JPS61204014A - Method and device for intaking supernatant water - Google Patents

Method and device for intaking supernatant water

Info

Publication number
JPS61204014A
JPS61204014A JP4624185A JP4624185A JPS61204014A JP S61204014 A JPS61204014 A JP S61204014A JP 4624185 A JP4624185 A JP 4624185A JP 4624185 A JP4624185 A JP 4624185A JP S61204014 A JPS61204014 A JP S61204014A
Authority
JP
Japan
Prior art keywords
water
sludge
supernatant
sludge zone
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4624185A
Other languages
Japanese (ja)
Inventor
Yasushi Muraki
村木 安司
Kazuaki Murakami
村上 和章
Masaru Kato
勝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suido Kiko Kaisha Ltd
Original Assignee
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suido Kiko Kaisha Ltd filed Critical Suido Kiko Kaisha Ltd
Priority to JP4624185A priority Critical patent/JPS61204014A/en
Publication of JPS61204014A publication Critical patent/JPS61204014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To separate supernatant water effectively by installing a small type optical fiber photoelectric switch to a water collecting device moving vertically in accordance with variation of water level and controlling the water intaking operation by the electric signal emitted when the photosensing part contacts with sludge zone. CONSTITUTION:A pair of optical fiber 1, 2 is suspended from the bottom of a water collecting trough 6, and sensors 3, 4 are fixed at the top ends of the optical fibers. When water-intake is commenced by opening a treating water valve 15, the water collecting trough 6 sinks as the supernatant water decreases. When the sensors 3, 4 are thrusted into the sludge zone 19, light is shielded by dense sludge becoming nontransmissive. So the switch is turned OFF and the treating water valve 15 is closed, the water intake by the water collecting trough 6 is interrupted, and the sludge zone 19 is sucked up and elevating trough 6 is interrupted, and the sludge zone 19 is sucked up and elevated by the water intake preventing carrying over of the sludge.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は回分式汚水処理を主体とし、その他−股木処
理及び固液分離操作に関するも゛のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is mainly concerned with batch-type sewage treatment, and also relates to cross-section treatment and solid-liquid separation operations.

〔従来の技術〕[Conventional technology]

従来、凝集沈殿処理操作において、沈降蓄積する沈積汚
泥の量を知るため、超音波装置を使用測定することは行
なわれており、また特に上向流沈殿池においては、汚泥
ゾーンの上昇によって惹起されるキャリオーバーを予知
するため、光電式のゾーン検知機を備えている場合もあ
る。
Conventionally, in coagulation and sedimentation treatment operations, ultrasonic devices have been used to measure the amount of sludge that settles and accumulates. In some cases, a photoelectric zone detector is installed to predict carryover.

そして別に、活性汚泥処理において、沈殿槽の水面から
沈積汚泥面までの距離を測定するため、溶存酸素計のセ
ンサを水面下に浸漬してその深度毎の指示濃度によって
測定を行なうことも、特公昭58−8309号公報に記
載されている。
Separately, in activated sludge treatment, in order to measure the distance from the water surface of the sedimentation tank to the surface of the settled sludge, it is a special practice to immerse the sensor of a dissolved oxygen meter under the water surface and measure the indicated concentration at each depth. It is described in Publication No. 58-8309.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記したように、沈殿槽の汚泥の状態を知るため、各種
の方法が提案されかつ実施されてきたが、問題点の第一
は、検知装置そのものが非常に高価で1例えばその−基
が50〜150万円もするのが多く、かつセンサーの精
度も例えば超音波法では下水の沈殿汚泥(1%wt)程
度では感度が悪く、信頼性に欠ける点があり、また光透
過法では光源ランプ、受光部等が水没するため、センサ
一部分が大きくなるばかりでなく、水密性も完全を要す
るなど、構造も複雑であり、構想の多い割に実働上の効
果はいまひとつというものであった。
As mentioned above, various methods have been proposed and implemented in order to determine the state of sludge in settling tanks, but the first problem is that the detection device itself is very expensive; They often cost up to 1.5 million yen, and the accuracy of the sensor is poor.For example, the ultrasonic method has poor sensitivity and lacks reliability when measuring sewage sludge (1%wt), and the light transmission method requires a light source lamp. Since the light-receiving part and other parts were submerged in water, the sensor was not only large in size, but also had to be completely watertight, making the structure complex, and despite the many ideas it had, its practical effects were poor.

特に回分式の汚水処理装置のように、一槽で曝気処理と
処理後の沈殿上澄水の取水操作を行なう場合には、装置
の機能上、汚泥ゾーンの検知機構は絶対必要でありなが
ら、装置規模やコストの点などでも前記の検知機器では
不満が多いものである。
Particularly in batch-type sewage treatment equipment, where aeration treatment and precipitated supernatant water intake after treatment are carried out in one tank, a sludge zone detection mechanism is absolutely necessary for the functionality of the equipment. There are many dissatisfaction with the above-mentioned detection devices in terms of scale and cost.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は前記の問題点を解決するために。 This invention aims to solve the above problems.

小型であって特にセンサーが極めて小さく。It is small, especially the sensor is extremely small.

かつ長さや位置が任意調節できるレンズ付き透過型光フ
ァイバー式光電スイッチを使用するものである。この装
置は光源として赤色ダイオード、受光部としてフォトト
ランジスタを利用しており、かつ光没部は光ファイバー
であるので、特別な水密性を要せず、ファイバーがプラ
スチック製のものは素人でも長さを簡単に変えることが
できる便利さも得られるものである。そして、アンプ(
光源、受光、増幅)やコントロールユニット部は極めて
小型で集水装置へ搭載する時のスペースや重量の制限を
受けず、またレンズ付きのものは光源、受光部の間隔は
10ai程度にとることができるので、清掃等の維持管
理が容易であり。
In addition, it uses a transmission type optical fiber type photoelectric switch with a lens whose length and position can be adjusted arbitrarily. This device uses a red diode as the light source, a phototransistor as the light receiving part, and the light sink part is an optical fiber, so it does not require special watertightness, and even an amateur can use the fiber made of plastic. It also offers the convenience of being easily changeable. And the amplifier (
The light source, light receiver, amplification) and control unit are extremely small and are not subject to space or weight restrictions when mounted on a water collection device, and the distance between the light source and light receiver can be approximately 10 ai for models with lenses. Therefore, maintenance such as cleaning is easy.

コストも従来装置の1130〜115で目的が達成され
るのである。
In terms of cost, the objective can be achieved with costs ranging from 1130 to 115 that of the conventional device.

〔作用〕[Effect]

第1図に示すように、直径inn程度の光ファイバー1
,2の先端部のセンサ3,4を、一方のファイバー1を
通る光線を他方のファイバー2が空間を隔てて受けられ
るように対向して、70mの距離で相対峙させ、透過・
・・ON、不透過・・・OFFの型にしてスイッチング
効果をテストした。先ず大気中ではもちろん透過し、次
にセンサ3,4を水槽の水5中に水没した。
As shown in Fig. 1, an optical fiber 1 with a diameter of about inn
, 2 are placed facing each other at a distance of 70 m so that the light beam passing through one fiber 1 can be received by the other fiber 2 across a space.
...ON, non-transparent...OFF types were used to test the switching effect. First, it was transmitted through the atmosphere, and then the sensors 3 and 4 were submerged in water 5 of an aquarium.

汚泥濃度mg/ Q       スイッチング効果O
(清水)          ON 665(かなりの濁水)      0N820   
         0 F F1080       
     0 F F1430           
 0 F F14500             O
FF通常、活性汚泥処理法における処理水(上澄水)の
汚泥の懸濁濃度は50mg/ Q以下であり、汚泥ゾー
ン自体の懸濁濃度(sooo〜15000mg/ Q 
)とは明確に区別できて、確実性が得られることかわか
った。
Sludge concentration mg/Q Switching effect O
(Clear water) ON 665 (very turbid water) 0N820
0 F F1080
0 F F1430
0 F F14500 O
FF Normally, the suspended concentration of sludge in treated water (supernatant water) in the activated sludge treatment method is 50 mg/Q or less, and the suspended concentration in the sludge zone itself (sooo ~ 15000 mg/Q)
) can be clearly distinguished from the others, and it has been found that certainty can be obtained.

〔実施例1〕 第2図に示すように1回分式汚水処理装置において、集
水トラフ6を浮子型とした場合における例である。すな
わち集水トラフ6は溝材7,8の底面を上下に併設した
断面H型の長尺溝材9の両端部に浮室10.11を偏設
し、上部溝材7の両側には多数の取水孔12を列設し、
中央部の上澄水排出口13に伸縮自由な蛇管状排出管1
4を接続し、この管14を槽外に引き出したところに処
理水弁15を設けであるが、集水トラフ6の下側の適宜
位置に前記一対の光ファイバー1,2を懸垂して、その
先端のセンサ3,4は各々の関係位置が移動しないよう
に相対峙して固定しておく。そして光ファイバー1,2
の上方にはコントロールユニット16を取り付けて電源
(図示せず)とつないでおけば、今、汚水処理操作にお
いて曝気が終了し、活性汚泥が槽17の下部に沈降し、
上澄水部分18の下方には汚泥ゾーン19が生成される
から、この時点で処理水弁15を開いて取水を開始する
。この時、集水トラフ6の取水孔12から侵入する水は
排出管14を介して排出されるので、上澄水の減少によ
って、集水トラフ6は沈下して行くが、光ファイバー1
゜2のセンサ3,4が未だ上澄水部分18にあるうちは
、光線は透過状態にあり、更に集水トラフ6の沈下の続
行によって、センサ3,4の部分が汚泥ゾーン19に突
入すると、光線は濃密な汚泥の介在によって遮断され、
不透過の状態となるので、スイッチは○FF作動を行な
い、処理水弁15を閉止する。これによって、集水トラ
フ6による取水は停止され、汚泥ゾーン19が取水によ
って吸い上げられ上昇して、汚泥がキャリオーバーする
ことを防止できるものである。
[Embodiment 1] As shown in FIG. 2, this is an example in which the water collection trough 6 is of a float type in a single batch sewage treatment apparatus. In other words, the water collection trough 6 has floating chambers 10 and 11 arranged unevenly at both ends of a long groove material 9 with an H-shaped cross section, in which the bottom surfaces of the groove materials 7 and 8 are arranged above and below, and a large number of floating chambers 10 and 11 are provided on both sides of the upper channel material 7. Water intake holes 12 are installed in a row,
A freely expandable serpentine discharge pipe 1 at the supernatant water discharge port 13 in the center
4 is connected, and a treated water valve 15 is provided at the point where this pipe 14 is drawn out of the tank. The sensors 3 and 4 at the tips are fixed facing each other so that their relative positions do not move. And optical fiber 1, 2
If a control unit 16 is installed above and connected to a power source (not shown), aeration is completed in the sewage treatment operation, and the activated sludge settles to the bottom of the tank 17.
Since a sludge zone 19 is generated below the supernatant water portion 18, the treated water valve 15 is opened at this point to start water intake. At this time, water entering from the water intake hole 12 of the water collection trough 6 is discharged through the discharge pipe 14, so the water collection trough 6 sinks due to the decrease in supernatant water, but the optical fiber 1
While the sensors 3 and 4 of ゜2 are still in the supernatant water section 18, the light beam is in a transmitted state, and as the water collection trough 6 continues to sink, the sections of the sensors 3 and 4 enter the sludge zone 19. The light rays are blocked by the presence of dense sludge,
Since the water is not permeable, the switch performs the FF operation and closes the treated water valve 15. As a result, water intake by the water collection trough 6 is stopped, and it is possible to prevent the sludge zone 19 from being sucked up by the water intake and rising, thereby preventing sludge from carrying over.

〔実施例2〕 実施例1の場合の取水方法は浮子式集水トラフを使用し
ているが1本例では在来のシュノーケル取水方法のよう
に、処理水排出管をアーム20として機械的に集水トラ
フ21を昇降させる場合である。もつともセンサ3,4
の取付方法は実施例1の場合と同様で、センサ3.4が
汚泥ゾーン19に突入した時は、電源スィッチがアーム
20の移動を停止させ、機構的にその集水トラフ21の
位置を固定して、取水を停止するものである。この場合
、集水トラフ21が水面上方に停止しても懸垂されたセ
ンサ3,4には一定の長さを保つことにより、検知部を
水中に置くことができるので、付着した汚泥が乾燥して
透過面が汚染されることは回避できる。
[Example 2] The water intake method in Example 1 uses a float-type water collection trough, but in this example, like the conventional snorkel water intake method, the treated water discharge pipe is used as an arm 20 mechanically. This is a case where the water collection trough 21 is raised and lowered. Motomo sensor 3, 4
The installation method is the same as in Embodiment 1, and when the sensor 3.4 enters the sludge zone 19, the power switch stops the movement of the arm 20 and mechanically fixes the position of the water collection trough 21. Then, water intake will be stopped. In this case, even if the water collection trough 21 stops above the water surface, the suspended sensors 3 and 4 can maintain a certain length so that the detection parts can be placed underwater, so that the attached sludge will not dry. Therefore, contamination of the transmission surface can be avoided.

〔実施例3〕 本例は浮子22によって、集水孔23を有する取水器2
4を上澄水面に浮遊させておくことは例1の場合と同様
であるが、本例の取水器24には取水ポンプ25が直結
されており、このポンプ25の運転により、上澄水を高
い位置に排出できる特長のある半面、吸引作用のため汚
泥ゾーン19を引き上げやすいので、センサー3.4を
懸垂してこのゾーン19との距離を知りつつポンプ運転
の制御を行なうものである。
[Embodiment 3] In this example, a water intake device 2 having a water collection hole 23 is constructed using a float 22.
4 floating on the surface of the supernatant water is the same as in Example 1, but the water intake pump 25 is directly connected to the water intake device 24 in this example, and the operation of this pump 25 raises the supernatant water to a high temperature. On the one hand, the sludge zone 19 is easily pulled up due to the suction action, so the sensor 3.4 is suspended and the pump operation is controlled while knowing the distance to this zone 19.

〔発明の効果〕〔Effect of the invention〕

この発明は救主のようにして実施するものであるから、
装置は小型でしかも低コストにでき、非常に簡易に全体
装置に組み込むことができるばかりでなく、感知精度も
良好で、そして現場の状況や季節的の処理能力の変動に
対しても、ファイバーの長さを任意に設定して対応でき
、しかもセンサが汚染された場合は、安全側で運転を停
止しかつセンサも懸垂しているだけなので容易に引き上
げ、清水で洗浄できるなど多くの利便が得られ、比較的
小さな施設に用いて特に有効である。
Since this invention is to be carried out like a savior,
The device is small and low-cost, and can be very easily integrated into the overall system.It also has good sensing accuracy, and can withstand changes in fiber processing capacity due to on-site conditions or seasonal changes in processing capacity. The length can be set to any desired length, and if the sensor becomes contaminated, it can be safely stopped and the sensor is suspended, so it can be easily pulled up and washed with fresh water. It is particularly effective for use in relatively small facilities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法の実験の態様を示す説明図で、
第2図ないし第4図はそれぞれ各実施例の概略図である
。 なお図において、 1.2   光ファイバー 3.4   センサ 6.21   集水トラフ 16      コントロールユニット17槽 18      上澄水部分 19      汚泥ゾーン である。 特許出願人   水道機工株式会社 第1図 第3図
FIG. 1 is an explanatory diagram showing an experimental mode of the method of this invention.
FIGS. 2 to 4 are schematic diagrams of each embodiment. In the figure, 1.2 optical fiber 3.4 sensor 6.21 water collection trough 16 control unit 17 tank 18 supernatant water portion 19 sludge zone. Patent applicant Suido Kiko Co., Ltd. Figure 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)沈降汚泥ゾーンの上方の上澄水を上澄水排出管を
具えた集水トラフによつて採水する取水方法において、
小型のファイバー式光電スイッチを水位変動に応じて昇
降する集水装置に携帯させ、懸垂した光ファイバーの感
光検出部が汚泥ゾーンと接触することにより生ずる電気
信号によつて、このゾーン上面からの集水トラフとの距
離を感知し取水操作を制御することを特徴とする上澄水
取水方法。
(1) In a water intake method in which supernatant water above the settled sludge zone is collected using a water collection trough equipped with a supernatant water discharge pipe,
A small fiber-optic photoelectric switch is carried on a water collection device that moves up and down in response to water level fluctuations, and the electric signal generated when the photosensitive detection part of the suspended optical fiber comes into contact with the sludge zone allows water to be collected from the top of this zone. A supernatant water intake method characterized by controlling the water intake operation by sensing the distance from the trough.
(2)沈降汚泥ゾーンの上方に上澄水排出管を具えた集
水トラフを設けて成るものにおいて、水位変動に応じて
昇降する集水装置と、感光検出部が汚泥ゾーンに向かつ
て懸垂される光ファイバーを含み前記集水装置に携帯さ
れる小型のファイバー式光電スイッチとから主として構
成される上澄水取水装置。
(2) A water collection trough equipped with a supernatant water discharge pipe is provided above the settled sludge zone, in which a water collection device that moves up and down in response to water level fluctuations and a photosensitive detection unit are suspended toward the sludge zone. A supernatant water intake device mainly consisting of a small fiber-type photoelectric switch that includes an optical fiber and is carried by the water collection device.
JP4624185A 1985-03-08 1985-03-08 Method and device for intaking supernatant water Pending JPS61204014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4624185A JPS61204014A (en) 1985-03-08 1985-03-08 Method and device for intaking supernatant water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4624185A JPS61204014A (en) 1985-03-08 1985-03-08 Method and device for intaking supernatant water

Publications (1)

Publication Number Publication Date
JPS61204014A true JPS61204014A (en) 1986-09-10

Family

ID=12741640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4624185A Pending JPS61204014A (en) 1985-03-08 1985-03-08 Method and device for intaking supernatant water

Country Status (1)

Country Link
JP (1) JPS61204014A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256825A (en) * 1987-04-14 1988-10-24 Tsurumi Mfg Co Ltd Sludge sedimentation boundary detector
JPS63256827A (en) * 1987-06-24 1988-10-24 Tsurumi Mfg Co Ltd Sludge sedimentation boundary detector
JPS63256826A (en) * 1987-06-24 1988-10-24 Tsurumi Mfg Co Ltd Sludge sedimentation boundary detector
JPH01105121A (en) * 1987-06-24 1989-04-21 Tsurumi Mfg Co Ltd Sludge sedimentation interface detector
US5130030A (en) * 1988-10-19 1992-07-14 Otto Tuchenhagen Gmbh & Co. Kg Method and an automatic device for the sharp separation and removal of layers of fluids from a container by way of the container headspace and for the automatic cleaning of the container
JPH0629608U (en) * 1992-09-08 1994-04-19 弘 月見里 Tap water dispenser
CN106053734A (en) * 2016-07-15 2016-10-26 长江大学 Regular-hexagon universal movable bottom plate system in sedimentary simulation experiment device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256825A (en) * 1987-04-14 1988-10-24 Tsurumi Mfg Co Ltd Sludge sedimentation boundary detector
JPS63256827A (en) * 1987-06-24 1988-10-24 Tsurumi Mfg Co Ltd Sludge sedimentation boundary detector
JPS63256826A (en) * 1987-06-24 1988-10-24 Tsurumi Mfg Co Ltd Sludge sedimentation boundary detector
JPH01105121A (en) * 1987-06-24 1989-04-21 Tsurumi Mfg Co Ltd Sludge sedimentation interface detector
US5130030A (en) * 1988-10-19 1992-07-14 Otto Tuchenhagen Gmbh & Co. Kg Method and an automatic device for the sharp separation and removal of layers of fluids from a container by way of the container headspace and for the automatic cleaning of the container
JPH0629608U (en) * 1992-09-08 1994-04-19 弘 月見里 Tap water dispenser
CN106053734A (en) * 2016-07-15 2016-10-26 长江大学 Regular-hexagon universal movable bottom plate system in sedimentary simulation experiment device

Similar Documents

Publication Publication Date Title
JP5197621B2 (en) Equipment for measuring sludge concentration in wastewater treatment tanks
US5421995A (en) Sludge blanket level detector suspended from floating decanter
CN102105401B (en) Primary equalization settling tank
AU652553B2 (en) Turbidity measurement
US4622465A (en) Arrangement for determining the presence of specific substances in a liquid
KR101756584B1 (en) The Water Content Measurement Device For Automatic And Manual Combination
JPS61204014A (en) Method and device for intaking supernatant water
CN107217723B (en) A kind of runoff rainwater separating cut-off equipment and method based on light sensation technology
RU2126146C1 (en) Device for automatic sampling of water
JP2003305454A (en) Intake water quality controller
KR101359397B1 (en) Rainfall detecting apparatus and drainage control system using the same
KR101860088B1 (en) An apparatus for depth-measuring and monitoring an interface and a depth-measuring and monitoring method using the same
JPH0894608A (en) Intake water quality control device
JP3066639B2 (en) Shimizu cleanliness confirmation system
CN218121931U (en) Rainwater discharge monitoring control device
RU2605684C1 (en) System and method for detecting leak of underwater pipeline
SU1151930A1 (en) Device for adjusting sediment level in sewage settling basins
KR100747085B1 (en) Apparatus for sensing precipitation density of sludge in waste water treatment tank and method for sensing precipitation density of sludge
JPH0632613Y2 (en) Sludge sedimentation interface detector
JPH0232922B2 (en)
FR2553195A1 (en) APPARATUS FOR CONTROLLING SEDIMENTATION OF SLUDGE IN SEWERED SEWAGE
JPH0632612Y2 (en) Sludge sedimentation interface detector
CN220063823U (en) Water quality detection system based on liquid level control
CN208580333U (en) A kind of cesspool fluid level control device
KR200433504Y1 (en) Sewage Pipe Flushing System