JPS6120352B2 - - Google Patents

Info

Publication number
JPS6120352B2
JPS6120352B2 JP52110589A JP11058977A JPS6120352B2 JP S6120352 B2 JPS6120352 B2 JP S6120352B2 JP 52110589 A JP52110589 A JP 52110589A JP 11058977 A JP11058977 A JP 11058977A JP S6120352 B2 JPS6120352 B2 JP S6120352B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
rainwater
sewage
amount
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52110589A
Other languages
Japanese (ja)
Other versions
JPS5444351A (en
Inventor
Shoichi Masui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11058977A priority Critical patent/JPS5444351A/en
Publication of JPS5444351A publication Critical patent/JPS5444351A/en
Publication of JPS6120352B2 publication Critical patent/JPS6120352B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)

Description

【発明の詳細な説明】 (1) 発明の利用分野 本発明は、公共水面への汚濁物質の流入を減少
させるための雨水放流制御方法に関するものであ
る。ここでは、説明を簡略化するため、一例とし
て、雨水と汚水を混合して処理場へ送水する合流
式下水道の、雨水ポンプ所、処理場内ポンプ所等
に設置されている雨水ポンプを例にとり、説明す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Application of the Invention The present invention relates to a rainwater discharge control method for reducing the inflow of pollutants into public water surfaces. Here, to simplify the explanation, we will take as an example a rainwater pump installed at a rainwater pump station, a pumping station within a treatment plant, etc. of a combined sewer system that mixes rainwater and sewage and sends the water to a treatment plant. explain.

(2) 従来技術 合流式下水道においては、多量の降雨があつた
場合、下水流量が処理場の能力を越えることがあ
る。そのため下水道幹線の途中に設けられた雨水
放流ポンプ所や処理場内ポンプ所において、一定
量の下水のみを処理施設に送水し、残りを河川等
に直接放流し、処理施設への負荷を軽減するとい
う操作が必要となる。
(2) Prior art In combined sewer systems, when there is a large amount of rainfall, the flow rate of sewage may exceed the capacity of the treatment plant. For this reason, at rainwater discharge pump stations and pump stations in treatment plants installed along the main sewer lines, only a certain amount of sewage is sent to the treatment facilities, and the rest is discharged directly into rivers, etc., reducing the load on the treatment facilities. Operation is required.

従来の雨水放流は、下水流量が晴天時の流量の
2〜3倍(これを稀釈倍数という)に達した時、
雨水放流を開始するという形でなされてきた。
In conventional rainwater discharge, when the sewage flow rate reaches 2 to 3 times the flow rate on a clear day (this is called the dilution factor),
This has been done in the form of starting rainwater discharge.

降雨時の汚濁物質の濃度の時間的変化をみる
と、雨が降り始めた当初の流出雨水(初期雨水)
は、晴天時の汚れの、数倍〜数十倍の汚濁物質濃
度を示し、極めて悪い水質となつている。これ
を、フアースト、フラツシング効果というが、こ
の原因は、都市の街路や下水管内に堆積していた
汚濁物質が、降雨により洗い流されてきたためで
あると考えられる。
Looking at the temporal changes in the concentration of pollutants during rainfall, we can see that the runoff rainwater at the beginning of rain (initial rainwater)
The water quality is extremely poor, with pollutant concentrations several to several tens of times higher than on clear days. This is called the first flushing effect, and it is believed that the cause of this is that pollutants that had accumulated on city streets and in sewage pipes were washed away by rain.

このフアースト、フラツシングの期間はそれ程
長いものではないが、この期間の初期雨水は、量
的にはかなり多く、上に示した従来の雨水放流の
方法では初期雨水が放流されてしまい、公共水面
への汚濁物質負荷が増大し、水質保全面から大き
な問題となつていた。また、この初期雨水に関し
ては、稀釈効果はあまり期待できず、稀釈倍数を
大きく(例えば5〜6倍)といつても、処理場へ
の流入負荷が増大し、処理効率が低下するばかり
で、かえつて負の効果を及ぼすことになりかねな
い。
Although this first and flushing period is not that long, the amount of initial rainwater during this period is quite large, and in the conventional rainwater discharge method shown above, the initial rainwater is discharged into public water surfaces. The load of pollutants in water has increased, posing a major problem in terms of water quality conservation. In addition, with regard to this initial rainwater, we cannot expect much of a dilution effect, and even if the dilution factor is set high (for example, 5 to 6 times), the inflow load to the treatment plant will increase and the treatment efficiency will only decrease. This could end up having a negative effect.

一方、このフアースト フラツシングの期間を
すぎれば、流入下水の水質は、雨水によつて、下
水処理場で二次処理を行つた場合の処理水と同程
度にまで、稀釈されている。
On the other hand, after this first flushing period, the quality of the inflowing sewage water has been diluted by rainwater to the same level as the treated water when secondary treatment is performed at the sewage treatment plant.

したがつて、初期雨水を処理場へ送り処理でき
れば、公共水面への汚濁物質負荷は、大幅に軽減
できる。
Therefore, if initial rainwater can be sent to a treatment plant for treatment, the load of pollutants on public water surfaces can be significantly reduced.

雨水を別に設けた雨水滞水池に一時貯留し、降
雨がやんでから処理場へ送るという試みも一部で
なされている。この場合、用地難、建設費の増大
等の面から、全雨水を滞水させることは困難であ
り、初期雨水のみを一時貯留しておく程度のもの
の実現性が最も高い。
Some attempts have been made to temporarily store rainwater in separate rainwater retention ponds and send it to treatment plants after the rain has stopped. In this case, it is difficult to store all the rainwater due to land shortages, increased construction costs, etc., and it is most likely to temporarily store only the initial rainwater.

以上のべたことから、フアーストフラツシング
の期間、すなわち水質の悪い初期雨水がどの程度
続くかを知ることは非常に重要な問題となつてく
る。これには下水中の汚濁物質の量をオンライン
で測定できる計器が望ましいが、そのような計器
(生物化学的酸素要求量(BOD)計、浮遊物質
(SS)濃度計)は、開発されておらず、また代替
計器(全有機炭素(TOC)計、濁度計)等は、
高価な上、信頼度は低く、また保存点検が頻繁に
必要となり実用に耐えないという問題があつた。
From the above, it is extremely important to know the period of first flushing, that is, how long the initial rainwater of poor water quality will last. For this purpose, instruments that can measure the amount of pollutants in sewage online would be desirable, but such instruments (biochemical oxygen demand (BOD) meters, suspended solids (SS) concentration meters) have not yet been developed. Also, alternative instruments (total organic carbon (TOC) meter, turbidity meter), etc.
They were expensive, had low reliability, and required frequent maintenance inspections, making them impractical.

(3) 発明の目的 本発明は、上記問題点を除去し、水質計器とし
て実用に耐え、かつ安価である溶存酸素(DO)
濃度計、もしくは溶存酸素濃度計と流量計との組
み合わせにより、フアーストフラツシング期間お
よび、稀釈雨水の流出時間帯を検出し、雨水ポン
プの起動・停止を制御することにより、処理効率
の低下をひき起さず、かつ公共水面への流出負荷
を低減せしめる方法を提供することを目的とす
る。
(3) Purpose of the Invention The present invention solves the above problems and provides a dissolved oxygen (DO) solution that is practical as a water quality meter and is inexpensive.
By using a concentration meter or a combination of a dissolved oxygen concentration meter and a flow meter to detect the first flushing period and outflow time of diluted rainwater, and controlling the start and stop of the rainwater pump, a decrease in treatment efficiency can be prevented. The purpose of the present invention is to provide a method that reduces the load on public water bodies without causing any problems.

(4) 発明の総括説明 本発明は、上記目的を達成するために、下水中
の溶存酸素濃度または溶存酸素濃度に単位時間当
りの下水流量を乗じて求められる下水中の溶存酸
素量(以下、特に区別する必要のない場合は、溶
存酸素という。)は、雨水流出に伴なつて増大し
雨水流出が止むと晴天時と同程度に戻るという事
実を利用する。
(4) General description of the invention In order to achieve the above-mentioned object, the present invention provides dissolved oxygen concentration in sewage or dissolved oxygen concentration in sewage obtained by multiplying the dissolved oxygen concentration by the sewage flow rate per unit time (hereinafter referred to as When there is no need to make a distinction, dissolved oxygen (hereinafter referred to as dissolved oxygen) increases with rainwater runoff and returns to the same level as on a clear day once rainwater runoff stops.

この事実を詳細に説明すると以下のようにな
る。
This fact will be explained in detail as follows.

(1) 晴天時の溶存酸素は少ない。(1) There is little dissolved oxygen on sunny days.

(2) 降雨が始まると、溶存酸素は増大する。(2) When rain begins, dissolved oxygen increases.

(3) フアーストフラツシング期が始まると、溶存
酸素は減少する。
(3) When the first flushing period begins, dissolved oxygen decreases.

(4) フアーストフラツシング期間が過ぎると、溶
存酸素は急激に増大する。
(4) After the first flushing period, dissolved oxygen increases rapidly.

(5) 降雨流出のピーク時に、溶存酸素もピークを
示す。
(5) Dissolved oxygen also shows a peak at the peak of rainfall runoff.

(6) 降雨流出が少なくなるにつれ、溶存酸素も減
少する。
(6) As rainfall runoff decreases, dissolved oxygen also decreases.

(7) 降雨流出がやむと、溶存酸素は晴天時の値に
戻る。
(7) When rainfall and runoff cease, dissolved oxygen returns to its clear-weather value.

この変化は、溶存酸素濃度についても、溶存酸
素量についても、あらわれるが、後者においてよ
り、顕著である。この変化の一例を、第1図に示
す。あわせて単位時間あたりの降雨量(棒グラ
フ)と流出ハイドログラフ(鎖線)を示す。
This change appears in both the dissolved oxygen concentration and the amount of dissolved oxygen, but it is more noticeable in the latter. An example of this change is shown in FIG. It also shows the rainfall per unit time (bar graph) and runoff hydrograph (dashed line).

この溶存酸素は、降雨によつてのみ増大するも
のであるから、流出雨水の状況、汚水との混合度
および流下の状況を、明確にあらわしているもの
と考えられる。
Since this dissolved oxygen increases only with rainfall, it is thought to clearly represent the state of runoff rainwater, the degree of mixing with wastewater, and the flow down.

第1図に示した溶存酸素量の変化をみればわか
るように、降雨開始により溶存酸素量は、点Aか
ら点Bまで増大する。フアーストフラツシングが
始まると、溶存酸素量は、点Bから点Cへと、や
や減少する。フアーストフラツシングがすぎると
点Cから点Dへと、急激に増大する。降雨流出が
止むと、点E、すなわち平常の状態に戻る。した
がつて、初期雨水は降雨初期から、溶存酸素量の
二度目の増加時点、すなわち点Aから点Cまでの
期間に流入する下水であるとみなせる。もし、溶
存酸素量の変化曲線が第1図に示したような、滑
らかなカーブを示すならば、点Cは次のようにし
て求められる。溶存酸素量の増加率を計算し増加
率がある一定期間増加し、次いで一定期間減少
し、二度目に増加に転じる点がCであるのでこの
増減をカウントすることで点Cが求めれる。しか
し雑音等の影響により溶存酸素量の変化曲線が第
1図に示すような滑らかなものとはならない場合
もある。この場合には、点Bと同程度以上の溶存
酸素量を示す点F以上、もしくは雑音の影響がは
なはだしい場合には、その影響を受けないよう設
定された点G以上に、溶存酸素量が達した時を、
点Cのかわりに用いればよい。すなわち点Fもし
くは点Gまでは雨水放流を行わず、汚水ポンプに
より処理場もしくは雨水滞水池に送水する。つい
で点FまたはGにおいて、雨水ポンプを起動さ
せ、雨水を河川等に放流する。また別の方法とし
ては点AC間の溶存酸素量の変化率が小さく、点
CD間のそれが大きいことに着目し、微分値の大
きさ等が大きく変化する点をCとみなすこともで
きよう。この場合、雑音の影響を取り除くため
に、積分動作、比例動作を加味することも考えら
れる。
As can be seen from the change in the amount of dissolved oxygen shown in FIG. 1, the amount of dissolved oxygen increases from point A to point B with the onset of rain. When the first flushing begins, the amount of dissolved oxygen decreases slightly from point B to point C. If the fast flushing is too much, it increases rapidly from point C to point D. When the rain runoff stops, it returns to point E, ie, the normal state. Therefore, initial rainwater can be considered to be sewage that flows in from the beginning of rainfall to the second increase in the amount of dissolved oxygen, that is, from point A to point C. If the curve of change in the amount of dissolved oxygen shows a smooth curve as shown in FIG. 1, point C can be determined as follows. The rate of increase in the amount of dissolved oxygen is calculated, and the point where the rate of increase increases for a certain period of time, then decreases for a certain period of time, and then starts to increase for the second time is point C. Point C can be found by counting this increase and decrease. However, due to the influence of noise and the like, the curve of change in the amount of dissolved oxygen may not be as smooth as shown in FIG. 1. In this case, the amount of dissolved oxygen reaches a point F or higher, which indicates an amount of dissolved oxygen equal to or higher than that of point B, or, if the influence of noise is significant, a point G or higher, which is set to avoid the influence. The time when
It may be used instead of point C. That is, rainwater is not discharged up to point F or point G, but the water is sent to a treatment plant or a rainwater retention pond by a sewage pump. Next, at point F or G, the rainwater pump is activated to discharge rainwater into a river or the like. Another method is that the rate of change in the amount of dissolved oxygen between points AC is small, and
Focusing on the fact that the difference between CDs is large, the point at which the magnitude of the differential value changes greatly can also be regarded as C. In this case, in order to remove the influence of noise, it may be possible to add integral operation and proportional operation.

雨水ポンプの停止は、溶存酸素量が、晴天時の
値に近づく点(点E)すなわち降雨流出が停止す
る点で停止するか、流量が晴天時流量の2〜3倍
以下になつた時点で停止すればよい。
The rainwater pump should be stopped at the point where the amount of dissolved oxygen approaches the value on a clear day (point E), that is, the point at which rainwater runoff stops, or when the flow rate becomes less than 2 to 3 times the flow rate on a clear day. Just stop.

こうすることにより、初期雨水は、公共水面へ
放流されることなく、流出汚濁物質負荷を大幅に
軽減することが可能となる。
By doing this, the initial rainwater is not discharged into public waters, making it possible to significantly reduce the load of runoff pollutants.

(5) 実施例 以下、本発明を実施例を参照して詳細に説明す
る。第2図は、本発明による雨水放流制御方法を
装置化したものであり、降雨検出端11、制御起
動装置12、溶存酸素濃度計13、流量計14、
溶存酸素量演算装置15、判定器16、雨水ポン
プ制御装置17、表示装置18から構成される。
(5) Examples Hereinafter, the present invention will be explained in detail with reference to examples. FIG. 2 shows a system of the rainwater discharge control method according to the present invention, which includes a rainfall detection end 11, a control activation device 12, a dissolved oxygen concentration meter 13, a flow meter 14,
It is composed of a dissolved oxygen amount calculation device 15, a determination device 16, a rainwater pump control device 17, and a display device 18.

晴天時には、起動装置12は、動作せず、本制
御装置は停止している。これは、晴天時の溶存酸
素量の変動、特に計器雑音によつて、不必要な放
流が生じるのを防ぐためである。降雨検出端11
は雨の有無を検出するもので、もし雨が降つたこ
とがわかると、起動装置12に「降雨有り」とい
う信号21を送る。この場合、雨水放流が必要と
なると思われる雨量以上になつた時に、信号21
を送るようにすることもできる。そのためには、
検出端11を積算雨量計とすればよい。起動装置
12は「降雨有り」という信号21を受けると、
溶存酸素濃度計13および、流量計14に、起動
信号22を送る。この起動信号22により溶存酸
素濃度計13から下水中溶存酸素濃度値23と、
流量計14から下水流量24が溶存酸素量演算装
置15に送られ、溶存酸素量25が計算される。
この溶存酸素量25は判定器16に送られ、第1
図で示したC点もしくはF,G点(これらは、実
施場所の状況に合わせて適宜選択される)を検知
するか、もしくは、前時点からの変化度を計算
し、予め入力されている変化度との比較を行うこ
とにより変化度の急変を検知する等の方法によ
り、雨水ポンプの起動信号26を送る時刻を判定
する。この起動信号26が雨水ポンプ制御装置1
7に与えられると、この制御装置17は、雨水ポ
ンプ19を起動し、雨水排除を開始する。また、
第1図のE点を検知するか、もしくは、流量22
が、あらかじめ与えられている流量以下になつた
時、判定装置16から、雨水ポンプ制御装置17
に、停止信号27が送られ、雨水排除を停止す
る。
During fine weather, the starting device 12 does not operate and the control device is stopped. This is to prevent unnecessary discharge due to fluctuations in the amount of dissolved oxygen during clear weather, especially instrument noise. Rainfall detection end 11
is for detecting the presence or absence of rain, and if it is found that it is raining, it sends a signal 21 to the starting device 12 indicating that there is rain. In this case, when the amount of rainfall exceeds the amount that would require rainwater discharge, the signal 21
You can also send . for that purpose,
The detection end 11 may be used as an integrating rain gauge. When the starting device 12 receives a signal 21 indicating that there is rain,
A start signal 22 is sent to the dissolved oxygen concentration meter 13 and the flow meter 14. By this activation signal 22, the dissolved oxygen concentration value 23 in the sewage is output from the dissolved oxygen concentration meter 13.
A sewage flow rate 24 is sent from the flow meter 14 to a dissolved oxygen amount calculation device 15, and a dissolved oxygen amount 25 is calculated.
This dissolved oxygen amount 25 is sent to the determination device 16, and the first
Either detect point C, F, or G points shown in the figure (these are selected as appropriate depending on the situation at the implementation location), or calculate the degree of change from the previous point and change that has been input in advance. The time to send the start signal 26 of the rainwater pump is determined by a method such as detecting a sudden change in the degree of change by comparing it with the degree of change. This start signal 26 is the rainwater pump control device 1
7, this controller 17 activates the rainwater pump 19 and begins rainwater removal. Also,
Detect point E in Figure 1 or flow rate 22
becomes less than a predetermined flow rate, the determination device 16 sends a message to the rainwater pump control device 17.
A stop signal 27 is then sent to stop rainwater removal.

また、溶存酸素量25を、表示装置18に出力
することにより、判定器16の機能を、人間が代
行してもよい。
Further, by outputting the dissolved oxygen amount 25 to the display device 18, the function of the determining device 16 may be performed by a human being.

以上は、溶存酸素量を判定指標とした場合をの
べたが、溶存酸素濃度23をそのまま判定指標と
して用いる場合は、流量計14および溶存酸素量
演算装置15は不要となり、装置は第3図のよう
に簡略化できる。この場合も、判定器16の機能
を人間が代行してもよい。
The above describes the case where the amount of dissolved oxygen is used as the determination index, but if the dissolved oxygen concentration 23 is used as the determination index as it is, the flowmeter 14 and the dissolved oxygen amount calculation device 15 are unnecessary, and the device is as shown in Fig. 3. It can be simplified as follows. In this case as well, the function of the determiner 16 may be performed by a human being.

もし、雨水ポンプの起動停止までに、時間のか
かる場合には、溶存酸素濃度計13および流量計
14を、雨天時の管渠内流速に、起動所要時間を
乗じて算出される距離だけ、ポンプ所から上流の
地点に設置すればよい。
If it takes a long time to start and stop the rainwater pump, measure the dissolved oxygen concentration meter 13 and flowmeter 14 for a distance calculated by multiplying the flow velocity in the pipe during rainy weather by the time required to start the pump. It can be installed at a point upstream from the site.

またこの方式は溶存酸素量演算装置15と判定
器16とを計算機で構成してよい。さらにまた、
溶存酸素濃度計13および流量計14を常に働か
せておく一方、降雨検出端11の出力により、溶
存酸素量演算装置15と判定器16とを一体化し
た計算機での演算の起動・停止を制御するように
してもよい。
Further, in this method, the dissolved oxygen amount calculating device 15 and the determining device 16 may be configured by a computer. Furthermore,
While the dissolved oxygen concentration meter 13 and the flow meter 14 are kept working at all times, the output of the rainfall detection terminal 11 controls the start and stop of calculation in a computer that integrates the dissolved oxygen amount calculation device 15 and the determination device 16. You can do it like this.

(6) まとめ 以上説明したごとく、本発明によれば、溶存酸
素濃度又は溶存酸素濃度と流量を測定することに
より、下水処理場の処理効率を、さほど低下せし
めることなく、公共水面への流出負荷を大幅に低
減させることのできる雨水放流制御を実現でき
る。また、雨水滞水池を設ける場合でも、フアー
ストフラツシング期間のみの雨水を、滞水させる
だけでよく、従来の設計面積より、はるかに所要
面積が少なくてすむ。
(6) Summary As explained above, according to the present invention, by measuring dissolved oxygen concentration or dissolved oxygen concentration and flow rate, the outflow load to public water surface can be reduced without significantly reducing the treatment efficiency of sewage treatment plants. It is possible to realize rainwater discharge control that can significantly reduce water discharge. Furthermore, even if a rainwater retention pond is provided, it is sufficient to retain rainwater only during the first flushing period, and the required area is much smaller than the conventional design area.

この制御方法は、人間が代行することも可能で
ある上、さほど複雑な判断を要せず、装置化にあ
たつても、比較的安価にすませることができる。
This control method can be performed by a human, does not require very complicated judgment, and can be implemented at a relatively low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、雨天時において、ポンプ所へ流入し
てくる下水中の溶存酸素量の変化を示す説明図、
第2図は、本発明の一実施例を示す装置図、第3
図は、第2図の簡略化変形例を示す装置図であ
る。 11は降雨検出端、12は制御起動スイツチ、
13は溶存酸素濃度計、14は流量計、15は溶
存酸素量演算装置、16は判定器、17は雨水ポ
ンプ制御装置、18は表示装置、19は雨水ポン
プである。
Figure 1 is an explanatory diagram showing changes in the amount of dissolved oxygen in sewage flowing into a pump station during rainy weather;
FIG. 2 is a device diagram showing one embodiment of the present invention, and FIG.
The figure is an apparatus diagram showing a simplified modification of FIG. 2. 11 is a rain detection end, 12 is a control start switch,
13 is a dissolved oxygen concentration meter, 14 is a flow meter, 15 is a dissolved oxygen amount calculation device, 16 is a determination device, 17 is a rainwater pump control device, 18 is a display device, and 19 is a rainwater pump.

Claims (1)

【特許請求の範囲】[Claims] 1 下水道と、該下水道からの下水を処理して放
流する下水処理手段からなる下水処理システムに
おいて、降雨開始時よりフアーストクラツシング
期間を経過した時点における溶存酸素濃度または
溶存酸素量が所定値をこえたとき上記下水の一部
を未処理のまま放流することを特徴とする雨水放
流制御方法。
1. In a sewage treatment system consisting of a sewage system and a sewage treatment means for treating and discharging sewage from the sewage system, the dissolved oxygen concentration or dissolved oxygen amount after the first crushing period from the start of rain falls below a predetermined value. A rainwater discharge control method characterized by discharging a portion of the sewage untreated when the amount of sewage exceeds the limit.
JP11058977A 1977-09-16 1977-09-16 Method of controlling discharge of rain water Granted JPS5444351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11058977A JPS5444351A (en) 1977-09-16 1977-09-16 Method of controlling discharge of rain water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11058977A JPS5444351A (en) 1977-09-16 1977-09-16 Method of controlling discharge of rain water

Publications (2)

Publication Number Publication Date
JPS5444351A JPS5444351A (en) 1979-04-07
JPS6120352B2 true JPS6120352B2 (en) 1986-05-21

Family

ID=14539678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11058977A Granted JPS5444351A (en) 1977-09-16 1977-09-16 Method of controlling discharge of rain water

Country Status (1)

Country Link
JP (1) JPS5444351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130608U (en) * 1986-02-10 1987-08-18

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728988B2 (en) * 2007-03-19 2011-07-20 株式会社東芝 Pump control device
US9328833B2 (en) * 2009-07-13 2016-05-03 Arvinmeritor Technology, Llc Relief valve for vehicle component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114860A (en) * 1974-02-16 1975-09-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114860A (en) * 1974-02-16 1975-09-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130608U (en) * 1986-02-10 1987-08-18

Also Published As

Publication number Publication date
JPS5444351A (en) 1979-04-07

Similar Documents

Publication Publication Date Title
Weiss et al. Infiltration and inflow in combined sewer systems: long-term analysis
Schilling et al. Real time control of wastewater systems
JP5189968B2 (en) Sewage treatment system and its operation method and improvement method
JP4488970B2 (en) Operation management system for combined sewage systems
JPS6120352B2 (en)
EP0134990A1 (en) Method and instruments to measure the flow rate in sewer systems
JP4358101B2 (en) Sewage inflow water quality prediction method and rainwater drainage support system
Carleton Comparison of overflows from separate and combined sewers–quantity and quality
JP3294074B2 (en) Rainwater pump control device and control method
JP3749800B2 (en) Sewer rainwater drainage control device
JP4439831B2 (en) Water quality improvement control device for combined sewerage treatment facilities
Carstensen et al. Software sensors based on the grey-box modelling approach
JP2003149146A (en) Oil film detecting device
JP2000129644A (en) Flood control water quality conservation system
JPS59150841A (en) Estimation and regulation of flow amount of confluence type drainage
JP3104493B2 (en) Method and apparatus for controlling the discharge of a reservoir
Hedley et al. SUGGESTED CORRELATION BETWEEN STORM SEWAGE CHARACTERISTICS AND STORM OUTFLOW PERFORMANCE
JPH07259745A (en) Refluent water control method for rainwater stagnating pond
Sellin USE OF POLYMER ADDITIVES TO RELIEVE OVERLOADED SEWERS.
Wright et al. Treatment Shaft for Combined Sewer Overflow Detention
SU1033442A1 (en) Device for controlling river flow
CN112304656A (en) Detection method of sponge urban seepage and drainage system
Marchandise et al. EFFECTIVENESS OF THE TREATMENT AND RETENTION OF
Maruejouls et al. Control of CSO retention tank emptying: Interaction with the wastewater treatment plant
JPS61157395A (en) Chlorine injection control system of confluent type sewage treatment plant