JPS61203616A - Electric doule-layer capacitor - Google Patents

Electric doule-layer capacitor

Info

Publication number
JPS61203616A
JPS61203616A JP60045425A JP4542585A JPS61203616A JP S61203616 A JPS61203616 A JP S61203616A JP 60045425 A JP60045425 A JP 60045425A JP 4542585 A JP4542585 A JP 4542585A JP S61203616 A JPS61203616 A JP S61203616A
Authority
JP
Japan
Prior art keywords
layer capacitor
electrode
activated carbon
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60045425A
Other languages
Japanese (ja)
Inventor
誠 藤原
米田 一
岡本 正史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60045425A priority Critical patent/JPS61203616A/en
Publication of JPS61203616A publication Critical patent/JPS61203616A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、活性炭を分極性電極として用いる電気二重
層コンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an electric double layer capacitor using activated carbon as a polarizable electrode.

従来の技術 従来この種の電解液を利用した電気二重層コンデンサの
電極体は、活性炭粒子をプレス成型したり適当なバイン
ダーと練合したもの全集電体金属上に塗布して作られて
いた。また、活性炭繊維を用いる場合には活性炭繊維上
にアルミニウムの溶射層を作り、ケース材料として強度
のあるステンレススチールからなる電極ケースとアルミ
ニウムの溶射層をスポット溶接し電極体を作る方法が知
られていた。
BACKGROUND OF THE INVENTION Conventionally, the electrode bodies of electric double layer capacitors using this type of electrolyte have been made by press-molding activated carbon particles or kneading them with a suitable binder and coating them on the entire metal current collector. In addition, when activated carbon fibers are used, a method is known in which a sprayed aluminum layer is formed on the activated carbon fibers, and the electrode body is made by spot welding the electrode case made of strong stainless steel as the case material and the sprayed aluminum layer. Ta.

発明が解決しよ、うとする問題点 このような集電体の電気二重層コンデンサにおいては、
有機電解液を用いる場合、電解液の溶媒として、プロピ
レンカーボネート、r−ブチロラクトン、N−N−ジメ
チルホルムアミド、アセトニトリルが使用されるが、こ
れらの電解液中においてステンレススチールはアノード
分極した場合に完全な不動態を作らず溶解していた。
Problems to be solved by the invention In electric double layer capacitors with such a current collector,
When an organic electrolyte is used, propylene carbonate, r-butyrolactone, N-N-dimethylformamide, and acetonitrile are used as the solvent for the electrolyte, but in these electrolytes, stainless steel is completely polarized when anodically polarized. It dissolved without forming any passivity.

この溶解による電流が流れ始める電位は陰極側の溶媒の
分解電位との間で決る2、3v〜264vで、これらの
有機溶媒を用いた電解液中での活性炭の酸化あるいは電
解質の分解電位よりも低いため、ステンレススチール全
集電体とした場合には陽極電位がステンレススチールの
溶解電位で制限され分極電極と電解液で決定される電気
化学的に安定な電位領域である3vを有効に使用するこ
とができなかった。例えば、漏れ電流が増加し始める電
圧より過剰の電圧を加えると、陰罹活性炭電極中に多量
の鉄、ニッケル等が検出されステンレススチールの溶解
と鉄イオンの陽極側から陰極側への移行が起ることが確
認されている。
The potential at which the current starts flowing due to this dissolution is 2.3 to 264 V, which is determined by the decomposition potential of the solvent on the cathode side, and is higher than the oxidation potential of activated carbon or the decomposition potential of the electrolyte in the electrolyte using these organic solvents. Therefore, when the entire current collector is made of stainless steel, the anode potential is limited by the dissolution potential of stainless steel, and 3V, which is an electrochemically stable potential region determined by the polarized electrode and electrolyte, can be effectively used. I couldn't do it. For example, if a voltage higher than the voltage at which leakage current starts to increase is applied, a large amount of iron, nickel, etc. will be detected in the negative activated carbon electrode, causing the stainless steel to dissolve and iron ions to migrate from the anode to the cathode. It has been confirmed that

以上記載したようにステンレススチールハ、活性炭分極
性電極と電解液で決定される、電気化学的に安定領域で
ある3vを有効に使うには集電体としては有効ではなく
、3v使用を可能とする高い耐電圧の電気二重層コンデ
ンサを得るためには使用する溶媒の中でアノード分極を
行った場合、分極性電極である活性炭と同程度か、ある
いはそれ以上の電位で反応性電流が流れるような材料で
、且つケース材料として充分な強度のある材料全集電体
として使用する必要があった。しかし、この候補として
チタンのようにこれらの電解液中でも不動態を形成する
金属全集電体として用いた場合、例えば第3図に示すよ
うにステンレススチールを集電体とする場合よりも耐電
圧は高くなり、プロピレンカーボネート、テトラエチル
アンモニウムバークロレート系の電解液ではO,SV程
度反応電流が流れる領域は拡大する。しかし、この場合
、内部抵抗の増加が大きくなり、電気二重層コンデンサ
を使用する場合の電圧低下が大きくなるため実用に供し
得ない問題があった。
As described above, stainless steel is not effective as a current collector in order to effectively use 3V, which is the electrochemically stable range determined by the activated carbon polarizable electrode and electrolyte, and it is possible to use 3V. In order to obtain an electric double layer capacitor with a high withstand voltage, when anode polarization is performed in the solvent used, a reactive current flows at a potential equal to or higher than that of activated carbon, which is a polarizable electrode. It was necessary to use a material for the entire current collector that was strong enough to be used as a case material. However, if a metal such as titanium is used as an all-metal current collector that forms a passive state even in these electrolytes, the withstand voltage will be lower than when stainless steel is used as the current collector, as shown in Figure 3. In the case of propylene carbonate and tetraethylammonium barchlorate based electrolytes, the region where the reaction current flows is expanded to the extent of O and SV. However, in this case, there was a problem that the increase in internal resistance was large and the voltage drop when using an electric double layer capacitor was large, making it impractical.

本発明はこのような欠点を解決し、3v以上の耐電圧を
有する電気二重層コンデンサを得るものである。
The present invention solves these drawbacks and provides an electric double layer capacitor having a withstand voltage of 3V or more.

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的な手段は上
記電気二重層コンデンサが使用される際、少なくとも陽
極となる個の金属ケースの分極性電極および電解液に接
する[fit−窒化チタン、炭化チタンにより被覆する
ものである。
Means for solving the problems and the technical means of the present invention for solving the above problems is that when the above-mentioned electric double layer capacitor is used, at least the polarizable electrode of the metal case serving as an anode and the electrolyte are It is coated with titanium nitride and titanium carbide.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなわち、ステンレススチールは電解液と接触してアノ
ード分極した場合溶解反応を起すが、電解液との接触面
を窒化チタン、炭化チタンにすると活性炭電極と同じ分
極電極になるため%3v印加しても電気化学的に安定な
電気二重層コンデンサを得ることができる。また、電圧
印加による酸化皮膜の形成がみられないため、チタンを
用いた場合のような製品の内部抵抗の上昇は見られない
In other words, stainless steel causes a dissolution reaction when it comes into contact with an electrolyte and becomes anode polarized, but if the contact surface with the electrolyte is made of titanium nitride or titanium carbide, it becomes the same polarized electrode as an activated carbon electrode, so even if %3V is applied. An electrochemically stable electric double layer capacitor can be obtained. Furthermore, since no oxide film is formed due to voltage application, there is no increase in the internal resistance of the product as would be the case when titanium is used.

この場合、集電体はケース材料も兼ねているのでケース
材料としての充分な強度が必要であるが窒化チタン、炭
化チタンでケース材料を構成しようとすると、硬くもろ
いなど加工性において十分ではない。従ってこれらの制
約条件下では、ステンレススチールなど外部端子として
電気的接触性に問題のないもので、且つケース材料とし
ての強度を備えたものと窒化チタン、炭化チタンの複合
化が妥当である。
In this case, since the current collector also serves as a case material, it must have sufficient strength as a case material. However, if titanium nitride or titanium carbide is used as a case material, it is hard and brittle and does not have sufficient workability. Therefore, under these restrictive conditions, it is appropriate to use a material such as stainless steel that has no problem in electrical contact as an external terminal and has strength as a case material, and a composite material of titanium nitride and titanium carbide.

実施例 以下、具体的な実施例により本発明を説明する。Example The present invention will be explained below using specific examples.

実施例1 第1図に示すようにフェノール系活性炭繊維による布(
厚みO,Sn、比表面積2oood/gr)からなる分
極性電極1の片面に導電電極を形成したものを直径2α
の円板状に打抜き型で抜き取り、電極体を得る。この電
極体にプロピレンカーボネートにテトラエチルアンモニ
ウムテトラフルオロボーレー)10wt%を加えた電解
液を含浸した後、間にセパレータ2を介在させて重ね合
わせ、さらにこれを内面を窒化チタン(厚み10μm〕
でそれぞれ陽極どなる側のみ又は両極共被覆したステン
レス製ケース3で挾み、そして、そのケース3の開口端
にガスケット4を配置すると共に、かしめにより封口全
行なう。5は窒化チタン、炭化チタンの膜である。
Example 1 As shown in Figure 1, a cloth made of phenolic activated carbon fiber (
A polarizable electrode 1 having a thickness of O, Sn and a specific surface area of 2oood/gr) with a conductive electrode formed on one side has a diameter of 2α.
A disk shape is cut out using a punching die to obtain an electrode body. After impregnating this electrode body with an electrolyte solution containing 10 wt% of propylene carbonate and tetraethylammonium tetrafluoroboret, the electrode body is stacked with a separator 2 interposed between them, and the inner surface is coated with titanium nitride (thickness 10 μm).
Then, a stainless steel case 3 coated with only the anode side or both electrodes is placed between the cases 3, and a gasket 4 is placed on the open end of the case 3, and the entire seal is sealed by caulking. 5 is a film of titanium nitride and titanium carbide.

この窒化チタンの被覆は、cv−n法(ahθm1ca
lT&per Deposition  )を用い、四
塩化炭素とアンモニア111Qo〜1400’Cの高温
で反応させ、ステンレス製ケース3の内面に被覆する。
This titanium nitride coating was performed using the CV-N method (ahθm1ca
The inner surface of the stainless steel case 3 is coated by reacting carbon tetrachloride with ammonia at a high temperature of 111Qo to 1400'C using a 1T&per Deposition).

第1表にこの発明による電気二重層コンデンサの諸特性
を示す。同じく第1表には比較のためにステンレス製ケ
ースの内面に窒化チタン、炭化チタンを被覆していない
構造のものについて試作したものの特性を示す。
Table 1 shows various characteristics of the electric double layer capacitor according to the present invention. Similarly, Table 1 shows, for comparison, the characteristics of a prototype with a structure in which the inner surface of the stainless steel case is not coated with titanium nitride or titanium carbide.

(以下 余 白) 実施例2 第1図に示すようにやしから活性炭粒子をポリフロンか
らなるバインダーと混練し成型したものを直径2αの円
板状に打ち抜き型で抜き取り、分極性電極1を得る。こ
の電極体にプロピレンカーボネートにテトラエチルアン
モニウムテトラフルオロボーレート10wt%を加えた
電解液を含浸した後、間にセパレータ2′に、介在させ
て重ね合わせ、さらにこれを内面を炭化チタンで被覆し
たステンレス製ケース3で挾み、このケース3の開口端
にガスケット4を配置すると共に、かしめにより封′D
を行なう。
(The following is a blank space) Example 2 As shown in Fig. 1, activated carbon particles from palm are kneaded with a binder made of polyfluorocarbon, molded, and then cut out into a disk shape with a diameter of 2α using a punching die to obtain polarizable electrode 1. . This electrode body is impregnated with an electrolytic solution containing 10 wt% of tetraethylammonium tetrafluoroborate in propylene carbonate, and then stacked on top of each other with a separator 2' interposed between them, and this is then covered with a stainless steel case whose inner surface is coated with titanium carbide. 3, place the gasket 4 on the open end of the case 3, and seal it by caulking.
Do the following.

第1表に、この発明による電気二重層コンデンサの諸特
性を示す。
Table 1 shows various characteristics of the electric double layer capacitor according to the present invention.

実施例3 第2図に示すようにアクリル系活性炭繊維の布(厚さ0
.5M’l、比表面積5ood/fir)からなる分極
性電極1を直径2αの円板状に打ち抜き型で抜き取り、
陽極電極体を得る。
Example 3 As shown in Figure 2, an acrylic activated carbon fiber cloth (thickness 0
.. A polarizable electrode 1 having a diameter of 5 M'l and a specific surface area of 5 ood/fir was punched out into a disc shape with a diameter of 2α using a punching die.
Obtain an anode electrode body.

この電極体に陰極電極体として直径2(7)の非分極性
電極6、例えばリチウムをそれぞれの電極体の間にセパ
レータ2を介在させ重ね合わせ、−組の電極体とする。
A non-polarizable electrode 6 having a diameter of 2 (7), for example lithium, is placed on this electrode body as a cathode electrode body, with a separator 2 interposed between each electrode body, to form a - set of electrode bodies.

この−組の電極体にプロピレンカーボネート、にリチウ
ムフルオポーレート10wt%を加えた電解aを含浸し
た後、これを内面全窒化チタンで被覆したステンレス製
ケース3で挾み、そしてそのケース3の開口端にガスケ
ットを配置すると共に、かしめにより封口する。
After this set of electrode bodies is impregnated with electrolytic a made by adding 10 wt% of lithium fluoroporate to propylene carbonate, it is sandwiched between stainless steel cases 3 whose inner surfaces are fully coated with titanium nitride, and the case 3 has an opening. Place a gasket on the end and seal it by caulking.

第2表に、この発明による電気二重層コンデンサの諸特
性を示す。同じく第2表には比較のためにステンレスケ
ースの内面に炭化チタン、窒化チタンを被覆していない
構造のものについて試作したものの特性を示す。
Table 2 shows various characteristics of the electric double layer capacitor according to the present invention. Similarly, Table 2 shows, for comparison, the characteristics of a prototype with a structure in which the inner surface of the stainless steel case is not coated with titanium carbide or titanium nitride.

(以 下金 白) 発明の効果 以上のようにこの発明は、窒化チタン、炭化チタン被覆
が分極性電極と同じ性質であることを利用して、3v以
上の耐電圧を有する高耐電圧電気二重層コンデンサを容
易に得ることができるものである。
(Hereinafter referred to as "Kinshiro") Effects of the Invention As described above, this invention utilizes the fact that titanium nitride and titanium carbide coatings have the same properties as polarizable electrodes to create a high-withstand voltage electric secondary battery with a withstand voltage of 3V or more. A multilayer capacitor can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電気二重層コンデンサの一実施例を示
す断面図、第2図は本発明の他の実施例を示す断面図、
第3図はチタンとステンレススチールを集電体としたと
きの電気二重層コンデンサの電位−電流特性を示す特性
図である。 1・・・・・・分極性電極、2・・・・・・セパレータ
、3・・・・・・ケース、6・・・・・・窒化チタン、
炭化チタンの膜、6・・・・・・非分極性電極。
FIG. 1 is a sectional view showing one embodiment of the electric double layer capacitor of the present invention, FIG. 2 is a sectional view showing another embodiment of the present invention,
FIG. 3 is a characteristic diagram showing the potential-current characteristics of an electric double layer capacitor when titanium and stainless steel are used as current collectors. 1... Polarizable electrode, 2... Separator, 3... Case, 6... Titanium nitride,
Titanium carbide film, 6...Non-polarizable electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)活性炭繊維や活性炭粉末などよりなる分極性電極
に電解液を介して対向電極を配置して素子とし、この素
子を2つで対をなす一対の金属ケース内に収納し、その
金属ケースそれぞれに分極性電極および対向電極を電気
的に接触させることにより構成され、陽極となる側の金
属ケースの分極性電極および電解液に接する面を窒化チ
タン、炭化チタンにより被覆したことを特徴とする電気
二重層コンデンサ。
(1) An element is created by arranging a polarizable electrode made of activated carbon fiber or activated carbon powder, etc. with a counter electrode via an electrolyte, and this element is housed in a pair of metal cases, and the metal case is It is constructed by bringing a polarizable electrode and a counter electrode into electrical contact with each other, and is characterized in that the surface of the metal case on the side that becomes the anode, which comes into contact with the polarizable electrode and the electrolyte, is coated with titanium nitride or titanium carbide. Electric double layer capacitor.
(2)対向電極として活性炭繊維や活性炭粉末よりなる
分極性電極を用いた特許請求の範囲第1項に記載の電気
二重層コンデンサ。
(2) The electric double layer capacitor according to claim 1, wherein a polarizable electrode made of activated carbon fiber or activated carbon powder is used as the counter electrode.
(3)対向電極として非分極性電極を用い、対向電極を
陰極として使用した特許請求の範囲第1項に記載の電気
二重層コンデンサ。
(3) The electric double layer capacitor according to claim 1, wherein a non-polarizable electrode is used as the counter electrode, and the counter electrode is used as a cathode.
JP60045425A 1985-03-07 1985-03-07 Electric doule-layer capacitor Pending JPS61203616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045425A JPS61203616A (en) 1985-03-07 1985-03-07 Electric doule-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045425A JPS61203616A (en) 1985-03-07 1985-03-07 Electric doule-layer capacitor

Publications (1)

Publication Number Publication Date
JPS61203616A true JPS61203616A (en) 1986-09-09

Family

ID=12718920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045425A Pending JPS61203616A (en) 1985-03-07 1985-03-07 Electric doule-layer capacitor

Country Status (1)

Country Link
JP (1) JPS61203616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242994A (en) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd Electric double layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242994A (en) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd Electric double layer capacitor

Similar Documents

Publication Publication Date Title
EP0207167B1 (en) Electric double layer capacitor
JPH03241809A (en) Electric double-layer capacitor
JPS61203614A (en) Electric doule-layer capacitor
JPS62200715A (en) Electric double-layer capacitor
JPS61203616A (en) Electric doule-layer capacitor
JPS60235419A (en) Electric double layer capacitor
JPS61203617A (en) Electric doule-layer capacitor
JPS63186414A (en) Electric double-layer capacitor
JPH0338815A (en) Electric double layer capacitor
JPS61203624A (en) Electric double-layer capacitor
JPS60176216A (en) Electric double layer capacitor
JPS60182123A (en) Electric couble layer capacitor
JPS61102023A (en) Electric double-layer capacitor
JPS63296328A (en) Dipole domain capacitor
JPS61203619A (en) Electric double-layer capacitor
JPS63261815A (en) Electric double-layer capacitor
JP3132181B2 (en) Electric double layer capacitor
JP3309436B2 (en) Electric double layer capacitor
JPS61203622A (en) Electric double-layer capacitor
JPS6294908A (en) Electric double-layer capacitor
JPS61203625A (en) Electric double-layer capacitor
JPS61203615A (en) Electric doule-layer capacitor
JPS593914A (en) Electric double layer capacitor
JPS60167410A (en) Electric double layer capacitor
JPS61203618A (en) Electric double-layer capacitor