JPS61202353A - Production of information carrier disk - Google Patents

Production of information carrier disk

Info

Publication number
JPS61202353A
JPS61202353A JP4207485A JP4207485A JPS61202353A JP S61202353 A JPS61202353 A JP S61202353A JP 4207485 A JP4207485 A JP 4207485A JP 4207485 A JP4207485 A JP 4207485A JP S61202353 A JPS61202353 A JP S61202353A
Authority
JP
Japan
Prior art keywords
nitride
carbide
resist pattern
guide grooves
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4207485A
Other languages
Japanese (ja)
Inventor
Toshikatsu Komizu
香水 敏勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP4207485A priority Critical patent/JPS61202353A/en
Publication of JPS61202353A publication Critical patent/JPS61202353A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form signal pits or guide grooves having less variance in depth within disks and between the disks by using only the glass and other inorg. materials by selecting a specific nitride and carbide as a dielectric material. CONSTITUTION:The dielectric film selected from the group consisting of germanium nitride, titanium nitride, boron nitride, chromium nitride, zirconium nitride, cobalt nitride, phosphorus nitride, silicon carbide, tungsten carbide, titanium carbide, chromium carbide, molybdenum carbide and zirconium carbide is formed on a glass substrate to the thickness corresponding to the depth of the desired signal pits or guide grooves by a vacuum thin film forming technique. A resist pattern having the pattern of the desired signal pits or guide grooves is then formed thereon and the dielectric film exposed through the resist pattern is removed by etching and thereafter the resist pattern is removed.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、高密度情報記録媒体として注目されている光
ディスク、ビデオディスク、デジタルオーディオディス
ク、光磁気ディスク等の担体又は場合によっては、それ
自体として使用される情報担体ディスクの製造方法に関
する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a carrier for an optical disc, a video disc, a digital audio disc, a magneto-optical disc, etc., which is attracting attention as a high-density information recording medium, or in some cases, as a carrier itself. The present invention relates to a method for manufacturing the information carrier disc used.

(発明の背景) 情報社会の進展に伴なって高密度でランダムアクセス可
能な情報記録媒体の要求が高まっている。
(Background of the Invention) With the development of the information society, the demand for high-density, randomly accessible information recording media is increasing.

そのため、既にビデオディスク、デジタルオーディオデ
ィスク、光ディスク等が実用化されている。
Therefore, video discs, digital audio discs, optical discs, etc. have already been put into practical use.

そのうち、再生専用のもので光学式再生方式をとるもの
は、平担な表面を有する担体ディスクに、信号ピットと
呼ばれる「くぼみ」又は「島状突起」が同心円状又は渦
巻き状に形成されておシ、情報はこのピントの有無又は
ビット長によって記録されている。1つのピットは例え
ば幅0.5ミクロン×長さ0.9〜3ミクロンX深さく
又は高さ)0.1ミクロンという微細な寸法を有するも
ので、トラック間隔も例えば1.6ミクロンと微細であ
る。
Among these, those that are only for playback and use an optical playback method have "indentations" or "islands" called signal pits formed in a concentric or spiral shape on a carrier disk that has a flat surface. Information is recorded based on the presence or absence of focus or bit length. One pit has minute dimensions, for example, 0.5 microns in width x 0.9 to 3 microns in length x 0.1 microns in depth or height, and the track spacing is also as small as 1.6 microns, for example. be.

また、書換え可能な光磁気ディスクは、表面にトラッキ
ングのための「ガイド溝」と呼ばれる溝(突条を含む)
が形成された担体ディスク(例えばPMMA、PC1ガ
ラスなど作られたディスク)の上に、真空薄膜形成技術
により磁性材料例えばTbFe、 GdTbFe、 G
dTbFeCoなどの非晶質垂直磁化膜を薄く積層した
ものであり、前記ガイド溝は例えば幅0.7ミクロン、
深さく又は高さ)700父、間隔2.5ミクロンと微細
なものである。
In addition, rewritable magneto-optical disks have grooves (including protrusions) called "guide grooves" on the surface for tracking.
A magnetic material such as TbFe, GdTbFe, G
It is a thin layer of amorphous perpendicularly magnetized films such as dTbFeCo, and the guide groove has a width of, for example, 0.7 microns.
The depth or height is 700 mm, and the spacing is 2.5 microns.

信号ビットにせよガイド溝にせよ、いずれも微細なもの
であり、特に深さく又は高さ)に厳密な精度(サブミク
ロンのオーダー)が要求される。
Both signal bits and guide grooves are minute and require strict precision (on the order of submicrons), especially in terms of depth or height.

従来、このような信号ピント又はガイド溝の形成された
担体ディスクは、■反転型の形成された鋳型を用い、P
MMA、PC等の成形用樹脂で射出成形、プレス成形、
その他により大量生産する方法、■反転型の形成された
鋳型を用い、その上に放射線硬化型樹脂ラッカーを塗布
した後、放射線例えば紫外線、電子線、γ線等を照射し
て硬化させるととにより、信号ビット又はガイド溝の形
成された薄い樹脂膜を作り、これを金属Ad、プラスチ
ック、ガラスその他の基板に貼シ合わせる方法(例えば
特開昭58−108042、同58−159202参照
)、■ガラス基板上にフォトレジストを塗布し、所定パ
ターンを投影露光し、現像してレジストパターンを形成
しくこれによシ、基板の所定領域が露出する)、その後
プラズマエツチングすることによシガラス基板を腐食し
、所定のガイド溝が得られfCならば、残ったレジスト
パターンを溶解除去する方法(第7図及び昭和59年春
季応用物理学会 講演N12a−A−4参照)などで工
業的に又は実験室的に製造されてきた。
Conventionally, such a carrier disk in which a signal focus or guide groove is formed is produced by using an inverted mold, and
Injection molding, press molding, using molding resins such as MMA and PC
Another method for mass production is to use a mold with an inverted mold, apply a radiation-curable resin lacquer on it, and then cure it by irradiating it with radiation such as ultraviolet rays, electron beams, gamma rays, etc. , A method of making a thin resin film with signal bits or guide grooves formed thereon and pasting it onto metal Ad, plastic, glass, or other substrates (for example, see Japanese Patent Application Laid-open No. 58-108042 and No. 58-159202), ■Glass. A photoresist is applied onto a substrate, a predetermined pattern is projected, exposed, and developed to form a resist pattern (this exposes a predetermined area of the substrate), and then plasma etching is performed to corrode the glass substrate. , if a predetermined guide groove is obtained and fC is obtained, the remaining resist pattern can be dissolved and removed (see Figure 7 and Lecture N12a-A-4 at the 1985 Spring Applied Physics Conference), etc., in an industrial or laboratory manner. has been manufactured in

しかしながら、■及び■の方法は、ビット又はガイド溝
を構成する部分が有機樹脂であるため、吸水率が大きい
、熱変形温度が低い、傷つき易い、鋳型から剥離する際
変形する、形状の転写性が悪い等の欠点を有しておシ、
得られるディスクの耐久性及び信頼性が劣っている。一
方、■の方法はガラスであるので有機樹脂の如き欠点/
fiないが、今度は0)ガラスは多成分なので腐食され
にくい、(ロ)プラズマエツチングのための好適なエツ
チングガスが今のところなく、そのためレジストパター
ンも相当に腐食されるので、レジストパターンを相当に
厚く形成しなければならない、(ハ)基板の場所によっ
て、エツチングの速さが異なるので、溝の深ざがディス
ク内でバラツキが出る、に)エツチングの再現性が悪い
ので溝の深さがディスク間でバラツキが出る、(ホ)プ
ラズマエツチングの装置は機構上大型化が難しいので、
処理できる枚数に限シがあシ、量産性が悪い、などの欠
点を有している。
However, in methods (1) and (2), since the part constituting the bit or guide groove is made of organic resin, it has a high water absorption rate, a low heat distortion temperature, is easily damaged, deforms when peeled from the mold, and has poor shape transferability. It has disadvantages such as poor performance,
The durability and reliability of the resulting disc is poor. On the other hand, method (■) uses glass, so it has drawbacks such as organic resin.
(2) Since there is no suitable etching gas for plasma etching, the resist pattern is also corroded considerably. (c) The etching speed varies depending on the location on the substrate, so the depth of the grooves will vary within the disk. (2) The reproducibility of etching is poor, so the depth of the grooves will vary. (e) Plasma etching equipment is mechanically difficult to scale up, so there are variations between disks.
It has drawbacks such as a limited number of sheets that can be processed, and is not suitable for mass production.

(発明の目的) 本発明の目的は、耐久性及び信頼性の劣る有機樹脂を使
用せずに、ガラスその他の無機質だけで、深さく又は高
さ)がディスク内及びディスク間でバラツキの少ない信
号ピット又はガイド溝の形成された情報担体ディスクを
製造することにある。
(Objective of the Invention) The object of the present invention is to create a signal with little variation in depth or height) within a disk and between disks by using only glass or other inorganic materials without using organic resins with poor durability and reliability. The object of the present invention is to produce an information carrier disk in which pits or guide grooves are formed.

(発明の概要) 本発明は、 第1工程:窒化ゲルマニウム(GeN)、窒化チタン、
窒化ホウ累、窒化クロム、窒化ジルコニウム、窒化コバ
ルト、窒化リン、炭化ケイ素(SiC)、炭化タングス
テン炭化チタン、炭化クロム、炭化モリブデン及び炭化
ジルコニウムからなる群から選択された誘電体膜を、所
望の信号ビットないしガイド溝の深さく又は高さ)に相
当する厚さに、ガラス基板上に、真空薄膜形成技術によ
り形成する工程、 第2工程:所望の信号ビットないしガイド溝のパターン
(又はその反転パターン)を有するレジストパターンを
形成する工程、 第3工程ニレジストパターンから露出している誘電体膜
をエツチングによシ除去する工程、第4工程ニレジスト
パターンを除去する工程、よ勺なることを特徴とする信
号ピットないしガイド溝の形成された情報担体ディスク
の製造方法を提供する。
(Summary of the invention) The present invention provides the following steps: First step: germanium nitride (GeN), titanium nitride,
A dielectric film selected from the group consisting of boron nitride, chromium nitride, zirconium nitride, cobalt nitride, phosphorus nitride, silicon carbide (SiC), tungsten carbide, titanium carbide, chromium carbide, molybdenum carbide, and zirconium carbide is coated with a desired signal. 2nd step: Forming a desired signal bit or guide groove pattern (or its inverted pattern) on a glass substrate by vacuum thin film forming technology to a thickness corresponding to the depth or height of the bit or guide groove. ), a step of removing the dielectric film exposed from the resist pattern in the third step by etching, and a step of removing the resist pattern in the fourth step. Provided is a method for manufacturing an information carrier disk in which signal pits or guide grooves are formed.

本発明に於いて、誘電体として特殊な窒化物及び炭化物
を選択したのは、下地のガラス基板と化学的性質が著し
く異なるため、エツチング速度の異なる(選択比という
)エツチング剤が選択できるためである。また、誘電体
膜を真空薄膜形成技術例えば真空蒸着、イオンブレーテ
ィング、スパッタリング、CVDで形成する理由は、こ
れらの真空薄膜形成技術によれば、±(5〜10)%の
精度で膜厚を局所的なバラツキなしに制御することが可
能で、その結果、ピント又はガイド溝の深さく又は高さ
)が正確でかつディスク内でバラツキが出ないからであ
る。また、再現性にもすぐれているので、ディスク間の
バラツキも極めて少ないからである。
In the present invention, special nitrides and carbides were selected as dielectric materials because their chemical properties are significantly different from those of the underlying glass substrate, so it is possible to select etching agents with different etching rates (called selectivity). be. Furthermore, the reason why dielectric films are formed using vacuum thin film forming techniques such as vacuum evaporation, ion blating, sputtering, and CVD is that these vacuum thin film forming techniques allow the film thickness to be determined with an accuracy of ±(5 to 10)%. This is because control can be performed without local variations, and as a result, the focus (depth or height of the guide groove) is accurate and does not vary within the disc. Furthermore, since the reproducibility is excellent, there is very little variation between discs.

それに対して従来の方法でガラス基板自体にエツチング
によシピ7ト又はガイド溝を形成すると、深さく又は高
さ)は局所的なバラツキが±(15〜20)%以上出て
しまい、かつ所望の値に正確に制御することが難しい。
On the other hand, when a recipe or guide groove is formed by etching on the glass substrate itself using the conventional method, there is a local variation of ±(15 to 20)% or more in terms of depth or height. It is difficult to control the value accurately.

また、再現性にも劣るので、ディスク間のバラツキも多
い。
Furthermore, since the reproducibility is poor, there are many discrepancies between discs.

以下、図面を引用して実施例により本発明を具体的に説
明するが、本発明はこれに限られるものではない。
Hereinafter, the present invention will be specifically explained by examples with reference to the drawings, but the present invention is not limited thereto.

(実施例1) 第1工程:直径200mm、厚ざ1,2龍のガラス基板
(1)の上に、光学的膜厚が1040AJI:なるよう
に誘電体膜(2)としてSiC膜をスパッタリングによ
り形成した(第1図参照)。膜厚のバラツキは±5俤以
内であった。
(Example 1) First step: On a glass substrate (1) with a diameter of 200 mm and a thickness of 1 to 2 mm, a SiC film is sputtered as a dielectric film (2) so that the optical film thickness is 1040 AJI: (See Figure 1). The variation in film thickness was within ±5.

第2工程:誘電体膜(2)の上にフォトレジストとして
、シップレイ社製のAZ1350を約1μの厚サンζス
ピンコードし、ブリベーキングした(第2図参照)。
Second step: As a photoresist, AZ1350 manufactured by Shipley was spin-coated to a thickness of about 1 μm on the dielectric film (2) and baked (see FIG. 2).

次にスポット径0.8μm(レジスト面で〕に絞ったA
rレーザービームを渦巻きを描くように移動させながら
レジストに照射して露光し、現像、水洗、ボストベーキ
ングを径て、幅0.8μm、ピッチ1.6μの渦巻き状
のレジストパターン(3)を形成させた(第3図参照)
Next, the A spot diameter was narrowed to 0.8 μm (on the resist surface).
The resist is exposed by irradiating the r laser beam while moving in a spiral manner, and through development, water washing, and post baking, a spiral resist pattern (3) with a width of 0.8 μm and a pitch of 1.6 μm is formed. (See Figure 3)
.

第3工程:エツチング剤としてCも4とqとの混合ガス
を13Paまで導入したプラズマエツチング装置内でR
F電力150Wの条件下でSiC誘電体膜(2)をエツ
チングした(第4図参照)。
3rd step: R in a plasma etching apparatus into which a mixed gas of C, 4 and q was introduced up to 13 Pa as an etching agent.
The SiC dielectric film (2) was etched under the condition of F power of 150 W (see FIG. 4).

この条件でのSiCとレジストとの選択比は約1:5で
レジスト腐食は格段に少なく、またSiCとガラス基板
との選択比は約   で、そのため約2分後にSiC誘
電体膜(2)のエツチングが終了したが、ガラス基板(
1)の腐食はほとんど認められず、そのため深さのバラ
ツキが誘電体膜(2)のバラツキC上5%以内)とほと
んど変わらなかった。
Under these conditions, the selectivity ratio between SiC and resist is approximately 1:5, which significantly reduces resist corrosion, and the selectivity ratio between SiC and glass substrate is approximately 2 minutes. Although etching has been completed, the glass substrate (
Almost no corrosion was observed in 1), and therefore the variation in depth was almost the same as that of the dielectric film (2) (within 5%).

第4工程:第3工程に続き同一の装置内でエツチングガ
スを02単独に切り替えることによりレジストパターン
(3)をプラズマエツチングして除去した(第5図参照
)。
Fourth step: Following the third step, the resist pattern (3) was removed by plasma etching by switching the etching gas to 02 in the same apparatus (see FIG. 5).

こうしてガイド溝付きの情報担体ディスクが得られた。An information carrier disc with guide grooves was thus obtained.

このディスクの溝付き面側に光磁気記録用の垂直磁化膜
(5)例えばGdCo、 GdFe、 TbFe、Tb
FeCoなどをスパッタリングで形成すれば光磁気ディ
スクが得られる(第6図参照)、。
A perpendicular magnetization film (5) for magneto-optical recording, such as GdCo, GdFe, TbFe, Tb, is formed on the grooved surface side of this disk.
A magneto-optical disk can be obtained by forming FeCo or the like by sputtering (see FIG. 6).

(実施例2) 実施例1に於いて、SiCの代りにGeNを用いて同様
の工程で情報担体ディスクを製造した。
(Example 2) In Example 1, an information carrier disk was manufactured in the same process using GeN instead of SiC.

本実施例で得られたディスクの上に直接垂直磁化膜を形
成させて、突条部分をトラック(記録ゾーン)とすれば
、垂直磁化膜の耐久性は向上する。
If a perpendicular magnetization film is formed directly on the disk obtained in this example and the protruding portions are used as tracks (recording zones), the durability of the perpendicular magnetization film is improved.

(実施例3) 実施例IVcおいて、基板(1)としてガラス基板の上
に膜厚1000AのMgF2膜を蒸着したものを使用す
るほかは、実施例1と全く同様にして溝付き情報担体デ
ィスクを製造した。
(Example 3) In Example IVc, a grooved information carrier disk was prepared in exactly the same manner as in Example 1, except that a substrate (1) in which a MgF2 film with a thickness of 1000 Å was deposited on a glass substrate was used. was manufactured.

なお、各実施例では誘電体膜(2)のエツチングにドラ
イエツチングを用いたが、ウェストエツチングでもよい
In each of the examples, dry etching was used for etching the dielectric film (2), but waist etching may also be used.

(発明の効果) 以上の通り、本発明によれば、信号ピットまたはガイド
溝の深さく又は高さ)が同一ディスク内及びディスク間
で極めて揃っており、信頼性、耐久性の高い情報担体デ
ィスクが得られ、また誘電体膜(2)の上の部分をトラ
ンクとすれば、垂直磁化膜が誘電体膜(2)で酸化され
ることがないので、−層耐久性の向上した光磁気記録媒
体が得られる。
(Effects of the Invention) As described above, according to the present invention, the depth or height of signal pits or guide grooves is extremely uniform within the same disk and between disks, and the information carrier disk is highly reliable and durable. Moreover, if the upper part of the dielectric film (2) is used as a trunk, the perpendicular magnetization film will not be oxidized by the dielectric film (2), so magneto-optical recording with improved layer durability can be achieved. A medium is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は、本発明の実施例1に従い情報担体ディス
クを製造した際の、各工程に於ける半製品又は完成品の
概略縦断面図である。 第6図は、実施例1で製造した情報担体ディスクの上に
垂直磁化膜を設けたものの概略縦断面図である。 第7図は、従来の製造方法に基づいて情報ディスクを製
造した際の、各工程に於ける半製品又は完成品の概略縦
断面図である。 〔主要部分の符号の説明〕 1・・・・・・ガラス基板 2・・・・・・誘電体膜 3・・・・・・フォトレジストまたはレジストパターン
4・・・・・・ガイ ド溝 5・・・・・・垂直磁化膜
1 to 5 are schematic vertical cross-sectional views of semi-finished products or finished products at each step when manufacturing an information carrier disk according to Example 1 of the present invention. FIG. 6 is a schematic longitudinal sectional view of the information carrier disk manufactured in Example 1 with a perpendicular magnetization film provided thereon. FIG. 7 is a schematic longitudinal sectional view of a semi-finished product or a finished product at each step when manufacturing an information disc based on a conventional manufacturing method. [Explanation of symbols of main parts] 1...Glass substrate 2...Dielectric film 3...Photoresist or resist pattern 4...Guide groove 5・・・・・・Perpendicular magnetization film

Claims (1)

【特許請求の範囲】 第1工程:窒化ゲルマニウム、窒化チタン、窒化ホウ素
、窒化クロム、窒化ジルコニウム、窒化コバルト、窒化
リン、炭化ケイ累、炭化タングステン、炭化チタン、炭
化クロム、炭化モリブデン及び炭化ジルコニウムからな
る群から選択された誘電体膜を、所望の信号ピットない
しガイド溝の深さ(又は高さ)に相当する厚さに、ガラ
ス基板上に、真空薄膜形成技術により形成する工程、 第2工程:所望の信号ピットないしガイド溝のパターン
(又はその反転パターン)を有するレジストパターンを
形成する工程、 第3工程:レジストパターンから露出している誘電体膜
をエッチングにより除去する工程、第4工程:レジスト
パターンを除去する工程よりなることを特徴とする信号
ピットないしガイド溝の形成された情報担体ディスクの
製造方法。
[Claims] First step: From germanium nitride, titanium nitride, boron nitride, chromium nitride, zirconium nitride, cobalt nitride, phosphorous nitride, silicon carbide, tungsten carbide, titanium carbide, chromium carbide, molybdenum carbide, and zirconium carbide. a step of forming a dielectric film selected from the group consisting of: on a glass substrate to a thickness corresponding to the depth (or height) of a desired signal pit or guide groove by vacuum thin film forming technology; a second step; : Step of forming a resist pattern having a desired pattern of signal pits or guide grooves (or its inverted pattern); Third step: Step of removing the dielectric film exposed from the resist pattern by etching; Fourth step: 1. A method for manufacturing an information carrier disk on which signal pits or guide grooves are formed, the method comprising the step of removing a resist pattern.
JP4207485A 1985-03-04 1985-03-04 Production of information carrier disk Pending JPS61202353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207485A JPS61202353A (en) 1985-03-04 1985-03-04 Production of information carrier disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207485A JPS61202353A (en) 1985-03-04 1985-03-04 Production of information carrier disk

Publications (1)

Publication Number Publication Date
JPS61202353A true JPS61202353A (en) 1986-09-08

Family

ID=12625914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207485A Pending JPS61202353A (en) 1985-03-04 1985-03-04 Production of information carrier disk

Country Status (1)

Country Link
JP (1) JPS61202353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701151A1 (en) * 1993-02-03 1994-08-05 Digipress Sa Method of manufacturing a pressing die, especially for the production of optical discs, pressing die obtained by this method and product, such as an optical disc, obtained from this pressing die
US7341825B2 (en) 2006-05-25 2008-03-11 Hitachi Global Storage Technologies Netherlands B.V. Method for producing high resolution nano-imprinting masters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701151A1 (en) * 1993-02-03 1994-08-05 Digipress Sa Method of manufacturing a pressing die, especially for the production of optical discs, pressing die obtained by this method and product, such as an optical disc, obtained from this pressing die
US7341825B2 (en) 2006-05-25 2008-03-11 Hitachi Global Storage Technologies Netherlands B.V. Method for producing high resolution nano-imprinting masters

Similar Documents

Publication Publication Date Title
US6254966B1 (en) Information recording mediums, supporter used in the mediums, manufacture methods of the supporter, manufacturing apparatus of the supporter and stampers for producing the mediums
JPS58158225A (en) Manufacture of information recording substrate
EP1749298B1 (en) Process for producing stamper of multi-valued rom disc, apparatus for producing the same, and resulting disc
KR20010053409A (en) Method for producing master disk for producing formed substrate with groove, method for producing stamper for producing formed substrate with groove, method for producing formed substrate with groove, formed substrate with groove, storage medium, storage, and computer
JPS6126952A (en) Production of information carrier
JPS61202353A (en) Production of information carrier disk
JP4224062B2 (en) Magneto-optical recording medium and manufacturing method thereof, substrate for magneto-optical recording medium, master stamper and manufacturing method thereof
JPH09115190A (en) Production of stamper for optical disk
JPH10241213A (en) Production of stamper for optical disk
JP2708847B2 (en) Optical disk stamper and method of manufacturing the same
JPS61188756A (en) Manufacture of information carrier disc
JPH04372741A (en) Production of 2p substrate of both side type
JPH07122940B2 (en) Method for manufacturing magneto-optical recording medium
JPH10241214A (en) Manufacture of stamper for optical disk
JP2540464B2 (en) Method for manufacturing optical disk substrate
JP3787515B2 (en) Stamper for optical disk substrate and manufacturing method thereof
KR100745948B1 (en) Magneto-optical recording medium and method of manufacturing the same, substrate for magneto-optical recording medium, and mother die stamper and method of manufacturing the same
JP2000285521A (en) Information recording medium, base for information recording medium and its stamper, manufacture of information recording medium, and method and device for manufacturing base for information recording medium
JPS63230889A (en) Production of substrate
JPH06212458A (en) Production of patterned product by reactive ion etching
JP2000348393A (en) Stamper for optical disk and its production
JPS61273760A (en) Manufacture of photomagnetic disk
JPH02255326A (en) Manufacture of original late for information memory disk and substrate for information memory disk
JPH04146539A (en) Optical disk
JPH0393053A (en) Manufacture of optical disk substrate