JPS61202477A - Thin film photovoltaic element - Google Patents

Thin film photovoltaic element

Info

Publication number
JPS61202477A
JPS61202477A JP60043109A JP4310985A JPS61202477A JP S61202477 A JPS61202477 A JP S61202477A JP 60043109 A JP60043109 A JP 60043109A JP 4310985 A JP4310985 A JP 4310985A JP S61202477 A JPS61202477 A JP S61202477A
Authority
JP
Japan
Prior art keywords
pores
substrate
electrode
back surface
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60043109A
Other languages
Japanese (ja)
Inventor
Michio Osawa
道雄 大沢
Takashi Arita
有田 孝
Koshiro Mori
森 幸四郎
Zenichiro Ito
伊藤 善一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60043109A priority Critical patent/JPS61202477A/en
Publication of JPS61202477A publication Critical patent/JPS61202477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To increase the generating area efficiency by forming an insulating layer after opening pores at a metal substrate, and removing electrodes from the back surface through a conductive layer formed at the inner surfaces of the pores and to the extension to the back surface, thereby reducing the electrodes. CONSTITUTION:Pores 2 are opened by pressing at the positions corresponding to the electrodes of a metal substrate 1 made of aluminum. The pores 2 do not increase by simultaneously opening when forming the substrate in the prescribed size by pressing from an aluminum plate. The substrate 1 opened with the pores 2 is subjected to an anodic oxidation to form an oxide film 3 on the entire surface of the substrate 1 and the inner surfaces of the pores 2 to provided an insulation. Lower electrodes 4 are formed by depositing method near the pores 2. In this case, the depositing metal is bonded from the interior of the pores 2 to the back surface to form the back surface exposing electrode 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜光起電力素子特に素子を酸化皮膜からな
る絶縁層上に設けた金属基板の電極取り出し用貫通孔の
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film photovoltaic element, particularly to a structure of a through hole for taking out an electrode of a metal substrate in which the element is provided on an insulating layer made of an oxide film.

従来の技術 従来、この種の金属基板を使用した薄膜光起電力素子は
、第10図に示すような構成であった。
BACKGROUND OF THE INVENTION Conventionally, a thin film photovoltaic device using a metal substrate of this type has a structure as shown in FIG.

同図において、Aは平面図、B1−1tAのB−B憧に
沿った断面図である。すなわち、アルミ等の金属基板1
の上に、陽極酸化法を用いて、酸化皮膜3を形成する。
In the figure, A is a plan view and a sectional view taken along line B-B of B1-1tA. That is, a metal substrate 1 such as aluminum
An oxide film 3 is formed thereon using an anodic oxidation method.

この上にメタルマスクを用いて、光起電力素子の一方の
電極となるべき下部電極4を蒸着法により選択的に形成
する。
On top of this, a metal mask is used to selectively form a lower electrode 4, which is to become one electrode of the photovoltaic element, by vapor deposition.

次にプラズマCVD法により、光電変換機能を有する薄
膜半導体膚、例えばアモルファスシリコン層6をメタル
マスクを用いて選択的に形成する。
Next, a thin film semiconductor layer having a photoelectric conversion function, for example, an amorphous silicon layer 6, is selectively formed using a metal mask using a plasma CVD method.

次に、光起電力素子の他方の電極となるべき透明電極7
を、メタルマスクを用いて選択的に形成し、光起電力素
子を構成していた。
Next, the transparent electrode 7 that should become the other electrode of the photovoltaic element
were selectively formed using a metal mask to form a photovoltaic element.

第10図において1.2,3.4の領域は、同一の金属
基板上に、上記の方法で形成した個々の光起電力素子を
示す。このそれぞれの領域をセルと呼ぶ。各セルは、室
内、室外光において、0.6〜0.8vの光起電力を発
生する。通常の電卓等電子機器は、1.5〜3.oV程
度の電圧を必要とする為咳4個ないしは3個程度のセル
を直列接続している。この第10図は、4個のセルを直
列接続したものを示している。
In FIG. 10, areas 1.2 and 3.4 show individual photovoltaic elements formed by the above method on the same metal substrate. Each of these areas is called a cell. Each cell generates a photovoltaic force of 0.6-0.8v in indoor and outdoor light. Normal electronic devices such as calculators are 1.5 to 3. Since a voltage of about 0V is required, about 4 or 3 cells are connected in series. FIG. 10 shows four cells connected in series.

おのおののセルの直列接続は、1の領域の一方の電極で
ある下部電極4と2の領域の他方の電極である透明電極
7とをセルの同一の一方の側で、メタルマスクにより電
極形成時に選択的に重ね合せて行なう。これは、2−3
および、3−4においても同様である。この部分を直列
接続部6と呼ぶ。そして、電子機器への電力の供給は、
両端の(11と12)の端子から、リード線等の半田付
け、その他の手段により、取り出していた。この部分を
端子部と呼ぶ。
To connect each cell in series, the lower electrode 4, which is one electrode in area 1, and the transparent electrode 7, which is the other electrode in area 2, are connected on the same side of the cell using a metal mask during electrode formation. Selectively overlap. This is 2-3
The same applies to 3-4. This part is called the series connection part 6. And the supply of power to electronic devices is
It was taken out from the terminals (11 and 12) at both ends by soldering lead wires or other means. This part is called the terminal part.

発明が解決しようとする問題点 このような従来の構成では端子部θ1,12)と、直列
接続部6は、光電変換に寄与しないから、発電の為の面
積効率の向上の為には、この二つの部分の大きさを、で
きるだけ小さくする事が重要である。したがって実際上
は、端子部(* 1.12)の大きさは、電力取り出し
用のリード線等の接続を容易にするように決定される。
Problems to be Solved by the Invention In such a conventional configuration, the terminal portions θ1, 12) and the series connection portion 6 do not contribute to photoelectric conversion, so in order to improve the area efficiency for power generation, it is necessary to It is important to make the sizes of the two parts as small as possible. Therefore, in practice, the size of the terminal portion (*1.12) is determined so as to facilitate the connection of lead wires for extracting power.

一方直列接続部6の面積は流れる電流が、数μへ〜数m
Aと小さい為端子部(11,12)より少なくて良い。
On the other hand, the area of the series connection part 6 allows the flowing current to range from several μ to several meters.
Since A is small, the number may be smaller than that of the terminal portions (11, 12).

この接続に必要な端子部(11、12)の大きさが原因
で1枚のデバイス上の発電面積効率が低下するという問
題点があった。
Due to the size of the terminal portions (11, 12) required for this connection, there was a problem in that the power generation area efficiency on one device was reduced.

また、光電変換部と、電極部とが同じ側にあるこの構造
では、受光面側においてリード線等の電力取り出しを考
えねばならず、接続するリード線の厚みにより、電子機
器で厚さの薄いものにこの薄膜起電力素子を使用する際
には、支障をきたすという問題点があった。
In addition, in this structure where the photoelectric conversion part and the electrode part are on the same side, it is necessary to consider the power extraction from lead wires etc. on the light receiving surface side, and due to the thickness of the lead wires to be connected, it is necessary to When using this thin film electromotive force element in a product, there was a problem in that it caused problems.

問題点を解決するための手段 本発明は、このような問題点を解決するもので基板の電
極部θ1,12)に小孔を設け、リード線接続に必要な
面積を基板裏面において確保し、電極部自体を小さくし
たものである。このように電力を光電変換面の裏面から
取り出す事にすれば、電子機器に組み込む際リード線接
続部及び、リード線自体の厚みは、シャーシーの他の電
子部品が必要とする厚さと共通のスペースを利用できる
為、実際上、電子機器の厚みは薄くできる。
Means for Solving the Problems The present invention solves these problems by providing small holes in the electrode portions θ1, 12) of the substrate, securing the area necessary for connecting the lead wires on the back surface of the substrate, The electrode part itself is made smaller. If power is extracted from the back side of the photoelectric conversion surface in this way, the thickness of the lead wire connection part and the lead wire itself when incorporated into an electronic device can be made in the same space as the thickness required by other electronic components of the chassis. In fact, the thickness of electronic devices can be reduced.

また単に、電極部に小孔をあけただけでは、基板におい
て、両端の電極部11 ? 12)が短絡する為、基板
の陽極酸化法により、小孔の少なくとも内面を酸化皮膜
でおおい、絶縁を計るとよい。好ましくは下部電極4形
成時および透明電極7形成時において、同時に孔中にも
蒸着を行ない蒸着の回り込みにより裏面までの導通を計
ることができ電極が表面の電極部から、小孔内面の蒸着
導電物質を通して裏面にも形成できる。
In addition, simply making a small hole in the electrode part will cause the electrode parts 11 at both ends of the substrate to be damaged. 12) is short-circuited, it is advisable to cover at least the inner surface of the small hole with an oxide film by anodic oxidation of the substrate to ensure insulation. Preferably, when forming the lower electrode 4 and the transparent electrode 7, vapor deposition is also performed in the hole at the same time, so that conductivity can be measured from the electrode part on the surface to the inner surface of the small hole by the wraparound of the vapor deposition. It can also be formed on the back side through materials.

作   用 この構成においては、光電変換部と同一平面上の電極部
からの電力は、電極部上にあけられた小孔内面の蒸着導
電物質を通して裏面から得る事が出来る。電極部は、小
孔をあけるに必要な面積で制限され、リード線を接続す
る為に必要な面積と比べて、大幅に減少させる事が出来
る。なおリード線は基板裏面においてこれを接続するの
に必要な導電層面積を確保できる。また光電変換面には
リード線接続の際に生じる余分な突起が無いので、電子
機器の設計に際し、厚みの薄い商品を設計する上で有利
である。
Function: In this configuration, electric power from the electrode section on the same plane as the photoelectric conversion section can be obtained from the back side through the vapor-deposited conductive material on the inner surface of the small hole formed on the electrode section. The area of the electrode section is limited by the area required to make the small hole, which can be significantly reduced compared to the area required to connect the lead wire. Note that the conductive layer area necessary for connecting the lead wires can be secured on the back surface of the substrate. Furthermore, since there is no extra protrusion on the photoelectric conversion surface that occurs when connecting lead wires, it is advantageous in designing thin products when designing electronic devices.

実施例 以下実施例について述べる。Example Examples will be described below.

第1図はアルミニウムを用いた金属基板1である。FIG. 1 shows a metal substrate 1 made of aluminum.

第2図において、後で述べる従来例を示す第10図の電
極部(11,12)に相当する場所にプレス等により小
孔2を設ける。小孔2は、例えばアルミニウム板からプ
レス等により所定の寸法に金属基板1を作り出す際、同
時に設けるようにすれば工数は増加しない。
In FIG. 2, small holes 2 are formed by pressing or the like at locations corresponding to the electrode portions (11, 12) in FIG. 10, which shows a conventional example described later. The number of man-hours will not increase if the small holes 2 are provided at the same time when the metal substrate 1 is produced to a predetermined size by pressing, for example, an aluminum plate.

第3図のAVi小孔2を設けた金属基板1を、陽−極酸
化処理して、酸化皮膜3を形成した図である。
4 is a diagram showing the metal substrate 1 provided with the AVi small holes 2 shown in FIG. 3 subjected to anodizing treatment to form an oxide film 3. FIG.

この処理により、金属基板1の表面及び小孔2の内面は
、完全に絶縁が保たれることとなる。、Bは、小孔2付
近の拡大断面図を示している。第4図のA、Bにおいて
一方の電極となるべき下部電極4を蒸着法等により形成
する。この下部電極4を形成する際に蒸着金属は、小孔
2の内部にもまわり込みにより付着し、一部は裏面にま
で至って裏面露出電極部5を形成する。
By this treatment, the surface of the metal substrate 1 and the inner surface of the small hole 2 are kept completely insulated. , B shows an enlarged cross-sectional view of the vicinity of the small hole 2. In A and B of FIG. 4, the lower electrode 4, which is to become one electrode, is formed by a vapor deposition method or the like. When forming the lower electrode 4, the vapor-deposited metal also wraps around and adheres to the inside of the small hole 2, and a portion reaches the back surface to form the back exposed electrode portion 5.

Bは、小孔2付近の拡大断面図である。なおこの小孔2
の回りは第10図の従来例の電極部(11゜12)に相
当する。
B is an enlarged sectional view of the vicinity of the small hole 2. Furthermore, this small hole 2
The area around corresponds to the electrode portion (11°12) of the conventional example shown in FIG.

第4図の例においては、小孔2の孔内面とその裏面への
延長部迄をおおえる程度の面積で良い。
In the example shown in FIG. 4, the area may be enough to cover the inner surface of the small hole 2 and its extension to the back surface.

第5図においては従来例と同様に、この基板上にアモル
ファスシリコン層6、透明電極7を順次形成し、光起電
力素子を形成する。
In FIG. 5, as in the conventional example, an amorphous silicon layer 6 and a transparent electrode 7 are sequentially formed on this substrate to form a photovoltaic element.

第6図は、第6図の素子を裏側から見た図である。裏面
露出電極部6が、小孔20回りに形成されている。
FIG. 6 is a view of the device of FIG. 6 from the back side. A back exposed electrode portion 6 is formed around the small hole 20.

第7図は、第6図に熱圧着により電気的、物理的接続す
るヒートシール端子8と呼ばれるものを接続した図であ
る。図において向って右側が、ヒートシール端子8をつ
ける前の図、左側はヒートシール端子8を裏面露出電極
部6に電気的に当接した後の図である。裏面は、余分な
構造物がないため、表面に比べて、十分な接着面積を得
る事が出来る。
FIG. 7 is a diagram in which what is called a heat seal terminal 8 is connected to FIG. 6 for electrical and physical connection by thermocompression bonding. The right side of the figure is a view before the heat seal terminal 8 is attached, and the left side is a view after the heat seal terminal 8 is electrically brought into contact with the back exposed electrode portion 6. Since there is no extra structure on the back side, a sufficient bonding area can be obtained compared to the front side.

第8図は、第6図にリード線端子9を付けた図である。FIG. 8 is a diagram of FIG. 6 with lead wire terminals 9 added.

この場合、小孔2がおいている為、リード線を小孔2に
さしこみ固定するだけで、十分な接続が得られる。
In this case, since the small hole 2 is provided, a sufficient connection can be obtained by simply inserting and fixing the lead wire into the small hole 2.

第9図は、第6図に、一部に図示していないが突起のあ
る金属端子10をつけた図である。突起が小孔2の中に
入る構造である為、確実な接続が期待できる。
FIG. 9 is a diagram in which a metal terminal 10 with a protrusion (not shown) is added to a part of FIG. 6. Since the protrusion is structured to fit into the small hole 2, a reliable connection can be expected.

発明の効果 以上のように、本発明によれば、金属基板に小孔を設け
、その後絶縁層を形成しその孔内面とその裏面への延長
部布形成された導電層を通して、裏面から電極を取り得
る事が出来る為、電極部の大きさを小さくでき、発電の
為の有効面積効率が増す事が出来る。また基板裏面にお
いて、リード線を取り出す構成とすれば薄型の電子機器
に対応できる事となり産業上効果が大きいものとなる。
Effects of the Invention As described above, according to the present invention, a small hole is formed in a metal substrate, an insulating layer is formed after that, and an electrode is connected from the back surface through the conductive layer formed on the inner surface of the hole and the extension portion to the back surface. Therefore, the size of the electrode portion can be reduced and the effective area efficiency for power generation can be increased. Furthermore, if the lead wires are taken out on the back side of the board, it can be applied to thin electronic devices, which is highly effective industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属基板の上面図、第2図は金属基板に小孔を
あけた図、第3図Aは金属基板に陽極酸化処理を行ない
酸化皮膜3形成した図、Bは小孔付近の断面拡大図、第
4図Aは酸化皮膜を形成した金属基板に下部電極を形成
した図、Bはその小孔付近の断面拡大図、第5図は、金
属基板上に順次、アモルファスシリコン層、透明電極を
形成した図、第6図は第6図の素子を裏面から見た図、
第7図は、第5図の基板にヒートシール端子を熱圧着に
より形成した図、第8図は第6図の基板にリード線を接
続した図、第9図は第6図の基板に金属端子を接続した
図、第10図Aは従来例の薄膜光起電力素子を示す図、
BはAのB −B’線に沿った断面図である。 1・・・・・・金属基板、2・・・・・・小孔(透孔)
、3・・・・・・酸化皮膜、4・・・・・・下部電極、
6・・・・・・裏面露出電極部、8・・・・・・ヒート
シール端子、9・・・・・・リード線端子、10・・・
・・・金属端子、11・・・・・・端子部、12・・・
・・・端子部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1i
1図 /−一−アルSニウ4幕■瓦 第2図 2−一一ノ1X凡 第  3  図                  
         1=7ILl:クム幕王ス2 = 
+j\入 5−utti g 第4図 s−ymxttrt、m↑p 3−−−アM!!厭イaI夛1 7−°−九Ill電碕層 δ−−ヒートシー九勾す壬 第 8 図 第9図 fσ−骨4鳴ト 第10図
Figure 1 is a top view of the metal substrate, Figure 2 is a diagram with a small hole made in the metal substrate, Figure 3A is a diagram of the metal substrate anodized to form an oxide film 3, and B is a diagram of the area near the small hole. FIG. 4A is an enlarged cross-sectional view of a metal substrate on which an oxide film is formed with a lower electrode, B is an enlarged cross-sectional view of the vicinity of the small hole, and FIG. 5 is an amorphous silicon layer on a metal substrate, A diagram showing a transparent electrode formed, Figure 6 is a diagram of the element in Figure 6 viewed from the back side,
Fig. 7 shows a heat-sealed terminal formed on the board shown in Fig. 5 by thermocompression bonding, Fig. 8 shows a lead wire connected to the board shown in Fig. 6, and Fig. 9 shows a metal terminal attached to the board shown in Fig. 6. FIG. 10A is a diagram showing a conventional thin film photovoltaic device;
B is a cross-sectional view of A taken along line B-B'. 1...Metal substrate, 2...Small hole (through hole)
, 3... Oxide film, 4... Lower electrode,
6...Back surface exposed electrode part, 8...Heat seal terminal, 9...Lead wire terminal, 10...
...Metal terminal, 11...Terminal part, 12...
...Terminal section. Name of agent: Patent attorney Toshio Nakao and one other person1i
Figure 1/-1-Al S Niu Act 4 ■Tile Figure 2 2-11 No. 1X Figure 3
1 = 7ILl: Kumu Makousu 2 =
+j\enter 5-utti g Fig. 4 s-ymxttrt, m↑p 3---A M! ! 1 7-°-9Ill Densaki layer δ--Heat Sea 9 Slope 8 Figure 9fσ-bone 4 note Figure 10

Claims (1)

【特許請求の範囲】[Claims] 酸化皮膜を絶縁層として表面に形成した金属基板の一部
に透孔を設け、この透孔内面に陽極酸化処理により絶縁
層を形成するとともに、前記基板表面の絶縁層、透孔内
面の絶縁層及び基板裏面の透孔周囲にまたがる導電層を
設けた薄膜光起電力素子。
A through hole is formed in a part of a metal substrate having an oxide film formed on the surface as an insulating layer, and an insulating layer is formed on the inner surface of the through hole by anodizing, and the insulating layer on the surface of the substrate and the insulating layer on the inner surface of the through hole are formed. and a thin film photovoltaic device provided with a conductive layer spanning the periphery of the through hole on the back side of the substrate.
JP60043109A 1985-03-05 1985-03-05 Thin film photovoltaic element Pending JPS61202477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043109A JPS61202477A (en) 1985-03-05 1985-03-05 Thin film photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043109A JPS61202477A (en) 1985-03-05 1985-03-05 Thin film photovoltaic element

Publications (1)

Publication Number Publication Date
JPS61202477A true JPS61202477A (en) 1986-09-08

Family

ID=12654665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043109A Pending JPS61202477A (en) 1985-03-05 1985-03-05 Thin film photovoltaic element

Country Status (1)

Country Link
JP (1) JPS61202477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093119A (en) * 1996-09-13 1998-04-10 Sanyo Electric Co Ltd Method of manufacturing substrate for photovoltaic device and photovoltaic device
US5828134A (en) * 1994-05-11 1998-10-27 United Microelectronics Corporation Metallization to improve electromigration resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828134A (en) * 1994-05-11 1998-10-27 United Microelectronics Corporation Metallization to improve electromigration resistance
JPH1093119A (en) * 1996-09-13 1998-04-10 Sanyo Electric Co Ltd Method of manufacturing substrate for photovoltaic device and photovoltaic device

Similar Documents

Publication Publication Date Title
JP4817500B2 (en) Method for sealing and electrical connection of single-cell and multi-cell regenerative photochemical devices
US20120152299A1 (en) Solar Cell And Solar Cell Module With Improved Read-Side Electrodes, And Production Method
JPH04152679A (en) Integrated photovoltaic device
JP3747096B2 (en) Solar cell module and manufacturing method thereof
CN103339724A (en) Power semiconductor module
JPS60240171A (en) Solar electric generator
JPH02181475A (en) Solar battery cell and manufacture thereof
US4131755A (en) Interconnection for photovoltaic device array
WO2005004242A3 (en) Solar cell with an electrically insulating layer under the busbar
JPS61202477A (en) Thin film photovoltaic element
JPH0225079A (en) Amorphous semiconductor solar cell
JPH0660155U (en) Integrated solar cell module
JP2000156408A (en) Semiconductor device and manufacture thereof
JPS6230507B2 (en)
JPS62184777A (en) Current collecting device of fuel cell
JPH07263738A (en) Thin-film solar cell module
JPS62128571A (en) Amorphous silicon solar battery
JPH0745848A (en) Photovoltaic device and manufacture thereof
JPS62113483A (en) Thin-film solar cell
JPS62205670A (en) Flexible solar battery module
JP2925957B2 (en) Photoelectric conversion module and connection method thereof
JPH10242491A (en) Solar cell and solar cell panel using the same
JPS6362913B2 (en)
JPS62265744A (en) Semiconductor device
JPS5863181A (en) Solar battery collector