JPS60182123A - Electric couble layer capacitor - Google Patents
Electric couble layer capacitorInfo
- Publication number
- JPS60182123A JPS60182123A JP59036631A JP3663184A JPS60182123A JP S60182123 A JPS60182123 A JP S60182123A JP 59036631 A JP59036631 A JP 59036631A JP 3663184 A JP3663184 A JP 3663184A JP S60182123 A JPS60182123 A JP S60182123A
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- oxide
- layer capacitor
- double layer
- electric double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は電気二重層を利用した電気二重層キャパシタに
関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electric double layer capacitor using an electric double layer.
従来例の構成とその問題点
従来、電解液を使用した電気二重層キャパシタの電極体
は活性炭粒子をプレス成型したり、適描なバインダーと
練合したものを金属集電体上に塗布して作られていた。Conventional structure and problems Conventionally, the electrode body of an electric double layer capacitor using an electrolyte was made by press-molding activated carbon particles, or by kneading it with a suitable binder and coating it on a metal current collector. It was made.
また、活性炭繊維を用いる場合には、活性炭繊維上にア
ルミニウムの溶射層を作り、電極ケースとアルミニウム
の溶射層を浴接し電極体を作製する方法が取られていた
。しかし、このような方法によって造られた電極体は分
極性電極である活性炭と集電体金属との電気的接続が初
期は良好であるが経時的な変化が大きい欠点があった。Furthermore, when activated carbon fibers are used, a method has been adopted in which a sprayed aluminum layer is formed on the activated carbon fibers, and the electrode case and the sprayed aluminum layer are brought into bath contact to produce an electrode body. However, the electrode body produced by such a method has a drawback that although the electrical connection between the activated carbon, which is a polarizable electrode, and the current collector metal is good initially, it changes significantly over time.
また、このような集電体の電気二重層キャパシタにおい
ては、有機電解液を用いる場合、電解液の溶媒として、
グロビレンカーボネイト、γ−ブチルラクトン、N−N
−ジメチルホルムアルデヒド、ア七トニトリル々とが使
用されるが、これらの電角fl!′7Iffi+:1]
ではステンレススチールやアルミニウムは、アノード分
極した場合にも完全な不動態を作らず溶解していた。こ
の溶解による電流が流れ始める電位は、これらの有機溶
媒を用いた電解液中での活性炭の酸化あるいは電解液の
分解電位よりも低いため、ステンレススチールまたは、
アルミニウムを集電体とした場合には陽極電位が□アル
ミニウム1グζはステンレススチールの溶解電位で制限
され、分極電極と電解液で決定される電気化学的に安定
な電位領域を有効に使用することができなかった。例え
ば、アルミニウム集電体を用いた電気二重層キャパシタ
に、もれ電流が増加しけじめる電圧より過剰の電圧を加
えると、陰極活性炭電極中に多量のアルミニウムが検出
され、アルミニウムの溶解とアルミニウムイオンの陽極
側から陰極側への移行が発生することが確認された。In addition, in the electric double layer capacitor of such a current collector, when an organic electrolyte is used, as a solvent for the electrolyte,
Globylene carbonate, γ-butyl lactone, N-N
-Dimethylformaldehyde, a7tonitrile, etc. are used, but these electric angles fl! '7Iffi+:1]
In the case of stainless steel and aluminum, even when anode polarized, they did not form a complete passivity and were dissolved. The potential at which current begins to flow due to this dissolution is lower than the oxidation potential of activated carbon in electrolytes using these organic solvents or the decomposition potential of electrolytes, so stainless steel or
When aluminum is used as a current collector, the anode potential is limited by the dissolution potential of stainless steel, making effective use of the electrochemically stable potential range determined by the polarized electrode and electrolyte. I couldn't. For example, when an excessive voltage is applied to an electric double layer capacitor using an aluminum current collector, compared to the voltage that would cause the leakage current to increase and dampen, a large amount of aluminum is detected in the cathode activated carbon electrode, causing dissolution of aluminum and aluminum ions. It was confirmed that there was a transition from the anode side to the cathode side.
以上記載したようにアルミニウムやステンレススチール
は高耐電圧用の電気二重層キャパシタの集電体としては
有効ではなく、高い使用電圧の電気二重層キャパシタを
得るためには、使用する溶媒の中でアノード分極を行っ
た場合、分極性電極である活性炭と同程度かあるいはそ
れ以上の7b1位で反応性の電流が流れるような材料を
集電体として使用する必要があった。しかし、チタンの
ようにこれらの電解液中でも不動態を形成する金属を集
?L体としで用いた場合、例えば第1図に示すように、
アルミニウムを集電体とする場合より4電圧は高くなり
、グロビレンカーボネイト、テトラエチルアンモニウム
バークロレイト系の電jQ’(液では1.ov程度使用
電圧が高くなる。しかし、この場合、内部抵抗の増加が
大きくなり、大電流で使用する場合の室圧降下が大きく
なる欠点があった。As described above, aluminum and stainless steel are not effective as current collectors for electric double layer capacitors for high withstand voltages, and in order to obtain electric double layer capacitors for high working voltages, it is necessary to When polarization is performed, it is necessary to use a material as a current collector that allows a reactive current to flow at the 7b1 position of the same level or higher than that of activated carbon, which is a polarizable electrode. However, do these metals, such as titanium, form a passive state even in electrolytes? When used as an L-body, for example, as shown in Figure 1,
The voltage will be higher than when aluminum is used as the current collector, and the working voltage will be about 1.ov higher for globylene carbonate and tetraethylammonium verchlorate-based electric jQ' (liquid).However, in this case, the internal resistance This has the drawback of increasing the increase in room pressure, resulting in a large drop in room pressure when used with a large current.
発明の目的
本発明はこのような欠点を除去するもので、集電体金属
による陽極側の電位制限を無くし、電解液と分極性電極
である活性炭における電気化学的に安定な領域を最大限
に利用することにより、従来の′T■気二気層重層キャ
パシタ高い耐電圧を有し、かつ内部抵抗変化の少ない電
気二重層キャパシタを提供することを目的とするもので
ある。Purpose of the Invention The present invention eliminates these drawbacks by eliminating potential limitations on the anode side due to the current collector metal, and maximizing the electrochemically stable region in the electrolyte and activated carbon, which is a polarizable electrode. The object of the present invention is to provide an electric double layer capacitor which has a higher withstand voltage than the conventional 'T2 double layer capacitor and has less internal resistance change.
発明の構成
この目的を達成するために、不発明は金属集電体暴利に
導電性金属酸化物を被覆した集電体重たは導電性金属酸
化物を集電体とし、との集電体に活性炭よりなる分極性
電極を接続した電極体を電解液を介して対向させた構成
とし、この構成とすること°によって高側電圧で内部抵
抗変化の少ない電気二重層キャパシタを得ることができ
る。Structure of the Invention In order to achieve this object, the present invention uses a metal current collector as a current collector, a current collector body coated with a conductive metal oxide, or a conductive metal oxide as a current collector. Electrode bodies to which polarizable electrodes made of activated carbon are connected are arranged to face each other with an electrolyte interposed therebetween, and by adopting this structure, it is possible to obtain an electric double layer capacitor with little change in internal resistance at high side voltage.
実施例の説明 以下本発明の実施例を1図面を用いて説明する。Description of examples Embodiments of the present invention will be described below using one drawing.
まず、本発明の基本構成について説明する。第2図に示
すようにリード1を接続した金属集電体基材2の全体に
導電性金属酸化物3を被覆し、そして活性炭布などから
なる分極性電極4を張り付け、金属集電体基材2と分極
性電極4との電気的接続を保つ。このような電極体5を
2個セパレータ6を介して対向させ、電解液を含浸して
構成されている。又、第3図に示すように導電性酸化物
3を集電体とし、活性炭布などの分極性電極4を張り付
け、分極性電極4と、導電性酸化物3との電気的接続を
保つ。この11“q成の電極体5を2個セパレータ6を
介して対向させ、これに電解液を含浸して構成する。First, the basic configuration of the present invention will be explained. As shown in FIG. 2, a conductive metal oxide 3 is coated on the entire metal current collector base material 2 to which leads 1 are connected, and a polarizable electrode 4 made of activated carbon cloth or the like is attached to the metal current collector base material 2. The electrical connection between the material 2 and the polarizable electrode 4 is maintained. Two such electrode bodies 5 are placed facing each other with a separator 6 in between, and are impregnated with an electrolytic solution. Further, as shown in FIG. 3, the conductive oxide 3 is used as a current collector, and a polarizable electrode 4 such as activated carbon cloth is attached to maintain electrical connection between the polarizable electrode 4 and the conductive oxide 3. Two of these 11"q electrode bodies 5 are placed facing each other with a separator 6 in between, and are impregnated with an electrolytic solution.
このような、本発明の電極体を使用することにより、従
来、金属材料の溶解電流が流れ始める電位で制限されて
いた陽極側の電位が分極性電極材料である活性炭または
使用した電解液の分M電位まで使用することになり第4
図に示すように電気二重層キャパシタとして、使用可能
な電圧は太1わに向上する。By using such an electrode body of the present invention, the potential on the anode side, which was conventionally limited to the potential at which the dissolution current of the metal material starts to flow, can be changed to the polarizable electrode material of activated carbon or the electrolyte used. Since it will be used up to the M potential, the 4th
As shown in the figure, the voltage that can be used as an electric double layer capacitor is greatly improved.
この場合、金属集電体基材2に被覆した導電性金属酸化
物3のピンホール、クラック等を介して電解液が触れる
と、わずかであるが、金属集電体基材2が電圧印加によ
り電気化学反応により反応電流が流れ、もれ電流が増加
する。また、金属集電体基材2が銀あるいは銅のように
、電解液中で還元される金属を用いると長時間の使用時
にセパレータ6中に金属として析出され、電子電導性の
もれ電流が発生する場合がある。しかし、この金属集電
体基材2の材質がアルミニウム、チタンなど電解液中で
還元されない物質である場合、先に述べたように、これ
らの物質の倣少の溶解反応による、もれ電流のわずかな
増加1−1:あるが、金属析出による電子電導性の大き
なもれ電流増加は発生しない。In this case, if the electrolyte comes into contact with the metal current collector base material 2 through pinholes, cracks, etc. in the conductive metal oxide 3 coated on the metal current collector base material 2, the metal current collector base material 2 will be affected by voltage application, although it may be slight. A reaction current flows due to the electrochemical reaction, and leakage current increases. Furthermore, if the metal current collector base material 2 is made of a metal that is reduced in the electrolyte, such as silver or copper, it will be deposited as a metal in the separator 6 during long-term use, resulting in leakage current due to electronic conductivity. This may occur. However, if the material of the metal current collector base material 2 is a substance that cannot be reduced in the electrolyte, such as aluminum or titanium, as mentioned above, the leakage current will increase due to the small dissolution reaction of these substances. Slight increase 1-1: There is, but no large increase in leakage current due to electronic conductivity due to metal deposition occurs.
集電体又は集電体への被覆として使用する導電性金属酸
化物3はすでに酸化物の状態であるため、陽極側におい
ては、金属集電体2分極電性極4である活性炭そして電
解液が反応電流として流れる電位よりも高いので、使用
する電解液と活性炭とで決定される反応電流が流れない
電位領域全体を電気二重層キャパシタの使用電圧として
活用することが可能になる。Since the conductive metal oxide 3 used as a current collector or a coating on the current collector is already in an oxide state, on the anode side, the metal current collector 2, the activated carbon that is the polarized electrode 4, and the electrolyte is higher than the potential flowing as a reaction current, it becomes possible to utilize the entire potential region where no reaction current flows, which is determined by the electrolyte and activated carbon used, as the working voltage of the electric double layer capacitor.
また、金属集箪体基t12としてはチタンあるいはアル
ミニウムなど、電解液中で使用電圧程度の電圧では還元
されない金属を用いる方が長時間使用時における電子電
導性物質の析出による、もれ電流増加の危険性を無くす
ことができ高面1圧用の電気二重層キャパシタとして長
期間安定して使用することが可能になる。In addition, it is better to use a metal such as titanium or aluminum as the metal aggregate base t12, which is not reduced at a voltage similar to the operating voltage in the electrolytic solution, to prevent an increase in leakage current due to the precipitation of electronically conductive substances during long-term use. The danger can be eliminated and it can be used stably for a long period of time as an electric double layer capacitor for high-side single-voltage applications.
以上述べたように金属の酸化反応によるもれ電流の発生
はすべて陽極側の電極に発生する現象であり陰極では発
生しない。そのため、陽極側の電極体の構成を本発明に
よるものを用いれば、陰極側の電極については従来のよ
うに金属が露出された集電体を用いても第5図および第
6図に示すように寿命試験による内部抵抗の変化率およ
び容量の変化率が両極とも本発明による電極体を使用し
たものと差が無く両方とも従来のものに比べ高配電圧用
の電気二重層キャパシタを得ることができる。 −
なお、第5図、第6図において、曲線aは陽陰極共に金
属集電体を用いたもの、曲線すは陽極に4電性金属酸化
物集電体を用い、陰極に金属集電体を用いたもの、曲線
Cは陽陰極とも導電性金属酸化物集電体を用いたものを
示している。As described above, all leakage currents caused by metal oxidation reactions occur at the anode side electrode, and do not occur at the cathode. Therefore, if the structure of the anode side electrode body according to the present invention is used, the cathode side electrode can be used as shown in FIGS. 5 and 6 even if a current collector with exposed metal is used as in the conventional case. In the life test, the rate of change in internal resistance and the rate of change in capacitance for both electrodes were the same as those using the electrode body of the present invention, and in both cases it was possible to obtain an electric double layer capacitor for higher distribution voltages than the conventional one. . - In Figures 5 and 6, curve a shows a case in which metal current collectors are used for both the anode and cathode, and curve a shows a case in which a tetraelectric metal oxide current collector is used for the anode and a metal current collector for the cathode. Curve C shows the case where conductive metal oxide current collectors were used for both the anode and the cathode.
次に実施例により本発明をさらに具体的に1況明する。Next, the present invention will be explained in more detail with reference to Examples.
〔実施例−1〕
第7図に示すように、容器を兼ねた金属集電体基材2に
チタンを用い、電解液に接する内面に導電性金属酸化物
(例えば、酸化インジウム、酸化第2スズの混合物)3
を被覆し、そして活性炭繊維よりなる分極性電極4を同
定した後電解液を含浸し、パツキン7、セパレータ6と
共に鎮め封口した。[Example-1] As shown in Fig. 7, titanium is used as the metal current collector base material 2 that also serves as a container, and a conductive metal oxide (e.g., indium oxide, dioxid oxide) is used on the inner surface in contact with the electrolyte. tin mixture) 3
After identifying the polarizable electrode 4 made of activated carbon fiber, it was impregnated with an electrolytic solution and sealed together with the packing 7 and the separator 6.
試作−件
容器寸法 φ21 ′A、厚み1.7%分極性電極寸法
陽陰共φ13%
厚み 0.5%
ロロボーレート
セパレータ マニラ紙 厚み 0,05′Aこのような
条件で作製し、表に示すような特性が得られた。Prototype - Container dimensions: φ21'A, thickness 1.7% Polarizable electrode dimensions: Both positive and negative φ13% Thickness: 0.5% Rolloborate separator Manila paper Thickness: 0.05'A Produced under these conditions and shown in the table. Such characteristics were obtained.
〔実施例−2〕
第8図に示すように、容器を兼ねた集電体として導電性
金属酸化物(例えば、酸化インジウム。[Example 2] As shown in FIG. 8, a conductive metal oxide (for example, indium oxide) was used as a current collector that also served as a container.
酸化第2スズの混合物)3を用い、そしてその内面に活
性炭繊維よりなる分極性電極4を固定した後、電解液を
含浸し、封口用樹脂8により接着封口した。After fixing a polarizable electrode 4 made of activated carbon fiber to the inner surface of the mixture, it was impregnated with an electrolytic solution and sealed with a sealing resin 8.
試作条件
容器寸法 φ20.厚み2.0%
分極性電極寸法 陽陰極共 φ13′A厚み 0.5X
ロロボーレート
セパレータ マニラ紙厚み 0.○5%このような条件
で作製し表に示すような特性が得られた。Prototype condition container dimensions φ20. Thickness 2.0% Polarizable electrode dimensions Both anode and cathode φ13'A thickness 0.5X Rolloborate separator Manila paper thickness 0. ○5% It was produced under these conditions and the properties shown in the table were obtained.
〔実施例−3〕
第9図に示すように、容器を兼ね/ζ陽極側の金属集電
法基材2にチタンを用い、電解液に接する内面を導電性
金属酸化物(例えば、酸化インジウム、酸化第2スズの
混合物)3を被覆し、そして活性炭繊維よりなる分極性
電極4を固定した後、電解液を含浸し、パツキン7、セ
パレータ6と共に鮫め封口した。[Example 3] As shown in Fig. 9, titanium is used for the metal current collection method base material 2 on the ζ anode side that also serves as a container, and the inner surface in contact with the electrolyte is coated with a conductive metal oxide (for example, indium oxide). , a mixture of stannic oxide) 3, and a polarizable electrode 4 made of activated carbon fiber was fixed thereon, and then impregnated with an electrolytic solution and sealed together with a packing 7 and a separator 6.
試作条件
容器寸法 φ21¥n、厚み1.7%
分極性電極寸法 陽陰極共 φ13′A厚み 0.5X
ロロボーレート
セパレータ マニラ紙 厚み 0.05%このような条
件で作製し、下表に示すような特性が得られた。Prototype conditions Container dimensions: φ21 yen, thickness 1.7% Polarizable electrode dimensions: Both anode and cathode φ13'A Thickness: 0.5 characteristics were obtained.
〔実施例−4〕
第10図に示すように、容器を兼ねた陽極側の集電体に
導電性金属酸化物(例えば、酸化インジウム、酸化第2
スズの混合物)3を用い、そして、その内面に活性炭繊
維よりなる分極性電極4を固定した後、電解液を含浸し
封口樹脂8により接着封口した。[Example 4] As shown in Fig. 10, a conductive metal oxide (e.g., indium oxide, second oxide
A polarizable electrode 4 made of activated carbon fiber was fixed on the inner surface of the tin mixture) 3, and then impregnated with an electrolytic solution and sealed with a sealing resin 8.
試作条件
容器寸法 φ20.厚み2.0′X
分極性電極寸法 陽陰極共φ13′A
厚み 0.5%
ロロボーレート
このような条件で作製し表に示すような特性が得られた
。Prototype condition container dimensions φ20. Thickness: 2.0'X Polarizable electrode dimensions: both anode and cathode φ13'A Thickness: 0.5% Rolloborate When fabricated under these conditions, the characteristics shown in the table were obtained.
なお、上記実施例1〜4においては、分極性電極4とし
て活性炭繊維を用いたものを示したが、活性炭粒子をプ
レス成型したり、バインダーを用いて集電体上に塗布し
て形成したものであってもよく、この構成の場合には、
内部抵抗が15〜16Ω、もれ電流(2V印加)でQ1
5mA程度になるだけであった。In addition, in Examples 1 to 4 above, activated carbon fibers were used as the polarizable electrode 4, but activated carbon particles could be press-molded or formed by applying a binder onto a current collector. In this configuration,
Q1 with internal resistance of 15-16Ω and leakage current (2V applied)
The current was only about 5 mA.
発明の効果
以上のように本発明の電気二重層キャパシタは集電体と
して金属集電体基月に導電性金属酸化物を被覆したもの
または導電性金属酸化物よりなるものを用いているため
、使用可能電圧が向上するとともにもれ電流の増加もな
く、内部抵抗変化の少ない高品質なものとすることがで
き、工業的価値の犬なるものである。Effects of the Invention As described above, the electric double layer capacitor of the present invention uses, as a current collector, a metal current collector base coated with a conductive metal oxide or one made of a conductive metal oxide. The usable voltage is improved, there is no increase in leakage current, and high quality products can be obtained with little change in internal resistance, making them of great industrial value.
第1図はアルミニウムとチタン全集電体としたときの電
気二重層キャパシタの電位−電流特性図、第2図は本発
明の電気二重層キャパシタの一実施例を示す基本構成の
断面図、第3図は他の実施例の基本構成の断面図、第4
図は金属集電体と導電性金属酸化物集電体の4電圧特性
図、第5図は従来と本発明の二重層キャパシタの内部抵
抗変化率例を示す断面図である。
1・・・・・・リード、2・・・・金属集電体基材、3
・・・・・・導電性金属酸化物、4・・・・・分極性電
極、5・・・・・・電極L 6・・・・・・セパレータ
、7・・・・・パツキン、8・・・・・・封口樹脂。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第3図
第4図
第5図
第6図
畜廣執狗竹恢(86″C卸加i#、圧2.3V)第7図Fig. 1 is a potential-current characteristic diagram of an electric double layer capacitor when the current collector is made of aluminum and titanium, Fig. 2 is a cross-sectional view of the basic structure showing one embodiment of the electric double layer capacitor of the present invention, The figure is a sectional view of the basic configuration of another embodiment.
The figure is a four-voltage characteristic diagram of a metal current collector and a conductive metal oxide current collector, and FIG. 5 is a sectional view showing an example of internal resistance change rate of a conventional double layer capacitor and a double layer capacitor of the present invention. 1...Lead, 2...Metal current collector base material, 3
... Conductive metal oxide, 4 ... Polarizable electrode, 5 ... Electrode L 6 ... Separator, 7 ... Packaging, 8. ...Sealing resin. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 3 Fig. 4 Fig. 5 Fig. 6
Claims (4)
電体または、導電性金属酸化物を集電体とし、この集電
体に活性炭よりなる分極性電極を接続した電極体を電解
液を介して対向させてなる電気二重層キャパシタ。(1) A current collector in which a metal current collector base material is coated with a conductive metal oxide, or an electrode body in which a conductive metal oxide is used as a current collector and a polarizable electrode made of activated carbon is connected to this current collector. An electric double layer capacitor is formed by opposing the two with an electrolyte in between.
°ズ、酸化インジウム、または酸化第二スズと酸化イン
ジウムの混合物の2棟類及びそれ以上の混合物よりなる
ことを特徴とする特許請求範囲第1項記載の電気二重層
キャパシタ。(2) Claims characterized in that the conductive metal oxide is comprised of two types of ruthenium oxide, stannic oxide, indium oxide, or a mixture of stannic oxide and indium oxide, or a mixture thereof. The electric double layer capacitor according to item 1.
等の弁金属またはステンレススチールの中から選ばれた
ものであることを特徴とする特許請求の範囲第1項記載
の電気二重層キャパシタ。(3) The electric double layer capacitor according to claim 1, wherein the metal current collector base material is selected from valve metals such as aluminum, titanium tantalum, and stainless steel.
電体または導電性金@酸化物全集電体にし活性炭よりな
る分極性電極を接続した電極体が陽極側の電極体である
ことを特徴とする特許請求の範囲第1項記載の電気二重
層キャパシタ。(4) The electrode body on the anode side is a metal current collector base material coated with a conductive metal oxide or a conductive gold@oxide total current collector connected to a polarizable electrode made of activated carbon. The electric double layer capacitor according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59036631A JPS60182123A (en) | 1984-02-28 | 1984-02-28 | Electric couble layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59036631A JPS60182123A (en) | 1984-02-28 | 1984-02-28 | Electric couble layer capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60182123A true JPS60182123A (en) | 1985-09-17 |
Family
ID=12475178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59036631A Pending JPS60182123A (en) | 1984-02-28 | 1984-02-28 | Electric couble layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60182123A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01227418A (en) * | 1988-03-08 | 1989-09-11 | Taiyo Yuden Co Ltd | Electric double layer capacitor |
JPH021104A (en) * | 1988-03-08 | 1990-01-05 | Taiyo Yuden Co Ltd | Electric double layer capacitor |
WO2005015587A1 (en) * | 2003-08-06 | 2005-02-17 | Enerland Co., Ltd. | Supercapacitor with reduced internal resistance |
JP2010245069A (en) * | 2009-04-01 | 2010-10-28 | Nippon Chemicon Corp | Electric double-layer capacitor |
-
1984
- 1984-02-28 JP JP59036631A patent/JPS60182123A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01227418A (en) * | 1988-03-08 | 1989-09-11 | Taiyo Yuden Co Ltd | Electric double layer capacitor |
JPH021104A (en) * | 1988-03-08 | 1990-01-05 | Taiyo Yuden Co Ltd | Electric double layer capacitor |
WO2005015587A1 (en) * | 2003-08-06 | 2005-02-17 | Enerland Co., Ltd. | Supercapacitor with reduced internal resistance |
US7558050B2 (en) | 2003-08-06 | 2009-07-07 | Enerland Co., Ltd. | Supercapacitor with reduced internal resistance |
JP2010245069A (en) * | 2009-04-01 | 2010-10-28 | Nippon Chemicon Corp | Electric double-layer capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0207167B1 (en) | Electric double layer capacitor | |
AU682701B2 (en) | Capacitor | |
JPH0666229B2 (en) | Electric double layer capacitor | |
US5369546A (en) | Electric double layer capacitor and method of manufacturing the same | |
JPS60182123A (en) | Electric couble layer capacitor | |
JPH05159987A (en) | Solid electrolytic capacitor | |
US6791821B1 (en) | Tantalum-carbon hybrid capacitor with activated carbon | |
JPS61203614A (en) | Electric doule-layer capacitor | |
JPH04162510A (en) | Electric double layer capacitor | |
JPS60176216A (en) | Electric double layer capacitor | |
JPS63186414A (en) | Electric double-layer capacitor | |
JPH09270370A (en) | Electric double layer capacitor and its manufacturing method | |
JPH0266918A (en) | Electric double layer capacitor | |
JPH021104A (en) | Electric double layer capacitor | |
JP2507125B2 (en) | Electric double layer capacitor and manufacturing method thereof | |
JPS593915A (en) | Electric double layer capacitor | |
JPS61203619A (en) | Electric double-layer capacitor | |
JPS61203616A (en) | Electric doule-layer capacitor | |
JPH0666234B2 (en) | Electric double layer capacitor | |
JPS63261815A (en) | Electric double-layer capacitor | |
JPH0329285B2 (en) | ||
JPS60263417A (en) | Electric double layer capacitor | |
JPS60169127A (en) | Electric double layer capacitor | |
JPS593914A (en) | Electric double layer capacitor | |
JP2636357B2 (en) | Solid electrolytic capacitors |