JPS61204304A - Production of metallic powder - Google Patents

Production of metallic powder

Info

Publication number
JPS61204304A
JPS61204304A JP4547585A JP4547585A JPS61204304A JP S61204304 A JPS61204304 A JP S61204304A JP 4547585 A JP4547585 A JP 4547585A JP 4547585 A JP4547585 A JP 4547585A JP S61204304 A JPS61204304 A JP S61204304A
Authority
JP
Japan
Prior art keywords
powder
molten metal
metallic powder
metal
spray medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4547585A
Other languages
Japanese (ja)
Inventor
Shuzo Fukuda
福田 脩三
Toyokazu Teramoto
寺本 豊和
Yasushi Ueno
康 上野
Hiroaki Nishio
浩明 西尾
Kazuhide Nakaoka
中岡 一秀
Yoshiichi Takada
高田 芳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4547585A priority Critical patent/JPS61204304A/en
Publication of JPS61204304A publication Critical patent/JPS61204304A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce inexpensively irregular shaped metallic powder contg. oxygen at a low ratio and having excellent cold press formability by bringing an org. solvent mode of the adequate compsn. consisting of C, H, O, etc. as a spraying medium into collision against a molten metal. CONSTITUTION:This method produces the metallic powder by supplying the molten metal obtd. by melting a material metal in an electric furnace 1 via a tundish 2 disposed with a heater 5 for holding heat, bringing the spraying medium supplied from a pressurizing pump 8 into collision against the molten metal in a spraying nozzle 6 to form the metallic powder and cooling and solidifying the metallic powder in a storage tank 9 provided with an overflow port 10. The org. solvent consisting preferably of C, H, and O and having <=4 C, <=1 O and <=150 deg.C b.p. is used as the spraying medium in the above-mentioned method. The resulted metallic powder can be easily dried by heating or evacuation. The irregular shaped metallic powder which does not contain impurities such as C and contains the oxygen at a low ratio is thus inexpensively obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融金属に噴霧媒を衝突させて金属粉末を得る
金属粉末の製造方法、特に高純度で表面酸化の少ない異
形金属粉末を低コストで製造する方法に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing metal powder by impinging a spray medium on molten metal to obtain metal powder, and in particular, a method for producing metal powder with high purity and low surface oxidation at a low cost. It relates to a method of manufacturing.

〔従来の技術〕[Conventional technology]

金属粉末の製造方法としては、化学的方法から機械的方
法まで、多くの方法が知られている。工業的には、この
うち、鉄鋼業プ田セスにおいて発生するミルスケールを
還元し、それを粉末化する還元法と、金jI溶湯流に高
速の流体を吹き付けることによって金属粉末を得る溶湯
噴霧法が主に採用されている。前者の方法は、原料を圧
延の副産物であるミルスクールに求めているため、不純
物が多く、成分調整も不可能で、得られた金属粉末の成
分範囲が制限されてしまう。これに対し、後者の方法は
、溶湯段階で成分調整が可能なので、得られた金属粉末
の成分範囲が制限されず、製造規模的にも大量生産が可
能であり、エネルギー的にも有利である。このため、後
者の方法が最近の設備投資の主流となっている。
Many methods are known for producing metal powder, from chemical methods to mechanical methods. Industrially, two methods are used: the reduction method, which reduces mill scale generated in the steel industry process and turns it into powder, and the molten metal atomization method, which obtains metal powder by spraying a high-speed fluid onto a flow of molten gold metal. is mainly used. The former method uses mill school, which is a by-product of rolling, as a raw material, and therefore contains many impurities, making it impossible to adjust the composition, and limiting the range of composition of the obtained metal powder. On the other hand, in the latter method, the composition can be adjusted at the molten metal stage, so the composition range of the obtained metal powder is not limited, mass production is possible, and it is advantageous in terms of energy. . For this reason, the latter method has become the mainstream of recent capital investment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

溶湯噴霧法では、〒般に水又は不活性ガスが噴霧媒とし
て用いられている。水を噴霧媒とする場合は、溶湯粉末
の冷却速度が101〜10”C/Secときわめて速い
ので、不規則形状の異形粉が得られ、この異形粉はプレ
ス成形する場合に粉末の機械的ふらみ合いが良く、成形
性が良好である。この場合は、噴霧媒が水であるため、
工業的には安価な方法であるが、噴霧時に金属粉末の酸
化が避けられず9、鉄粉を得る場合は0.3〜1.0%
程度の酸素を含有することとなり、これを粉末冶金鉄粉
として用いる場合には酸化物の還元工程を必要とする。
In the molten metal spray method, water or an inert gas is generally used as the spray medium. When water is used as the atomizing medium, the cooling rate of the molten powder is extremely fast at 101 to 10"C/Sec, so irregularly shaped powder can be obtained. Good flanging and good moldability.In this case, since the spray medium is water,
Although this method is industrially inexpensive, oxidation of the metal powder is unavoidable during atomization9, and when obtaining iron powder, 0.3 to 1.0%
When using this as a powder metallurgy iron powder, an oxide reduction step is required.

この還元工程にはH,、Co等の還元ガスが必要で、又
、高温で還元することが必要である。従って、還元工程
が設備費、運転費の面から金属粉末の製造コストを上昇
させる主要因となっており、この金属粉末を原料とする
製品価格を高くする主原因の1つとなっている。機械焼
結部品としてそれなりに使われている上記水噴霧鉄粉の
素材価格は溶製法の2倍弱と高い。また、Cr、Mnな
どの合金成分を含む合金粉の製造では、Cr、Mnが優
先的に酸化され、しかもこれらの酸化物の還元は困難で
、あえて高温還元を試みると粉末が焼結し、解粒が難し
い。水噴霧合金粉を機械焼結部品原料に用いると、合金
成分の酸化の為に焼結性が低下し、高密度化が困難とな
り、強度、延性、耐食性が思うように向上せず、焼入性
も劣化するなどの問題点がある。
This reduction process requires a reducing gas such as H, Co, etc., and also requires reduction at a high temperature. Therefore, the reduction process is a main factor in increasing the manufacturing cost of metal powder in terms of equipment costs and operating costs, and is one of the main reasons for increasing the price of products made from this metal powder as a raw material. The raw material price of the water-sprayed iron powder, which is used to some extent as machine sintered parts, is almost twice as high as that of the ingot process. Furthermore, in the production of alloy powder containing alloy components such as Cr and Mn, Cr and Mn are preferentially oxidized, and it is difficult to reduce these oxides, and if high temperature reduction is attempted, the powder will sinter. Difficult to disintegrate. When water-sprayed alloy powder is used as a raw material for mechanically sintered parts, sinterability decreases due to oxidation of the alloy components, making it difficult to achieve high density, and strength, ductility, and corrosion resistance do not improve as expected, and quenching There are also problems such as deterioration in performance.

金属粉末の酸化を防止または極力抑制しようとする溶湯
噴霧法として、溶湯流を不活性ガス1燃焼ガス等の雰囲
気ガスで大気から遮断し、この溶湯流を不活性ガスで噴
霧、微粒化する方法がある。
As a molten metal atomization method that attempts to prevent or minimize oxidation of metal powder, the molten metal flow is isolated from the atmosphere with an atmospheric gas such as inert gas 1 combustion gas, and the molten metal flow is atomized with an inert gas to atomize it. There is.

この方法では、噴−媒として不活性ガスを用いるので、
粉末冷却速度は100〜b 合に比べて遅く、このため得られた粉末形状は溶湯粉の
表面張力の作用で球形あるいは球形に近い形状となる。
This method uses an inert gas as a propellant, so
The cooling rate of the powder is slower than that in the case of 100~b, and therefore the shape of the obtained powder becomes spherical or nearly spherical due to the effect of the surface tension of the molten powder.

この球形粉はHIP (熱間等方圧加圧゛)用の金属カ
プセル等に充填使用する場合には好都合であるが、一般
的な冷間プレス成形には粉末のからみ合いが不十分なの
で、使用困難である。また、製造コストの面からは、不
活性ガスを高純度に維持するためにコ、ストがかかる。
This spherical powder is convenient when used to fill metal capsules for HIP (hot isostatic pressing), but the entanglement of the powder is insufficient for general cold press forming. Difficult to use. In addition, in terms of manufacturing costs, it is costly to maintain the inert gas at a high purity.

このため、Ni。For this reason, Ni.

ベース超合金、高速度工具鋼などの少量、特殊用途向け
の高価な高合金粉でしかも実用化されていないのが実状
である。
The reality is that it is an expensive high-alloy powder for small quantities and special uses such as base superalloys and high-speed tool steels, and it has not been put to practical use.

このような実状に対して、冷却速度、粉末形状の面、お
よび酸化防止の両面を同時に満足する溶湯噴霧法として
、噴霧媒に灯油、ベンゼン等の非極性溶媒、鉱物油、動
物油等を用いる方法(特開昭55−82701)が提案
されている。しかしながら、噴霧媒としてこの様な流体
を用いると、金属粉の酸化が抑制されるものの、噴霧媒
が粉末に付着し、更にはその熱分解によるCが粉末に付
着し、噴霧媒自身や分解Cの粉末からの分離に大がかり
な設備を要すること、また分離時や粉末の冷開成形性改
善の為の熱処理時に浸炭が生じる等従来の溶湯噴霧法の
問題点を本質的に解決できないという問題点があった。
In response to this situation, a method using kerosene, non-polar solvents such as benzene, mineral oil, animal oil, etc. as the spray medium is used as a molten metal spraying method that satisfies both cooling speed, powder shape, and oxidation prevention. (Japanese Unexamined Patent Publication No. 55-82701) has been proposed. However, when such a fluid is used as a spray medium, although oxidation of the metal powder is suppressed, the spray medium adheres to the powder, and C from its thermal decomposition also adheres to the powder, and the spray medium itself and decomposed C The problems of the conventional molten metal spraying method cannot essentially be solved, such as requiring large-scale equipment to separate the powder from the powder, and carburization occurring during separation and during heat treatment to improve the cold-open formability of the powder. was there.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記のような溶湯噴霧法の問題点を解決し、酸
素含有量が少なく、冷間ブレス成形性のすぐれた異形金
属粉末を安価に製造する方法を確立すべく研究の結果、
完成されたものである。本発明の特徴とするところは、
溶融金属に噴霧媒を衝突させて金属粉末を得る金属粉末
の製造方法において、前記噴霧媒として、C原子数が4
以下、C原子数が1以下、沸点が150℃以下の有機溶
媒を用いた点にある。
The present invention solves the problems of the molten metal spraying method as described above, and as a result of research to establish a method for inexpensively manufacturing deformed metal powder with low oxygen content and excellent cold press formability,
It is complete. The features of the present invention are as follows:
In a method for producing metal powder in which metal powder is obtained by colliding a spray medium with molten metal, the spray medium has a C atom number of 4.
Hereinafter, an organic solvent having a C atom number of 1 or less and a boiling point of 150° C. or less is used.

噴襲鰍 〉 1.12寸 C−IJ−0’n  ち た
 ス ス〒説鑓浣り虻ル使用するのが好ましい。C,H
,O以外の元素を含有する有機溶媒を噴霧媒として使用
すると、金属粉末中に不純物元素を含有させ、最終製品
の性能に悪影響を及ぼすおそれがあるからである。噴霧
媒のC原子数を4以下としたのは、C原子数が4を越え
ると、金属粉末中に噴霧媒の分解によるCが残り、最終
製品の性能に悪影響を及ぼすことになるからである。噴
霧媒の0原子数を1以下としたのは、0原子数が1を越
えると、金属粉末中の酸素含有量が増加し、やはり最終
製品の性能に悪影響を及ぼすことになるからである。本
発明ではかかる理由からC原子数を制限しているので、
噴霧媒は0原子を全く含んでいなくてもよい。噴霧媒の
沸点を150℃以下としたのは、沸点が150℃を越え
る噴霧媒を用いた場合は、金属粉末との分離過程におい
て、その揮発・除去に時間がかかり、製造コストを高め
、好ましくないからである。使用する噴霧媒の沸点を1
50℃以下とすることによって、金属粉末と噴霧媒との
混合物をその収容容器ごと加熱し、あるいは減圧すれば
、噴霧媒を金属粉末から容易に分離することができ、粉
末価格へのはねかえりも少ない。
It is preferable to use a gillfish. C,H
, O. If an organic solvent containing elements other than O is used as a spraying medium, impurity elements may be included in the metal powder, which may adversely affect the performance of the final product. The reason why the number of C atoms in the spray medium is set to 4 or less is because if the number of C atoms exceeds 4, C from decomposition of the spray medium will remain in the metal powder, which will have a negative impact on the performance of the final product. . The reason why the number of zero atoms in the spray medium is set to 1 or less is that if the number of zero atoms exceeds 1, the oxygen content in the metal powder will increase, which will also have a negative effect on the performance of the final product. In the present invention, the number of C atoms is limited for this reason, so
The spray medium may contain no zero atoms. The reason for setting the boiling point of the spray medium to 150°C or lower is that if a spraying medium with a boiling point exceeding 150°C is used, it will take time to volatilize and remove it in the separation process from the metal powder, increasing manufacturing costs. That's because there isn't. The boiling point of the spray medium used is 1
By heating the mixture of metal powder and spray medium together with its storage container by keeping the temperature below 50°C, or by reducing the pressure, the spray medium can be easily separated from the metal powder, and there is less impact on the powder price. .

〔作 用〕[For production]

本発明は上記のような噴霧媒を使用することによって、
水アトマイズ法(噴霧媒として水を使用する溶湯噴霧法
)よりは粉末の冷却速度がやや落ちるものの、ガスアト
マイズ法(噴霧媒としてガスを使用する溶湯噴霧法)で
従来から用いられている噴霧媒よりもはるかに速い冷却
速度が得られ、その結果、溶湯がきわめて短い時間K1
1敗・凝固〔発明の効果〕 本発明は、以上説明したように、O原子数が1以下の有
機溶媒を噴霧媒として使用し九ので、噴霧時に溶湯の酸
化が抑制され、粉末製造プロセス中での還元工程が省略
ないし大巾に軽減でき、その結果、粉末製造コストを低
減できるという効果がある。ま九、本発“明は沸点が1
50℃以下の有機溶媒を噴霧媒として使用したので、溶
湯がきわめて短時間に霧散φ凝固することとなり、その
結果、水アトマイズ法による粉末と類似の異形粉をほぼ
同一の粒度分布で得ることができるという効果がある。
By using the above-mentioned spray medium, the present invention can
Although the cooling rate of the powder is slightly slower than the water atomization method (a molten metal atomization method that uses water as an atomization medium), it is better than the atomization medium conventionally used in the gas atomization method (a molten metal atomization method that uses gas as an atomization medium). A much faster cooling rate is obtained, with the result that the molten metal cools down to K1 for a very short time.
1. Failure/Coagulation [Effects of the Invention] As explained above, the present invention uses an organic solvent having one or less O atoms as a spraying medium, so oxidation of the molten metal is suppressed during spraying, and the oxidation of the molten metal is suppressed during the powder manufacturing process. The reduction step can be omitted or greatly reduced, and as a result, the powder manufacturing cost can be reduced. Nine, the boiling point of the present invention is 1.
Since an organic solvent at 50°C or lower was used as the atomizing medium, the molten metal was atomized and solidified in a very short time, and as a result, it was possible to obtain irregularly shaped powder similar to the powder produced by water atomization, with almost the same particle size distribution. There is an effect that it can be done.

また、本発明は低分子の液状の有機溶媒を噴霧媒として
便用するので、従来の水アトマイズ法の設備をほとんど
変えることなく転用することができ、従って、金属粉末
を低コストで製造できるという効果がある。また、本発
明は沸点が150℃以下の有機溶媒を噴霧媒として使用
するので、加熱ま九は減圧するだけでl!ljg媒を揮
発させることができ、従って、金属粉末と噴霧媒とを、
油アトマイズ法に比較して、極めて溶易に分離すること
かできるという効果がある。
In addition, since the present invention conveniently uses a low-molecular liquid organic solvent as a spraying medium, the equipment for conventional water atomization methods can be reused with almost no changes, and metal powder can therefore be produced at low cost. effective. In addition, since the present invention uses an organic solvent with a boiling point of 150°C or less as a spray medium, heating can be done by simply reducing the pressure. ljg medium can be volatilized, therefore, the metal powder and the spray medium can be
Compared to the oil atomization method, it has the advantage of being able to be separated extremely easily.

更に、従来、A4 、 St  などを多量に含む金属
溶湯では、AA * 81  などが容易に酸化される
が之めに、水アトマイズ法では急冷凝固粉が婁造できな
かったが、本発明では溶湯の酸化が抑制されたので、そ
の製造が可能となり、従って、固溶限が拡大され均一で
偏析のない特殊合金の粉末を製造することができるとい
う効果がある。
Furthermore, conventionally, in a molten metal containing a large amount of A4, St, etc., AA*81 etc. were easily oxidized, and therefore it was not possible to form a rapidly solidified powder using the water atomization method. Since the oxidation of the alloy is suppressed, its production becomes possible, and therefore, the solid solubility limit is expanded and a special alloy powder that is uniform and free from segregation can be produced.

〔実施例〕〔Example〕

次に、本発明の実施例について説明する。第1図は本発
明を実施するための装置の説明図、第2図はその要部拡
大説明図である。これらの図において、(1)は材料金
属を溶解して溶湯を得るための電気炉、(2)は電気炉
(1)の溶湯の一部を貯留するために、電気炉(1)の
下方に配置されたタンディツシュ、(3)は細流の溶湯
(4)を流下させるために、タンディツシュ(2)の底
部に設けたノズル、(5)はタンディツシュ(2)内の
溶湯を保温するために、タンディツシュ(2)を囲繞し
て設けられた加熱装置、(6)はノズル(3)から流下
する細流の溶湯(4)に噴霧媒(7)を吹き付けて溶湯
(4)を霧化・凝固させるために、タンディツシュ(2
1下で細流の溶湯(4)を囲繞する工うに設けられたリ
ング状の噴射ノズル、(8)は噴射ノズル(6)に高圧
の噴霧媒(7)を供給する加圧ポンプ、(9)は得られ
た粉末を噴霧媒(7)とともに貯留する几めに、噴射ノ
ズル(6)の下方に設けられた貯留槽、叫は貯留槽(9
)の側部上方に設けられたオーバフローロである。ここ
で、電気炉(1)としては誘導加熱炉が用いられ、溶湯
保持用のタンディツシュ(2)の加熱には外熱式の抵抗
炉が用いられている。タンデイッシ−3−(2)は溶湯
面の高さの変動をできるだけ少なくするために、溶湯ノ
ズル(3)の径に比較してその径方向断面積を十分に大
きくしである。噴霧媒(7)を噴射するための噴射ノズ
ル(6)は公知の環状スリットを有するものを用いる。
Next, examples of the present invention will be described. FIG. 1 is an explanatory diagram of an apparatus for carrying out the present invention, and FIG. 2 is an enlarged explanatory diagram of its main parts. In these figures, (1) is an electric furnace for melting material metal to obtain molten metal, and (2) is an electric furnace for storing a part of the molten metal in electric furnace (1). The tundish (3) is a nozzle installed at the bottom of the tundish (2) to allow a trickle of molten metal (4) to flow down, and the nozzle (5) is placed at the bottom of the tundish (2) to keep the molten metal in the tundish (2) warm. A heating device (6) provided surrounding the tundish (2) sprays a spray medium (7) onto a trickle of molten metal (4) flowing down from a nozzle (3) to atomize and solidify the molten metal (4). Therefore, Tanditshu (2
(8) is a pressurizing pump that supplies high-pressure spray medium (7) to the injection nozzle (6); 9 is a storage tank provided below the injection nozzle (6) to store the obtained powder together with the spray medium (7).
) is an overflow provided on the upper side of the Here, an induction heating furnace is used as the electric furnace (1), and an external heating type resistance furnace is used to heat the tundish (2) for holding the molten metal. In order to minimize fluctuations in the height of the molten metal surface, the radial cross-sectional area of the tandyshi-3-(2) is made sufficiently large compared to the diameter of the molten metal nozzle (3). The spray nozzle (6) for spraying the spray medium (7) has a known annular slit.

上記の装置において、材料金属は電気炉(1)で溶解さ
れて溶湯となり、タンディツシュ(21に供給される。
In the above-mentioned apparatus, material metal is melted in an electric furnace (1) to become a molten metal, and the molten metal is supplied to a tundish (21).

タンディツシュ(2)に供給された溶湯は溶湯ノズル(
3)から細流の溶湯(4)となって流下する。噴霧媒(
7)は加圧ポンプ(8)によって噴射ノズル(6)に供
給され、その環状スリットから逆円錐面状の膜状流とな
って、溶湯ノズル(3)から流下する細流の溶湯(4)
に衝突する。溶湯(4)は噴霧媒(7)によって霧化し
、衣面張力で球形になる前に冷却凝固し、金属粉末とな
って、貯留噛(9)に噴霧媒とともに一時的に保持され
る。金属粉末は貯留槽(9)の底部に沈降し、余分の噴
霧媒はオーバフローロαQから排出され、再び噴霧媒と
して使用するための処理装置(図示せず)に導かれる。
The molten metal supplied to Tanditshu (2) is passed through the molten metal nozzle (
3) flows down as a trickle of molten metal (4). Spray medium (
7) is supplied to the injection nozzle (6) by the pressurizing pump (8), and from the annular slit becomes a film-like flow with an inverted conical surface, and a thin stream of molten metal (4) flows down from the molten metal nozzle (3).
collide with The molten metal (4) is atomized by the spray medium (7), cooled and solidified before becoming spherical due to surface tension, becoming metal powder, which is temporarily held together with the spray medium in the storage cage (9). The metal powder settles to the bottom of the storage tank (9), and excess spray medium is discharged from the overflow αQ and led to a processing device (not shown) for use as a spray medium again.

貯留槽(9)の下部に沈んだ金属粉末は噴霧媒とともに
回収され、脱液装置(図示せず)で脱液され、不活性ガ
ス雰囲気下で乾燥される。
The metal powder that has sunk to the bottom of the storage tank (9) is collected together with the spray medium, deliquified by a deliquifier (not shown), and dried under an inert gas atmosphere.

各種の噴霧媒を用い、溶湯温度1610℃、噴霧媒吐出
圧力80 Kz/−(エテールアルコールの場合に、平
均吐出流速が約I Q Om/mでめった)の条件で、
同一成分の溶湯を噴霧し、電算囲気中で加熱乾燥して純
鉄粉を得九。このうちで、水で噴霧し次鉄粉の化学分析
結果を第1我に示す。また、純鉄粉中のC1Oについて
分析した結果を各種の噴霧媒ごとに、第2茨に示す。ま
た、噴霧媒分子中のC原子数と粉末中のCtの関係を第
3図に、噴霧媒分子中のC原子数と粉末中00量の関係
を第4図に各々示す。
Using various spray media, under the conditions of a molten metal temperature of 1610 ° C. and a spray media discharge pressure of 80 Kz/- (in the case of ether alcohol, the average discharge flow rate was approximately IQ Om/m).
A molten metal of the same composition is sprayed and heated and dried in a computer atmosphere to obtain pure iron powder.9. Among these, the results of chemical analysis of iron powder sprayed with water are shown in Part 1. In addition, the results of analyzing C1O in pure iron powder are shown in the second thorn for each type of spray medium. Further, the relationship between the number of C atoms in the spray medium molecule and the Ct in the powder is shown in FIG. 3, and the relationship between the number of C atoms in the spray medium molecule and the amount of 00 in the powder is shown in FIG. 4, respectively.

第  1  表 秦単位(%) 第  2  賢 秦単位帳) 本発明によって得られた金属粉末は、同一ノズル、同一
圧力で水を噴霧媒に用いた従来法に比較して格段に酸素
量が少ない。しかし、噴霧媒中のC原子数が5以上とな
ると、付着Cが増加し、C量の増加が顕著である。した
がって、このままでは、加熱して軟化処理を行゛なうと
′浸炭のおそれがある。一方、噴霧媒中のC原子数が2
以上になると、金属粉末中の酸素量が増加する。従って
、金属粉末中のC量、0量の許容範囲を考慮した結果。
The metal powder obtained by the present invention has a significantly lower amount of oxygen than the conventional method using water as the atomizing medium using the same nozzle and the same pressure. . However, when the number of C atoms in the spray medium is 5 or more, the amount of attached C increases and the amount of C increases significantly. Therefore, if the material is heated and softened as it is, there is a risk of carburization. On the other hand, the number of C atoms in the spray medium is 2
When the amount exceeds that amount, the amount of oxygen in the metal powder increases. Therefore, the result takes into account the allowable range of C amount and 0 amount in metal powder.

噴霧媒として1分子中のC原子数を4以下、Oi子数を
1以下の有機溶媒を選定すればよいと考えられた。
It was considered that an organic solvent having 4 or less C atoms and 1 or less Oi atoms in one molecule should be selected as the spray medium.

次に、粉末の粒度分布を調査した結果を第6衆に示した
が、水アトマイズ法による粉末と比べても粉度分布に差
は無かった。また、粉末の形状は何れも水アトマイズ法
によって製造され次ものと類似の形状となっていた。
Next, the results of investigating the particle size distribution of the powder were shown to the 6th group, and there was no difference in the particle size distribution compared to the powder obtained by the water atomization method. In addition, the shapes of the powders were all manufactured by the water atomization method and were similar to the following powders.

第  3  表 別の実施例として、低炭素ステンレス鋼304Lの粉末
を製造し念。溶湯温度ft1600℃、噴霧媒ラメチル
アルコール、エチルアルコールドシタ以外の条件は上述
の実施例と同様である。粉末中の酸素量は、第4我に示
したように、水アトマイズ法に比べて圧倒的に低かった
。また、粒径、初度分布ともに水アトマイズ法とほとん
ど変わらなかった。
As another example in Table 3, powder of low carbon stainless steel 304L was manufactured. The conditions other than the molten metal temperature ft 1600° C., the spray medium methyl alcohol, and the ethyl alcohol doshita were the same as in the above-mentioned example. As shown in Section 4, the amount of oxygen in the powder was overwhelmingly lower than that in the water atomization method. Furthermore, both the particle size and initial distribution were almost the same as those of the water atomization method.

第  4  費 層単位(イ) 更に別の実施例として、アルミニウムの粉末を製造した
。製造装置としては上記と同様のものを用い、噴霧条件
としては、溶湯温度を960℃、噴霧媒をエチルアルコ
ール、噴霧媒吐出圧力55胸/、、1 (噴霧媒流速:
 83 m/sとした。得られたアルミニウム粉末中の
酸素量は、第5表に示したように、水アトマイズ法に比
べて圧倒的に低かった。また、粒径、粒度分布とも水ア
トマイズ法とほとんど変わらなかった。
Fourth Cost Layer Unit (a) As yet another example, aluminum powder was produced. The same manufacturing equipment as above was used, and the spraying conditions were as follows: molten metal temperature at 960°C, spraying medium: ethyl alcohol, spraying medium discharge pressure: 55 m/s, 1 (spraying medium flow rate:
The speed was set at 83 m/s. As shown in Table 5, the amount of oxygen in the obtained aluminum powder was overwhelmingly lower than that in the water atomization method. Furthermore, the particle size and particle size distribution were almost the same as those of the water atomization method.

第  5  課 壷単位鍾)Lesson 5 jar unit)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置の説明図、第2図
は第1図の要部拡大説明図、第3図は噴霧媒分子中のC
原子数と粉末中のC量の関係を示すグラフ、第4図は噴
霧媒分子中のO原子数と粉末中のO量の関係を示すグラ
フでるる。 図において、(4)は溶湯、(6)は噴射ノズル、(7
)は噴霧媒である。 代理人 弁理士 木 村 三 朗 8末中〔こ〕 %
Fig. 1 is an explanatory diagram of an apparatus for implementing the present invention, Fig. 2 is an enlarged explanatory diagram of the main part of Fig. 1, and Fig. 3 is an explanatory diagram of the main part of Fig. 1.
FIG. 4 is a graph showing the relationship between the number of atoms and the amount of C in the powder, and FIG. 4 is a graph showing the relationship between the number of O atoms in the spray medium molecule and the amount of O in the powder. In the figure, (4) is the molten metal, (6) is the injection nozzle, and (7) is the injection nozzle.
) is a propellant. Agent Patent Attorney Sanro Kimura 8th grade

Claims (1)

【特許請求の範囲】[Claims] 溶融金属に噴霧媒を衝突させて金属粉末を得る金属粉末
の製造方法において、前記噴霧媒として、C原子数が4
以下、O原子数が1以下、沸点が150℃以下の有機溶
媒を用いたことを特徴とする金属粉末の製造方法。
In a method for producing metal powder in which metal powder is obtained by colliding a spray medium with molten metal, the spray medium has a C atom number of 4.
Hereinafter, a method for producing metal powder, characterized in that an organic solvent having an O atom number of 1 or less and a boiling point of 150° C. or less is used.
JP4547585A 1985-03-07 1985-03-07 Production of metallic powder Pending JPS61204304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4547585A JPS61204304A (en) 1985-03-07 1985-03-07 Production of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4547585A JPS61204304A (en) 1985-03-07 1985-03-07 Production of metallic powder

Publications (1)

Publication Number Publication Date
JPS61204304A true JPS61204304A (en) 1986-09-10

Family

ID=12720416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4547585A Pending JPS61204304A (en) 1985-03-07 1985-03-07 Production of metallic powder

Country Status (1)

Country Link
JP (1) JPS61204304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155437A (en) * 2017-03-16 2018-10-04 学校法人幾徳学園 Method for treating organic solvent, and organic solvent treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582701A (en) * 1978-12-19 1980-06-21 Sumitomo Metal Ind Ltd Method and apparatus for production of metal powder
JPS58141306A (en) * 1982-02-12 1983-08-22 Sumitomo Metal Ind Ltd Spraying medium for producing metallic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582701A (en) * 1978-12-19 1980-06-21 Sumitomo Metal Ind Ltd Method and apparatus for production of metal powder
JPS58141306A (en) * 1982-02-12 1983-08-22 Sumitomo Metal Ind Ltd Spraying medium for producing metallic powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155437A (en) * 2017-03-16 2018-10-04 学校法人幾徳学園 Method for treating organic solvent, and organic solvent treatment system
JP2021096064A (en) * 2017-03-16 2021-06-24 学校法人幾徳学園 Method for recycling organic solvent waste fluid as fuel and organic solvent waste fluid recycling process system used for method for recycling organic solvent waste fluid as fuel

Similar Documents

Publication Publication Date Title
US9611522B2 (en) Spray deposition of L12 aluminum alloys
US5310165A (en) Atomization of electroslag refined metal
US5480470A (en) Atomization with low atomizing gas pressure
US3746518A (en) Alloy composition and process
CN111500942B (en) High-nitrogen-content non-magnetic stainless steel powder and preparation method thereof
CN110181069A (en) Using the method for gas atomization preparation high nitrogen powdered steel
CN109570521A (en) The method that plasma spheroidization prepares metal powder
KR101776111B1 (en) Zr or Zr-based alloy powders for Production Method and thereof Zr or Zr-based alloy powders
US7628838B2 (en) Method for producing particle-shaped material
CN113414397B (en) Vacuum gas atomization continuous preparation method of iron-based metal powder
US4971133A (en) Method to reduce porosity in a spray cast deposit
JPS6164803A (en) Compression molding of alloy powder
JPS61204304A (en) Production of metallic powder
US3281893A (en) Continuous production of strip and other metal products from molten metal
JP2788919B2 (en) Method and apparatus for producing metal powder
JPS63230806A (en) Gas atomizing apparatus for producing metal powder
US6024778A (en) Production of iron or nickel-based products
US5256214A (en) Copper alloys and method of manufacture thereof
JPH07102307A (en) Production of flaky powder material
CN113210616B (en) Ultra-fine Ti 2 AlNb alloy powder and preparation method and application thereof
JPS63293105A (en) Production of metal powder
JPS63157804A (en) Production of metal powder
JPS59104403A (en) Preparation of metal powder
Honghai et al. Atomization Process to Produce Powder
Dunkley Blown to atoms: how to make metal powders