JPS61204037A - Production of thermally stable catalyst carrier composition - Google Patents

Production of thermally stable catalyst carrier composition

Info

Publication number
JPS61204037A
JPS61204037A JP60044747A JP4474785A JPS61204037A JP S61204037 A JPS61204037 A JP S61204037A JP 60044747 A JP60044747 A JP 60044747A JP 4474785 A JP4474785 A JP 4474785A JP S61204037 A JPS61204037 A JP S61204037A
Authority
JP
Japan
Prior art keywords
solution
alumina
catalyst carrier
surface area
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044747A
Other languages
Japanese (ja)
Inventor
Makoto Horiuchi
真 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60044747A priority Critical patent/JPS61204037A/en
Publication of JPS61204037A publication Critical patent/JPS61204037A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the catalyst carrier having a wide surface area and heat resistance by mixing the solution of an alumina hydrate and the solution of a lanthanum compound, both solution of which act as the catalyst carrier, then by gelatinizing said mixture, drying, thereafter sintering it. CONSTITUTION:The solution of alumina hydrate and the solution of a lathanum compound, both solution of which act as the catalyst for purifying an automobile exhaust gas, industrial exhaust gas, etc. are mixed. The solution of an alumina hydrate is gelatinized with the lanthanum compound, at that time lanthanum is dispersed on aluminium uniformly, dried and aged. The resultant catalyst carrier, even if exposed to a >1,000 deg.C high temperature, can prossess a small change of the crystalline structure to alpha-alumina and a heat resistance which can hold a wide surface area, consequently, deterioration of its catalytic performance is small.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱的に安定な触媒担体組成物の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a thermally stable catalyst carrier composition.

詳しく述べると、本発明は従来の活性アルミナおよび安
定化アルミナの耐熱性を改良し1000℃を越える高温
に長時間さらされても高表面積を有し続けうる、とくに
具体的には1200℃100時間の焼成処理後において
も少なくとも、101rt/qの比表面積を有する安定
化アルミナ組成物、即ちアルミナ−ランタナ複合酸化物
の製造方法に関するものである。
Specifically, the present invention improves the heat resistance of conventional activated alumina and stabilized alumina, so that they can continue to have a high surface area even when exposed to high temperatures exceeding 1000°C for a long time, particularly at 1200°C for 10 hours. The present invention relates to a method for producing a stabilized alumina composition, that is, an alumina-lanthana composite oxide, which has a specific surface area of at least 101 rt/q even after the calcination treatment.

〔従来技術〕[Prior art]

活性アルミナは高表面積を有しかつ、耐熱性にもすぐれ
た物質であり、その特性を生かして自動車排ガス浄化用
触媒、産業排ガス処理用触媒あるいは接触燃焼用触媒を
はじめ各種の触媒の担体などに利用されている。
Activated alumina is a material with a high surface area and excellent heat resistance, and by taking advantage of its properties, it can be used as a support for various catalysts, including catalysts for automobile exhaust gas purification, catalysts for industrial exhaust gas treatment, and catalysts for catalytic combustion. It's being used.

しかしながら、活性アルミナは1000℃程度以上の高
温にさらされた場合、結晶構造の変化によって最終的に
α−アルミナとなり比表面積が低下してしまう欠点を有
しており、その防止のため上述の如き利用分野において
は、通常活性アルミナに安定化剤として、アルカリ土類
元素や希土類元素などを酸化物、水酸化物あるいは各種
の化合物の形で添加して用いられている。
However, activated alumina has the disadvantage that when exposed to high temperatures of about 1000°C or higher, the crystal structure changes and the specific surface area decreases, resulting in a decrease in the specific surface area. In the field of application, alkaline earth elements, rare earth elements, etc. are usually added as stabilizers to activated alumina in the form of oxides, hydroxides, or various compounds.

この場合、活性アルミナと上述の安定化剤は実質的には
混合物として共存しているにすぎず、1000℃以下の
温度において、あるいは1100〜1400℃の高温で
も数時間程度のごく短時間さらされた場合には、その安
定化効果は認められるものの1000℃を越える高温に
数十時間以上の長時間さらされた場合、結局α−アルミ
ナや安定化剤の酸化物、さらにはスピネルあるいはペロ
プスカイト構造をもつアルミナと安定化剤との低表面積
複合酸化物を生成し、その比表面積は急激に低下してし
まうことが知られている。
In this case, activated alumina and the above-mentioned stabilizer essentially coexist as a mixture, and can be exposed to temperatures below 1000°C or even at high temperatures of 1100 to 1400°C for a very short period of several hours. In some cases, the stabilizing effect is recognized, but if exposed to high temperatures exceeding 1000°C for a long period of time, for several tens of hours or more, the oxides of α-alumina and the stabilizer, and even the spinel or perovskite structure It is known that a low surface area composite oxide of alumina and a stabilizer is produced, and its specific surface area is rapidly reduced.

例えば、活性アルミナにランタナとして5〜10重量%
の硝酸塩溶液を添加混合し、乾燥後i ooo℃で焼成
したものは約70TIt、/Qの比表面積を有しており
、安定化されているが、これは活性アルミナとランタナ
との混合物である。
For example, activated alumina contains 5 to 10% by weight of lantana.
The product obtained by adding and mixing a nitrate solution, drying and calcining at i ooo°C has a specific surface area of about 70 TIt,/Q and is stabilized, but this is a mixture of activated alumina and lantana. .

又、これを1200℃で5時間焼成したものは一部α−
アルミナの生成が認められるものの比表面積は18TI
t/qあり、まだかなり安定化されている。
Also, some of the products baked at 1200℃ for 5 hours have α-
Although the formation of alumina is observed, the specific surface area is 18TI
t/q, and it is still quite stable.

しかし、1200℃でさらに100時間曝露すると結局
α−アルミナとペロブスカイト構造をもつランタンアル
ミネート(LaAIo 3 )になり比表面積は1〜2
Tlt/qにまで低下する。
However, when exposed for another 100 hours at 1200°C, it becomes lanthanum aluminate (LaAIo3) with α-alumina and perovskite structure, with a specific surface area of 1 to 2.
Tlt/q.

一方、上述の如き触媒に求められる耐熱温度は年々高く
なり1000℃以上の耐熱性が要求されつつある。
On the other hand, the heat resistance temperature required of the above-mentioned catalysts is increasing year by year, and heat resistance of 1000° C. or more is being required.

特に近年触媒燃焼方式の応用が検討されている大言けの
ボイラーやガスタービンなどにおいては触媒温度は10
00〜1200℃、条件によっては1300〜1500
℃の高温に達するため、これらの触媒の担体として従来
の方法で製造された安定化アルミナを使用した場合、触
媒が大きな熱履歴を受けその比表面積は時間の経過とと
もに急激に低下し、その結果触媒活性が低下してしまう
という欠点を有している。
Particularly in boilers and gas turbines, where the application of catalytic combustion methods has been considered in recent years, the catalyst temperature is 10
00~1200℃, 1300~1500 depending on conditions
When conventionally produced stabilized alumina is used as a support for these catalysts, the catalysts undergo a large thermal history and their specific surface area rapidly decreases over time, resulting in It has the disadvantage that the catalyst activity decreases.

又、触媒層にクラックが生じ触媒活性部位が剥離してし
まう恐れもある。
Furthermore, there is a risk that cracks may occur in the catalyst layer and the catalyst active sites may peel off.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した活性アルミナあるいは従来方法
で安定化されたアルミナが有する耐熱性における問題点
を克服し、1000℃を越える高温に長時間さらされて
もα−アルミナへの結晶構造の変化が少なく、高表面積
を有し続けうる耐熱性を有し、結果的に触媒性能の低下
の少ない触媒のための担体組成物の製造方法を提供する
ことにある。
The purpose of the present invention is to overcome the above-mentioned problems in heat resistance of activated alumina or alumina stabilized by conventional methods, and to prevent the crystal structure from changing to α-alumina even when exposed to high temperatures exceeding 1000°C for a long time. It is an object of the present invention to provide a method for producing a carrier composition for a catalyst, which has a heat resistance that allows it to maintain a high surface area, and which results in less deterioration in catalytic performance.

〔発明の構成〕[Structure of the invention]

かかる目的を達成する為に、本発明は、アルミナ水和物
の溶液とランタン化合物の溶液とを混合して、アルミナ
水和物の溶液をゲル化させ、乾燥後焼成することによっ
てアルミナとランタナの複合酸化物からなる熱的に安定
な触媒担体組成物の製造を提供し、しかもこれが120
0℃で100時間焼成後においてさえも10TI1.7
9以上の比表面積を有するという従来にない耐熱性に優
れた触媒担体組成物となることを開示する。
In order to achieve this object, the present invention mixes a solution of alumina hydrate and a solution of a lanthanum compound, gels the solution of alumina hydrate, and then calcinates the solution after drying. Provided is the production of a thermally stable catalyst carrier composition made of a composite oxide, which
10TI1.7 even after 100 hours baking at 0℃
It is disclosed that a catalyst carrier composition having a specific surface area of 9 or more has unprecedented heat resistance.

以下、本発明を具体的に説明する。The present invention will be specifically explained below.

本発明の特徴は、アルミナ水和物の溶液とランタン化合
物の溶液を混合して、アルミナ水和物をゲル化させ、そ
のゲル化物を乾燥後、焼成することにある。
The feature of the present invention is that a solution of alumina hydrate and a solution of a lanthanum compound are mixed, the alumina hydrate is gelled, and the gelled product is dried and then fired.

通常、複合酸化物の製造方法には沈殿法、含浸法、混合
法、共沈法などがあり、現在使用されている固体の工業
触媒は大部分これらの方法によって各組成を複合化して
用いられている。
Normally, methods for producing composite oxides include precipitation methods, impregnation methods, mixing methods, coprecipitation methods, etc., and most of the solid industrial catalysts currently used are composites of each composition using these methods. ing.

しかし、沈殿法では各組成の溶解度積の差のため、含浸
法では含浸あるいは浸漬によって得られたスラリーを乾
燥、焼成する時の各組成の移動のため、混合法では同相
反応によるため各組成を均一に混合することが困難であ
り、各組成の粒径が不均一のために安定化剤を均一にア
ルミナに分散させることは困難で遊離の状態のアルミナ
と安定化剤が存在することを避けられない。
However, in the precipitation method, due to the difference in the solubility product of each composition, in the impregnation method, due to the movement of each composition when the slurry obtained by impregnation or immersion is dried and fired, and in the mixing method, each composition is caused by an in-phase reaction. It is difficult to mix uniformly, and it is difficult to uniformly disperse the stabilizer into alumina due to the uneven particle size of each composition, avoiding the presence of free alumina and stabilizer. I can't do it.

そして高温で長時間さらされた場合、結果的にはこれら
はα−アルミナと安定化剤の酸化物あるいはアルミネー
トとなり比表面積が低下する原因となる。
When exposed to high temperatures for a long time, these eventually become oxides or aluminates of α-alumina and the stabilizer, causing a decrease in the specific surface area.

又、共沈法ではキャリアーとしてのランタンどアルミニ
ウムの水酸化物の溶解度積の差が小さく、はぼ同時に沈
殿が生じるだけで、溶解度積の差による可溶状態の金属
イオンの吸着包含による沈殿が完全には起こらず共沈と
はなりにくいため、沈殿剤、温度、PHなどの条件に大
きく影響をうけその操作には厳密性が要求される。
In addition, in the coprecipitation method, the difference in the solubility product of the hydroxide of lanthanum or aluminum as a carrier is small, and precipitation occurs almost simultaneously. Since this does not occur completely and it is difficult to cause co-precipitation, it is greatly affected by conditions such as precipitating agent, temperature, and pH, and strict operation is required.

そして工業用として予信にm製する場合、アルミニウム
、ランタンの高濃度溶液での調製では共沈にはなりにく
く単に均一沈殿が生じるのみであるため、低濃度溶液で
複数回調製しなければならず、又、共沈物の粒径制御が
困難でろ過、洗浄等の操作が煩雑であり、実用的でない
と言える。
When manufacturing the product for industrial use, preparation with a high concentration solution of aluminum and lanthanum is unlikely to result in co-precipitation and only produces a homogeneous precipitate, so it must be prepared multiple times with a low concentration solution. Furthermore, it is difficult to control the particle size of the coprecipitate and operations such as filtration and washing are complicated, making it impractical.

一方、本発明になる触媒担体組成物はアルミナ水和物の
溶液がランタン化合物によってゲル化され、その時にア
ルミニウムにランタンが均一に分散されることになり、
これを乾燥熟成することによって長時間高温焼成後でも
高表面積を有するものである。
On the other hand, in the catalyst carrier composition of the present invention, a solution of alumina hydrate is gelled by a lanthanum compound, and at that time, lanthanum is uniformly dispersed in aluminum.
By dry-ripening this material, it has a high surface area even after long-term high-temperature firing.

この理由はよくわかっていないが、アルミナ水和物溶液
の安定、存在域にランタン化合物溶液を添加すると、P
H変化、カチオン濃度変化が起こり、粒子間の反撥を起
こさせる電気二重層が充分に作用しない条件下で粒子が
会合することになってランタンを架橋元とした結合が生
じ、ランタンを核として、アルミニウムがそのまわりを
とりかこむように複合化され、熱的に安定な触媒担体組
成物が得られると予想される。
The reason for this is not well understood, but when a lanthanum compound solution is added to the stable and existing region of the alumina hydrate solution, P
H changes and cation concentration changes occur, and under conditions where the electric double layer that causes repulsion between particles does not function sufficiently, the particles come together and bonds with lanthanum as the crosslinking source occur, and with lanthanum as the core, It is expected that the composite will be surrounded by aluminum, resulting in a thermally stable catalyst carrier composition.

上述の結果、本発明になる触媒担体組成物は安定化剤で
あるランタナが各種の酸、アルカリあるいは塩の溶液の
処理によっても溶出することが非常に少なくなり化学的
にも安定であるという長所も有する。
As a result of the above, the catalyst carrier composition of the present invention has the advantage that lanthana, which is a stabilizer, is hardly eluted even when treated with various acid, alkali, or salt solutions, and is chemically stable. It also has

ランタン化合物によってアルミナ水和物の溶液をゲル化
させる場合40〜200℃の温度域に、より好ましくは
60〜150℃の温度域に保つのが適当である。
When gelling a solution of alumina hydrate with a lanthanum compound, it is appropriate to maintain the temperature in the range of 40 to 200°C, more preferably in the range of 60 to 150°C.

200℃を越える温度ではゲル化する際に生じたゲルの
乾燥が同時におこり、しかも乾燥速度が速すぎるために
アルミナゲル中のランタンが固形物の表面層に移動する
ようになりランタンの偏在化が起こり好ましくない。
At temperatures exceeding 200°C, the gel produced during gelation simultaneously dries, and because the drying rate is too fast, the lanthanum in the alumina gel moves to the surface layer of the solid material, resulting in uneven distribution of lanthanum. This is not a good thing to happen.

又、40℃未満の温度ではランタン化合物の均一に分散
したゲルができにくく、そのため長時間かけて撹拌混合
する必要があり実用的でない。
Moreover, at temperatures below 40° C., it is difficult to form a gel in which the lanthanum compound is uniformly dispersed, and therefore it is necessary to stir and mix for a long time, which is not practical.

さらに、ゲル化の際あるいはゲル化後も少なくとも30
分間、好ましくは1時間以上40〜200℃の温度域に
保って充分混練、撹拌するのが適当である。
Furthermore, during or after gelation, at least 30%
It is appropriate to sufficiently knead and stir the mixture while maintaining the temperature in the range of 40 to 200°C for a minute, preferably for at least one hour.

これによってほぼ完全にランタンを核としてそのまわり
にアルミニウムがとりがこむような形態で均一に分散す
ることができる。
As a result, it is possible to uniformly disperse the lanthanum in a form in which the aluminum is almost completely surrounded by the core.

本発明になる触媒担体組成物を製造する場合のアルミナ
原料としては無機酸もしくは有機酸に対して部分溶解性
をもつ非晶質、ベーマイト構造あるいは凝ベーマイト構
造をもつアルミナ水和物が適当でギブサイトあるいはダ
イアスボアなどのアルミナ水和物は好ましくない。
Suitable alumina raw materials for producing the catalyst carrier composition of the present invention are amorphous alumina hydrates having a boehmite structure or a precipitated boehmite structure that are partially soluble in inorganic or organic acids. Alternatively, hydrated alumina such as Diasbore is not preferred.

又、ランタン化合物としては硝酸塩、炭酸塩、酢i!塩
、蓚酸塩、塩化物など水可溶性であればいずれを用いて
もよい。
In addition, lanthanum compounds include nitrates, carbonates, and vinegar i! Any water-soluble salt, oxalate, chloride, etc. may be used.

本発明により熱的に安定な触媒担体組成物を製造する場
合、アルミナ水和物の溶液中へランタン化合物溶液を加
えてもよく、又、その逆でもよいが、いずれの場合も均
一にゲル化するように時間をかけて徐々に添加するよう
に注意を要する。
When producing a thermally stable catalyst carrier composition according to the present invention, a lanthanum compound solution may be added to a solution of alumina hydrate, or vice versa, but in either case, the composition is uniformly gelled. Care must be taken to add it gradually over time.

ゲル化後の固形物の乾燥では、充分撹拌、混練した後は
熟成は必要でなくすぐに行なってもよい。
In drying the solid material after gelation, aging is not necessary and may be carried out immediately after sufficient stirring and kneading.

乾燥する場合、急激に高温乾燥を行なうと、ランタンが
固形物の表面層へ移動するため好ましくなく、熱風循環
式乾燥器など温度分布の少ない乾燥器で徐々に昇温し、
最終的に150〜200℃で10時間以上乾燥するのが
好ましい。
When drying, rapid high-temperature drying is undesirable because lanthanum moves to the surface layer of the solid material, so the temperature should be gradually raised in a dryer with a narrow temperature distribution, such as a hot air circulation dryer.
It is preferable to finally dry at 150 to 200°C for 10 hours or more.

焼成は該乾燥固形物を500ミクロン程度に粗粉砕後あ
るいは、必要があれば20〜30ミクロン程度に粉砕後
行なってもよい。
The calcination may be carried out after the dry solid is roughly pulverized to about 500 microns or, if necessary, after pulverized to about 20 to 30 microns.

そして、その乾燥粉体を500〜1100℃、好ましく
は600〜1ooo’cの温度範囲にて少なくとも3時
間以上空気存在下で焼成することによって完成触媒担体
組成物を得る。
Then, the dried powder is calcined in the presence of air at a temperature range of 500 to 1100° C., preferably 600 to 100° C., for at least 3 hours to obtain a finished catalyst carrier composition.

〔効   采〕[effect]

本発明の製造方法によって調製されるアルミナ−ランタ
ナ触媒担体組成物は以下の実施例で明らかにされている
ように、1200℃で100時間の高温長時間焼成後で
さえも少なくとも10TI1.7gの比表面積を有する
、優れて熱的に安定な触媒担体組成物なのである。
The alumina-lanthana catalyst support composition prepared by the manufacturing method of the present invention has a ratio of at least 1.7 g of 10TI even after high temperature and long-term calcination at 1200° C. for 100 hours, as demonstrated in the following examples. It is a highly thermally stable catalyst support composition with a high surface area.

すなわち、共沈法によって調製された場合には、含浸法
や混合法等と比較してかなり熱的に安定な組成物が得ら
れ、1200℃5時間焼成後で32−Irt/C1,2
0時間焼成後で2411L/qの比表面積を有するもの
の、50時間焼成後では急激にα化が起こり7rri/
Qにまで低下し、100時間では4ゴ/9になり、本発
明なるゲル化法に比べて熱的な安定性は非常に劣ること
が明らかである。
In other words, when prepared by the coprecipitation method, a considerably thermally stable composition can be obtained compared to the impregnation method or the mixing method, and after firing at 1200°C for 5 hours, 32-Irt/C1,2
Although it had a specific surface area of 2411 L/q after 0 hours of firing, it rapidly gelatinized after 50 hours of firing and had a specific surface area of 7 r/q.
It is clear that the thermal stability is extremely inferior to that of the gelling method of the present invention.

次に本発明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

ただし、組成、製造法等これに限定するものではない。However, the composition, manufacturing method, etc. are not limited to these.

実施例 1 150Td/gの比表面積を有するコンデイア社のベー
マイト(商品名:ディスブーラル)662gを60%硝
Ill 19.6−を含む水1830dに添加しホモミ
キサーで1時間撹拌して部分溶解させアルミナゾルを得
た。
Example 1 662 g of Condeia's boehmite (trade name: Disboular) having a specific surface area of 150 Td/g was added to 1830 d of water containing 60% nitric acid, and stirred for 1 hour with a homomixer to partially dissolve it to form an alumina sol. I got it.

次にこのゾルを80℃に加温したニーダ−に移し、撹拌
しながら硝酸ランタン6水塩176Qを溶解した500
1dlの水を10分間一定の間隔で徐々にニーダ−中へ
添加した。
Next, this sol was transferred to a kneader heated to 80°C, and while stirring, 500% of lanthanum nitrate hexahydrate 176Q was dissolved.
1 dl of water was gradually added into the kneader at regular intervals for 10 minutes.

添加後もニーダ−による混練撹拌を2時間続けた後、ゲ
ル化固形物を熱風循環式乾燥器に入れ30℃/時間の昇
温速度で150℃に昇温し同温度で12時間乾燥した。
After the addition, kneading and stirring with a kneader was continued for 2 hours, and then the gelled solid was placed in a hot air circulation dryer, heated to 150°C at a rate of 30°C/hour, and dried at the same temperature for 12 hours.

次いで、乾燥固体をアトマイザ−で粉砕して10〜20
ミクロンの粉体にしだ後800℃で5時間仮焼してラン
タナとして11.7重量%、アルミナして88.3重量
%を含有する複合酸化物を得た。
Next, the dry solid is pulverized with an atomizer to 10 to 20
The mixture was poured into micron powder and calcined at 800° C. for 5 hours to obtain a composite oxide containing 11.7% by weight of lanthana and 88.3% by weight of alumina.

実施例 2 凝ベーマイト構造の結晶形で245TIt/(Jの比表
面積を有するアルミナゾル(日産化学■製)2500g
を150℃に加温したニーダ−に入れ撹拌しながら硝酸
ランタン6水塩97Qを溶解した水600dを10分間
一定の間隔で徐々にニーダ−中へ添加した。同温度で1
時間混練撹拌した後、150℃に保った乾燥器に入れ1
5時間乾燥した。
Example 2 2500 g of alumina sol (manufactured by Nissan Chemical ■) having a crystalline form with a precipitated boehmite structure and a specific surface area of 245 TIt/(J)
was placed in a kneader heated to 150°C, and while stirring, 600 d of water in which lanthanum nitrate hexahydrate 97Q was dissolved was gradually added into the kneader at regular intervals for 10 minutes. 1 at the same temperature
After kneading and stirring for an hour, put it in a dryer kept at 150℃.
It was dried for 5 hours.

次いで、乾燥固体を粗粉砕した後、800℃で5時間仮
焼してランタナとして6.8重1%、アルミナとして9
3.2重量%を含有する複合酸化物を得た。
Next, the dry solid was coarsely pulverized and calcined at 800°C for 5 hours to yield 6.8% by weight as lantana and 9% as alumina.
A composite oxide containing 3.2% by weight was obtained.

実施例 3 水2070−に酢酸を230d加えた酢酸溶液中にコノ
コ社のベーマイト(商品名:SBアルミナ)270gを
添加してホモミキサーで2時間撹拌してアルミナゾルを
得た。
Example 3 270 g of Conoco's boehmite (trade name: SB Alumina) was added to an acetic acid solution prepared by adding 230 d of acetic acid to 2070 g of water, and the mixture was stirred for 2 hours using a homomixer to obtain an alumina sol.

このゾルを60℃に加温したニーダ−に移し、撹拌しな
がら醋酸ランタン30qを溶解した水500dを10分
間一定の間隔で徐々に添加し7た。その後の操作は実施
例1におけると同様に乾燥焼成し、ランタナとして17
.6=ffl量%、アルミナとして82.4重ω%を酋
り吏る複合酸化物を得た。
This sol was transferred to a kneader heated to 60° C., and while stirring, 500 d of water in which 30 q of lanthanum acetate had been dissolved was gradually added at regular intervals for 10 minutes. The subsequent operation was as in Example 1, followed by drying and firing to obtain 17
.. A composite oxide containing 6=ffl amount % and 82.4 weight ω% as alumina was obtained.

比較例 1 ランタン化合物の溶液として、硝酸ランタン6水塩38
6gを溶解した100(7の水を用いた以外は実施例1
におけると同様にしてゲル化乾燥焼成してランタナとし
て22.5@量%、アルミナとして77.5重量%を含
有伎る複合酸化物を得た。
Comparative Example 1 As a solution of lanthanum compound, lanthanum nitrate hexahydrate 38
100 (Example 1 except that water of 7 was used)
A composite oxide containing 22.5% by weight of lanthana and 77.5% by weight of alumina was obtained by gelation, drying and firing in the same manner as in .

比較例 2 比表面積80TIt/gを有する活性アルミナ(γ−ア
ルミt)500gを硝酸ランタン6水塩176qを溶解
した500dの水に浸漬させ、混合しながら蒸発乾固し
た。
Comparative Example 2 500 g of activated alumina (γ-aluminum t) having a specific surface area of 80 TIt/g was immersed in 500 d of water in which 176 q of lanthanum nitrate hexahydrate was dissolved, and evaporated to dryness while mixing.

次いで、実施例1におけると同様にしC粉砕。Then, C was crushed in the same manner as in Example 1.

焼成してランタナとして11.7中量%、アルミナとし
て88.3重量%を含有する複合酸化物を1qだ。
1 q of composite oxide containing 11.7% by weight of lanthana and 88.3% by weight of alumina after firing.

比較例 3 硝酸ランタン6水塩9.7gを溶解した100dの水に
硝酸アルミニウム9水1u203Qを溶解した1000
−の水を加えて80℃に保った。
Comparative Example 3 1000ml of aluminum nitrate 9 water 1u203Q was dissolved in 100d of water containing 9.7g of lanthanum nitrate hexahydrate dissolved.
- water was added and kept at 80°C.

次いで、スターラーで充分撹拌しながら1規定アンモニ
ア水を徐々に滴下し最終P1−1を8に調節した。
Next, 1N aqueous ammonia was gradually added dropwise while sufficiently stirring with a stirrer to adjust the final P1-1 to 8.

デカンテーションを3回繰返してさらに水洗侵、ろ過し
、ろ過動を150℃で16時間乾燥した。
Decantation was repeated three times, followed by further washing with water and filtration, followed by drying at 150° C. for 16 hours.

次いで、乾燥固体を実施例1におけると同様にして粉砕
、焼成してランタナとして11.7 i!ω%、アルミ
ナとして88.3重量%を含有する複合酸化物を得た。
The dry solid was then ground and calcined as in Example 1 to produce 11.7 i! of lantana. A composite oxide containing ω% and 88.3% by weight of alumina was obtained.

実施例 4 実施例1.2,3.比較例1及σ2によって得た複合酸
化物を1200℃においてそれぞれ5時間、20時間、
50時間、100時間、200時間空気雰囲気下で焼成
した侵、その表面積を窒素ガスを吸着ガスとしたBET
式比表面計で測定した。表面積の測定結果を表1に示す
Example 4 Example 1.2, 3. The composite oxides obtained in Comparative Examples 1 and σ2 were heated at 1200°C for 5 hours and 20 hours, respectively.
BET baked in an air atmosphere for 50 hours, 100 hours, and 200 hours, and its surface area was filled with nitrogen gas as an adsorbent gas.
Measured using a formula specific surface meter. Table 1 shows the surface area measurement results.

表1より実施例1,2及び3によって得た複合酸化物は
、1200℃100時間焼成後でも10TIt/g以上
の比表面積を有しており、熱的に安定な触媒担体組成物
であることがわかる。
From Table 1, the composite oxides obtained in Examples 1, 2, and 3 have a specific surface area of 10 TIt/g or more even after calcination at 1200°C for 100 hours, and are thermally stable catalyst carrier compositions. I understand.

一方、比較例1のβ−アルミナ型の組成比のゲル化法に
よる複合酸化物は50時間焼成では10TIt/9以上
の比表面積を有するが、100時間になると半減して1
0m/(7以下になる。
On the other hand, the composite oxide produced by the gelling method with the composition ratio of β-alumina in Comparative Example 1 has a specific surface area of 10 TIt/9 or more after 50 hours of firing, but after 100 hours, it has halved to 1
0m/(below 7.

又、比較例2の浸漬法による複合酸化物は5時間の短時
間焼成では安定化されているが、長時間になるとその安
定化効果はなくなっている。
Furthermore, although the composite oxide obtained by the dipping method of Comparative Example 2 was stabilized by short-time firing of 5 hours, the stabilizing effect disappeared over a long time.

さらに、比較例3の共沈法による複合酸化物は20時間
焼成まではかなり安定化されているが、50時間焼成で
表面積経時変化が大きくなりその安定化効果はなくなっ
ている。
Furthermore, although the composite oxide produced by the coprecipitation method of Comparative Example 3 was fairly stabilized until 20 hours of calcination, the surface area changed over time after 50 hours of sintering, and the stabilizing effect disappeared.

Claims (4)

【特許請求の範囲】[Claims] (1)アルミナ水和物の溶液とランタン化合物の溶液と
を混合して、アルミナ水和物の溶液をゲル化させ、乾燥
後焼成することを特徴とするアルミナとランタナの複合
酸化物からなる熱的に安定な触媒担体組成物の製造方法
(1) A heat treatment consisting of a composite oxide of alumina and lanthana characterized by mixing a solution of alumina hydrate and a solution of a lanthanum compound, gelling the solution of alumina hydrate, drying and then firing. A method for producing a catalyst carrier composition that is stable in terms of stability.
(2)複合酸化物はアルミナ80〜95重量%およびラ
ンタナ20〜5重量%の組成を有するものである特許請
求の範囲(1)記載の方法。
(2) The method according to claim (1), wherein the composite oxide has a composition of 80 to 95% by weight of alumina and 20 to 5% by weight of lanthana.
(3)アルミナ水和物の溶液のゲル化が40〜200℃
の温度範囲で行なわれる特許請求の範囲(1)記載の方
法。
(3) Gelation of alumina hydrate solution at 40-200℃
The method according to claim (1), which is carried out in a temperature range of .
(4)アルミナ水和物が非晶質、ベーマイト構造または
凝ベーマイト構造を有し、かつ、酸に対して部分溶解性
を有するものである特許請求の範囲(1)記載の方法。
(4) The method according to claim (1), wherein the alumina hydrate is amorphous, has a boehmite structure, or a solidified boehmite structure, and is partially soluble in acids.
JP60044747A 1985-03-08 1985-03-08 Production of thermally stable catalyst carrier composition Pending JPS61204037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044747A JPS61204037A (en) 1985-03-08 1985-03-08 Production of thermally stable catalyst carrier composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044747A JPS61204037A (en) 1985-03-08 1985-03-08 Production of thermally stable catalyst carrier composition

Publications (1)

Publication Number Publication Date
JPS61204037A true JPS61204037A (en) 1986-09-10

Family

ID=12700036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044747A Pending JPS61204037A (en) 1985-03-08 1985-03-08 Production of thermally stable catalyst carrier composition

Country Status (1)

Country Link
JP (1) JPS61204037A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224469A (en) * 1994-12-19 1996-09-03 Toyota Motor Corp Highly heat-resistant catalyst carrier, its production, highly heat-resistant catalyst and its production
JP2007319806A (en) * 2006-06-01 2007-12-13 Asahi Kagaku Kogyo Co Ltd Binder and coating composition for catalyst
JP2009101327A (en) * 2007-10-25 2009-05-14 Nippon Shokubai Co Ltd Catalyst for treating organic acid-containing exhaust gas
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224469A (en) * 1994-12-19 1996-09-03 Toyota Motor Corp Highly heat-resistant catalyst carrier, its production, highly heat-resistant catalyst and its production
JP2007319806A (en) * 2006-06-01 2007-12-13 Asahi Kagaku Kogyo Co Ltd Binder and coating composition for catalyst
JP2009101327A (en) * 2007-10-25 2009-05-14 Nippon Shokubai Co Ltd Catalyst for treating organic acid-containing exhaust gas
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same

Similar Documents

Publication Publication Date Title
KR100199909B1 (en) A high heat-resistant catalyst support and its production method, and a high heat-resistant catalyst and its production method
US4220559A (en) High temperature-stable catalyst composition
RU2509725C2 (en) Composition based on cerium oxide and zirconium oxide having specific porosity, method of production and use in catalysis
JPH01168343A (en) Exhaust gas purifying catalyst
BR112013033834B1 (en) composition of zirconia alumina ceria with improved thermal stability and production process
CN106824163A (en) Composite oxides and preparation method thereof
JPH07114958B2 (en) High temperature combustion catalyst carrier
CN104437458B (en) Cerium-zirconium-based composite oxide catalytic material and preparation method thereof
CN108187665A (en) Denitrating catalyst and preparation method thereof
JP2886867B2 (en) Manufacturing method of catalyst carrier
JPH044043A (en) Heat-resistant catalyst for purifying exhaust gas
JPH11130436A (en) Multiple oxide, its production and catalyst for purification of exhaust gas using the same
JPS61204037A (en) Production of thermally stable catalyst carrier composition
JPH0638914B2 (en) Method for producing heat-resistant catalyst carrier composition
JPS62168544A (en) Zirconia carrier and its preparation
JPS60226414A (en) Production of lanthanum-alumina based compound oxide
JPH051057B2 (en)
JPS61287446A (en) Production of heat resistant catalytic carrier composition
CN110876927B (en) Preparation method of magnesia-alumina spinel material
JP2957552B2 (en) Composition for washcoat slurry
JP3265605B2 (en) Exhaust gas purification catalyst carrier and method for producing the same
JPH06218282A (en) Heat resistant catalyst carrier and production thereof
JP2744275B2 (en) Method for producing exhaust gas purifying catalyst
JPH04235742A (en) Aldehyde decomposing catalyst for purifyying exhaust gas
JPH0929098A (en) Steam reforming catalyst of hydrocarbon