方体の体積を使用しても
よい。次にvlは粒子の重量mと真密度ρからV1=M
/ρで算出さn1ε= V、 −Vlである。Mは容易
て測定可能である一方、ρの測定には例えばJIS法(
JIS M8717)に従う場合、工数を要するのでρ
は、焼結鉱の全鉄量から推定することとした。ρは、焼
結鉱の主成分がFeであることから必然的に全鉄量(以
下T、Feと称す)に支配的な影響を受ける。本発明者
等は種々の焼結鉱につき、ρとT、Feの関係について
調査し友結果、ρ=a+bT−Fe  z+  (1)
a、b:定数 に示す関係があることが判った0かかる結果を総合して
以下の如く焼結鉱被還元性の予測式を設定した。
Here, Vo is calculated from the particle size Do of the particles as vo=maπ(ko)3. However, since the particle shape of sintered ore may not necessarily be spherical from a macroscopic perspective, the volume of a circumscribed rectangular parallelepiped may be used instead of the circumscribed sphere as an alternative to VO. Next, vl is the weight m of the particle and the true density ρ, so V1=M
/ρ, n1ε=V, −Vl. While M can be easily measured, ρ can be measured using, for example, the JIS method (
JIS M8717) requires man-hours, so ρ
was estimated from the total amount of iron in the sintered ore. Since the main component of the sintered ore is Fe, ρ is inevitably predominantly influenced by the total amount of iron (hereinafter referred to as T and Fe). The present inventors investigated the relationship between ρ, T, and Fe for various sintered ores, and obtained the following results: ρ=a+bT−Fe z+ (1)
a, b: It was found that there was a relationship shown in the constants 0 By integrating these results, a prediction formula for the reducibility of sinter was set as shown below.

R工0=C−FeO+d・(vo−vl)十〇=CFe
0+d・(’−π(DO)3−   ’   )+e3
 2    a+b−T、Fe ”C’Fe0−a+bコ1+(e+’π(DO)3−d
)−M ・・・(2) a、b、c、d、e:定数 ここでJIS法に従って得らnる焼結鉱の被還元性RI
e予測する場合、T、 Fe 、 FeO、Do 、M
などの諸量をいかに決定するかにつき説明するOまずT
−F e + F e Oに関しては、焼結工場におい
て成品焼結鉱の化学分析がルーチン作業として一般に実
施さnており、その項目中にT、 Fe 。
R work 0 = C-FeO + d・(vo-vl) 〇 = CFe
0+d・('-π(DO)3-')+e3
2 a+b-T, Fe "C'Fe0-a+bko1+(e+'π(DO)3-d
)-M...(2) a, b, c, d, e: constants, where n is the reducibility RI of the sintered ore obtained according to the JIS method.
When predicting e, T, Fe, FeO, Do, M
First, explain how to determine various quantities such as T.
Regarding -Fe + FeO, chemical analysis of finished sintered ore is generally carried out as a routine work in sintering plants, and T and Fe are included in this item.

FeOが含まnているので特に必要性がある場合以外、
この測定値を用いnばよい0次にDoに関しては特に限
定する必要はないがRIを測定する場合試料の粒径を1
9〜215mに調整することを考慮すnば、RIを(2
)式で予測する場合も試料を19〜211mの範囲に整
粒するのが望ましい。したがって% Doは19〜21
1Eilの中間をとって20朋が適当である。次にMは
% D、の粒径を有する粒子を、代表性を考慮して、少
くとも20個以上用意した後に、粒子の個数と総重量か
ら粒子1個当りの平均重量を求めるか、または1個毎に
重量を測定した後その平均値を求めてもよい。結局、(
2)式はRIを予測する場合、試料毎にT−Fe + 
FeO+ Mは変化するもののDoは適当な値に固定す
るので(2)式のカッコで示した第3項は定数となシ、
第1項でFeOの被還元性に及ぼす影響を算入し、第2
項で粒子体積で代表さnる内部気孔と表面の凹凸量が被
還元性に及ぼす影響を算入する形をとる。(2)式で被
還元性を予測する場合、T、 Fe 、 FeOは前述
の如く日常のルーチン作業で得らnている値を使用し、
また、焼結鉱粒子数十個の重量や個数は極めて容易に測
定できるものであるから、現状と比較して追加すべき設
備や工数の増加はほとんど皆無であり、安価に被還元性
を予測できる特徴を有する0 〔実施例〕 以上の知見を受けて実操業への適用を行なりた実施例を
以下に説明する。0 (実施例1) 第4図は1日1回の割合でRIft測定すると同時に本
発明に従い、RIt予測した場合のRIと予測値RI’
との比較であるoRIの広い範囲にわたりその値を本発
明により精度よく予測可能であることを示している。な
お、この場合RIを予測するに際し、試料は2次スクリ
ーン出口から+5nの成品焼結鉱を約150kg採取し
丸部を用いて19〜21龍の粒子を約3kg選別しその
総重量と個数を測定して粒子の平均重量を求めたo T
、Fe 、FeOはこの+5m焼結鉱から約1ゆを採取
し粉砕した後、化学分析によって求めた。RIは、残り
の+511L焼結鉱を再び篩により整粒した後JIS法
に従って測定した0第5図は別の期間に23〜25龍に
整粒し、(2)式で別のc、d、eの値を用いてRIを
予測した場合の実測値との比較を示す0この場合り。
Contains FeO, so unless there is a particular need,
There is no need to particularly limit the zero-order Do using this measurement value, but when measuring RI, the particle size of the sample should be 1
Considering adjusting the range from 9 to 215 m, the RI should be set to (2
) When predicting using the formula, it is desirable to size the sample to a range of 19 to 211 m. Therefore, %Do is 19-21
Taking the middle of 1Eil, 20 Homo is appropriate. Next, after preparing at least 20 particles having a particle size of % D, M is % D, after preparing at least 20 particles, taking into account representativeness, calculate the average weight per particle from the number of particles and the total weight, or After measuring the weight of each piece, the average value may be determined. in the end,(
2) When predicting RI, the formula is T-Fe +
Although FeO+ M changes, Do is fixed at an appropriate value, so the third term shown in parentheses in equation (2) is a constant.
The first term takes into account the effect on the reducibility of FeO, and the second term
In this formula, the influence of the internal pores represented by the particle volume and the amount of surface unevenness on the reducibility is taken into account. When predicting reducibility using equation (2), use the values obtained in daily routine work for T, Fe, and FeO as described above,
In addition, since the weight and number of dozens of sintered ore particles can be measured extremely easily, there is almost no increase in additional equipment or man-hours compared to the current situation, and it is possible to predict reducibility at low cost. [Example] An example in which the above knowledge was applied to actual operation will be described below. 0 (Example 1) Figure 4 shows RI and predicted value RI' when RIft is measured once a day and at the same time, RIt is predicted according to the present invention.
This shows that the present invention can predict oRI values over a wide range with high accuracy. In addition, when predicting RI in this case, the sample was taken from the exit of the secondary screen about 150 kg of +5n finished sintered ore, and using the round part, about 3 kg of particles of 19 to 21 dragon were sorted, and the total weight and number of particles were calculated. Measured to find the average weight of the particles o T
, Fe 2 , and FeO were determined by chemical analysis after extracting approximately 1 g of this +5m sintered ore and pulverizing it. The RI was measured according to the JIS method after the remaining +511L sintered ore was sieved again. , 0 indicates a comparison with the actual measured value when RI is predicted using the values of e.

は24間とした。第5図は、RIを実測する場合の試料
の粒径である20±1絹とは別の粒径の焼結鉱粒子から
でも、本発明によnばRIを予測可能であることを示し
ている0 (実施例2) 第6図に、ドワイトロイド型の実機焼結機に於て、RI
の目標値を66と設定し、本発明によりRIを予測しな
がら第3図を参考にコークス量を調整して焼成した場合
と、JIS法に従いRIを実測しながらコークス量を調
整しt場合のRI変化を示す。図中、(イ)はJIS法
に従いRIを実測し几場合、(ロ)の黒丸は本発明によ
る予測値を示す。なお、(ロ)の白丸は予測値が正しい
か否かを確認するため後はどRIを実測し食結果である
。この実施例から本発明によnば、RIを予測して迅速
に対応アクションをとnるため早期に目標とする被還元
性を備えた焼結鉱を製造できることが判る。
The period was 24 hours. Figure 5 shows that according to the present invention, it is possible to predict RI even from sintered ore particles having a particle size different from that of 20±1 silk, which is the particle size of the sample when actually measuring RI. (Example 2) Figure 6 shows that the RI
The target value of is set to 66, and the coke amount is adjusted with reference to Fig. 3 while predicting the RI according to the present invention, and the coke amount is adjusted while actually measuring the RI according to the JIS method. RI change is shown. In the figure, (a) shows the actual measured RI according to the JIS method, and (b) shows the predicted value according to the present invention. Note that the white circle in (b) is the eclipse result obtained by actually measuring the RI to confirm whether the predicted value is correct or not. This example shows that according to the present invention, sintered ore having the target reducibility can be produced at an early stage because RI can be predicted and countermeasures can be taken quickly.

(実施例3) 第7図において、はぼ同規模のドワイトロイド型焼結機
2基を同時に同じ原料を使用して操業した際にその片方
の焼結機で本発明による方法を適用しRIを予測しなが
ら操業条件を調整してRIの向上を試行した場合(図中
白丸)の比較を示す。本発明を適用した場合、対応アク
ションを早期に実施できるため、予測と対応アクション
の繰り返しにより早期に最適な操業条件に近づけること
が可能なので、RDI、TIをスペック内に収めなから
RIを著しく向上させることができた。
(Example 3) In Fig. 7, when two Dwight Lloyd type sintering machines of approximately the same scale are operated at the same time using the same raw materials, the method according to the present invention is applied to one of the sintering machines. A comparison is shown in the case where an attempt was made to improve RI by adjusting operating conditions while predicting the above (white circles in the figure). When the present invention is applied, response actions can be taken early, so it is possible to approach optimal operating conditions early by repeating predictions and response actions, which significantly improves RI without keeping RDI and TI within specifications. I was able to do it.

〔発明の効果〕〔Effect of the invention〕

以上の通シ、本発明によnば、焼結鉱の被還元性を精度
よく、しかも迅速、安価に予測できる友め、焼結鉱製造
時に対応アクションを早期に実施でき、その結果、目標
とする良質の焼結鉱を無駄なく製造できるなどの利点か
もたらさnる。
In summary, according to the present invention, the reducibility of sintered ore can be predicted accurately, quickly, and inexpensively, and countermeasures can be taken early during the production of sintered ore, and as a result, the target It brings about advantages such as being able to produce high-quality sintered ore without waste.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はRIの予測手順の工程図、第2図(イ)および
(ロ)は表面の凹凸が多い粒子と少い粒子の断面図、t
83図はコークス量、FeOとRIの相関図、第4図は
20±111Iに整粒した焼結鉱のRIと予測値の比較
図、第5図は24±1 msに整粒した焼結鉱のRIと
予測値の比較図、第6図(イ)(ロ)はRIを実測した
時とRI=i本発明により予測しながら対応アクション
をとった時の目標値66を達成する経過のグラフ、第7
図はRItJIS法で実測しながら操業した時と本発明
で予測しながら操業した時の品質の時間的推移の比較図
である。 1・・外接法  2・・外接法と粒子間の空隙3・・内
部気孔  4・・粒子表面の凹凸5・・粒径 第1図 第2図 (イ)             (ロ)第3図 第4図 干渉14[RI’ 第5図 第6図 K 3JILIt yi (hr、) 第7図 径逼爵閉 手続補正書(方式) %式% 1、事件の表示 昭和60年特許 願第45853号 2・発明の名称 焼結鉱被還元性の予測方法3、 補正
をする者 事件との関係 特許出願人 4、 代  理  人  〒101 7y& Flit正の内容 (ω明細書、第15頁第17〜19行目:「第2図(イ
)および(ロ)は・・・・・・断面図、」とあるのを、
「第2図は表面の凹凸が多い粒子と少い粒子の断面図」
と補正する0 (b)明細書、第16頁第2〜5行目:「第6図(イ)
(ロ)は・・・・グラフ、」とあるのを、「第6図はR
Iを実測し九時とRIを本発明により予測しながら対応
アクションをとった時の目標値66を達成する経過のグ
ラフ、」と補正する。
Figure 1 is a process diagram of the RI prediction procedure, Figures 2 (a) and (b) are cross-sectional views of particles with many and few surface irregularities.
Figure 83 is a correlation diagram of coke amount, FeO, and RI, Figure 4 is a comparison diagram of RI of sintered ore sized to 20±111I and predicted value, and Figure 5 is sintered ore sized to 24±1 ms. Figures 6 (a) and 6 (b), which are comparison diagrams of the RI of ore and predicted values, show the progress of achieving the target value 66 when RI was actually measured and when corresponding action was taken while predicting RI=i according to the present invention. Graph, 7th
The figure is a comparison diagram of the time course of quality when operating while actually measuring using the RItJIS method and when operating while predicting using the present invention. 1. Circumscribing method 2. Circumscribing method and voids between particles 3. Internal pores 4. Irregularities on particle surface 5. Particle size Figure 1 Figure 2 (A) (B) Figure 3 Figure 4 Interference 14 [RI' Fig. 5 Fig. 6 K 3JILIt yi (hr,) Fig. 7 Amended form for closing procedure (method) % formula % 1. Indication of the case 1985 Patent Application No. 45853 2. Invention Name: Method for predicting the reducibility of sintered ore 3, Relationship with the case of the person making the amendment Patent applicant 4, Agent 101 7y & Flit Positive contents (ω specification, page 15, lines 17-19 : "Figures 2 (a) and (b) are cross-sectional views,"
"Figure 2 is a cross-sectional view of particles with many and few surface irregularities."
(b) Specification, page 16, lines 2 to 5: “Figure 6 (a)
``(B) is...graph,'' is replaced with ``Figure 6 is R.
A graph showing the progress of achieving the target value of 66 when the corresponding action is taken while actually measuring I and predicting 9 o'clock and RI according to the present invention.''

Claims (1)

【特許請求の範囲】[Claims] (1)焼結鉱を整粒し、整粒された焼結鉱の個数と、そ
の総重量もしくは焼結鉱粒子1個ごとの重量とから、粒
子1個当りの平均重量を算出し、この平均重量と真密度
から整粒された焼結鉱粒子1個当りの平均体積を算出し
、この平均体積と焼結鉱中のFeO量を用いて焼結鉱の
被還元性を予測することを特徴とする焼結鉱被還元性の
予測方法。
(1) Sort the sintered ore, calculate the average weight per particle from the number of sized sintered ore and the total weight or the weight of each sintered ore particle, and calculate the average weight per particle. The average volume per sized sintered ore particle is calculated from the average weight and true density, and the reducibility of the sintered ore is predicted using this average volume and the amount of FeO in the sintered ore. Characteristic method for predicting the reducibility of sintered ore.
JP4585385A 1985-03-08 1985-03-08 Predicting method for reducibility of sintered ore Pending JPS61204344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4585385A JPS61204344A (en) 1985-03-08 1985-03-08 Predicting method for reducibility of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4585385A JPS61204344A (en) 1985-03-08 1985-03-08 Predicting method for reducibility of sintered ore

Publications (1)

Publication Number Publication Date
JPS61204344A true JPS61204344A (en) 1986-09-10

Family

ID=12730767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4585385A Pending JPS61204344A (en) 1985-03-08 1985-03-08 Predicting method for reducibility of sintered ore

Country Status (1)

Country Link
JP (1) JPS61204344A (en)

Similar Documents

Publication Publication Date Title
CN108154295A (en) A kind of Optimization Ore Matching method based on sintering-pelletizing-ironmaking linkage
Mousa et al. Influence of nut coke on iron ore sinter reducibility under simulated blast furnace conditions
CN105734276A (en) Comprehensive assessment method and comprehensive assessment system for economical efficiency of iron ores for blast furnace process
Kongoli et al. Liquidus surface of FeO-Fe 2 O 3-SiO 2-CaO slag containing Al 2 O 3, MgO, and Cu 2 O at intermediate oxygen partial pressures
CN114091871A (en) Blast furnace iron-making ore blending method and system
Williams Control and analysis in iron and steelmaking
CN107614710B (en) The manufacturing method of reduced iron
CN110331244B (en) Blast furnace burden distribution adjusting method for reasonably using multi-grade sinter
Wu et al. Effects of particle characteristics on the granulation ability of iron ores during the sintering process
KR20110022043A (en) Method of controlling a transformation process
JPS61204344A (en) Predicting method for reducibility of sintered ore
US11851725B2 (en) Ironmaking feedstock
Ryabchikov et al. Simulation of the combined effect of production factors on metallurgical sinter mechanical strength
JP4971662B2 (en) Blast furnace operation method
Babaievska et al. Influence of the size of hematite and magnetite ores on the parameters of the sintering process and the quality of the sinter
Dmitriev et al. Features of the reducibility of titanomagnetite iron ore materials
CN113466079A (en) Method for detecting component content of steel slag
JPH0711349A (en) Method for estimating strength of sintered ore for blast furnace and its control method
JPS60106926A (en) Method for controlling sintering of sintered ore
CN111560515B (en) Control method for pellet production
KR102175844B1 (en) Estimating method of quality of iron ore for manufacturing sintered ore
Zhu et al. The correlation between high temperature properties and sintering performance of Australian iron ore fines
Donskoi et al. Mineral 4/Recognition 4: A Universal Optical Image Analysis Package for Iron Ore, Sinter and Coke Characterization
JPH08120311A (en) Method for charging raw material of blast furnace
JP3014549B2 (en) Blast furnace operation method