JPS61201739A - Treating method of sintered ore - Google Patents

Treating method of sintered ore

Info

Publication number
JPS61201739A
JPS61201739A JP4240785A JP4240785A JPS61201739A JP S61201739 A JPS61201739 A JP S61201739A JP 4240785 A JP4240785 A JP 4240785A JP 4240785 A JP4240785 A JP 4240785A JP S61201739 A JPS61201739 A JP S61201739A
Authority
JP
Japan
Prior art keywords
sintered ore
sintering
wind box
gas
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4240785A
Other languages
Japanese (ja)
Inventor
Shun Sato
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4240785A priority Critical patent/JPS61201739A/en
Publication of JPS61201739A publication Critical patent/JPS61201739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture sintered ore superior in reduction powdering property and reducibility, by detecting a wind box attaining to a prescribed temp. by waste gas thermometer provided at wind box group of sintering machine, and sucking and introducing reducing gas against the subsequent wind box group. CONSTITUTION:In Dwight-Lloyd sintering manufacture of self-fluxing sintered ore in which surface of an blended material 2 charged on a running pallet 1 of sintering machine is fired by a firing furnace 3, air is sucked and introduced through the material 2 by the wind box arranged under sintering machine strand to form a sintering high temp. zone 4 and to obtain a sintered ore layer 9, at a specified wind box position 6 as the boundary where waste gas thermometer (figure is omitted) arranged at the box 5 group, reducing gas supplied from a reducing gas holder 14 is sucked and introduced through a hood 13 against the following latter half boxes 5. In this way, sintered ore is prereduced lightly, to decrease reduction powdering phenomenon and improve reducibility thereof in blast furnace and the operation is stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、焼結鉱の処理方法に関し、さらに詳細には、
高炉内における還元粉化現象を軽減し、それによって高
炉操業の安定化を図ることのできる焼結鉱の処理方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for treating sintered ore, and more specifically,
The present invention relates to a method for treating sintered ore that can reduce the reduction and powdering phenomenon in a blast furnace, thereby stabilizing blast furnace operation.

(従来の技術) 製鉄用焼結鉱の製造は現在殆んどが連続式のドワイトロ
イド型焼結機によって生産さnているO 主原料の鉄鉱石粉鉱は媒溶材として石灰石を、また燃料
として粉コークスを適量配合混合し、さらにその混合物
に水を添加しドラムミキサー等によフ造粒処理を施した
あと焼結機のパレット上に装入さnる0焼結機は無端軌
条に沿って移動する箱型パレット群とその下部に複数分
割固定さ扛、吸引排風機にダクトを介して連結さ几た風
箱群より主に構成さnている。パレット下部の火格子上
に装入さ:r+、fc鉄鉱石類混合原料は点火炉にてそ
の表面層の粉コークス(Cバーナーで点火さn以降パレ
ットの進行に伴って下向きの吸引通気によって焼結反応
が上層から下層へと順次継続さルる。焼結機の後半部で
は前述の如く焼結層内を下降してきた焼結反応帯(最高
温度1300℃〜1350’C)がパレット火格子面に
到達し、こn以後は燃料がない友め焼結層の通気による
冷却が行なわnて次の破砕工程へ排出さnる。
(Prior technology) Currently, most sintered ore for iron manufacturing is produced using continuous Dwight Lloyd type sintering machines. An appropriate amount of coke powder is mixed, water is added to the mixture, and the mixture is granulated using a drum mixer, etc., and then loaded onto the pallet of the sintering machine. It mainly consists of a group of box-shaped pallets that move with each other, a plurality of partitions fixed to the bottom of the pallets, and a group of wind boxes that are connected to a suction and exhaust fan via ducts. Charged onto the grate at the bottom of the pallet: R+, fc iron ore mixed raw materials are ignited in the ignition furnace by the coke powder on the surface layer (C burner). The sintering reaction continues sequentially from the upper layer to the lower layer.In the latter half of the sintering machine, the sintering reaction zone (maximum temperature 1300°C to 1350'C) that has descended in the sintering layer as described above is exposed to the pallet grate. After reaching the surface, the sintered layer, which has no fuel, is cooled by ventilation and then discharged to the next crushing process.

このようにして製造さ:rL′fc焼結砿は破焼結粒工
程を経てベルトコンベアにて搬送さn高炉の使用に供せ
らnるが、現在の焼結鉱の性状に関して問題点の1つは
、高炉内シヤフト上部の低温還元帯で生ずる焼結鉱の還
元粉化現象である。
The sintered ore produced in this way is transported on a belt conveyor after undergoing a sintering process and then used in a blast furnace, but one of the problems with the properties of current sintered ore is The first is the reduction and pulverization phenomenon of sintered ore that occurs in the low-temperature reduction zone at the top of the shaft in the blast furnace.

この現象は主として現在の石灰石を媒溶材として配合さ
nた塩基性焼結鉱に特有の現象であることは良く知らn
た事実であり、その粉化機構についても、焼結鉱中に存
在する特定形状のへマタイト(Feze3)が低温域(
500℃〜600℃)にてマグネタイ) (FesO4
)へ還元反応にて結晶格子が変態する際の膨張に伴って
発生する内部歪が引き金となって焼結鉱組織に亀裂を発
生伝播させ粉化に至るとする説明が定説となっており、
粉化現象に関係する報告も従来より数多く提出さnてい
る。この焼結鉱の還元粉化現象は過度になると高炉内に
おいて装入物充填層の通気性を阻害し、圧損を高めるこ
とにより、高炉操業上いわゆる棚吊りやスリップの発生
頻度を増加させるため操業不安定をまねくことは良く知
らnている。
It is well known that this phenomenon is mainly unique to the basic sintered ore blended with limestone as a solvent.
It is a fact that the specific shape of hematite (Feze3) present in sintered ore is found in the low temperature range (
500℃~600℃) (FesO4
) The accepted explanation is that the internal strain that occurs as the crystal lattice expands during the transformation of the sintered ore during the reduction reaction triggers the generation and propagation of cracks in the sintered ore structure, leading to pulverization.
Many reports related to the powdering phenomenon have been submitted. If this phenomenon of reduction and pulverization of sintered ore becomes excessive, it obstructs the permeability of the charge packed bed in the blast furnace, increases pressure loss, and increases the frequency of so-called shelving and slipping during blast furnace operation. We are well aware that this can lead to instability.

従って焼結鉱が高炉内で過度の還元粉化を起さぬように
、焼結鉱製造サイドでは簡略化さnた還元粉化試験(R
DI指数)にて日常の品質管理がなさnている。
Therefore, in order to prevent the sintered ore from being excessively reduced and powdered in the blast furnace, the sintered ore manufacturing side conducted a simplified reduction powdering test (R
Daily quality control is carried out using DI index).

また焼結鉱製造技術の上からも、焼結鉱のRDI指数を
良好に維持すべく品質改善技術が種々試みられているが
、還元粉化防止対策の基本として前述の特定形状のへマ
タイトの生成を抑制する方針が主となっている。
In addition, in terms of sinter production technology, various quality improvement techniques have been attempted to maintain a good RDI index of sinter, but the above-mentioned specific shape of hematite is the basic measure to prevent reduction and powdering. The main policy is to suppress generation.

ここで、焼結鉱の鉱物生成過程を従来の知見に基づいて
推察すると以下のように考えらnる〇まず、焼結の原料
鉄鉱石は赤鉄鉱(Hematiteヘマタイ) ) F
eze3が主体であフ、こnは焼結反応前の意味で1次
へマタイトと称さnる〇焼結反応は通常鉄鉱石に媒溶材
として石灰石ft1o〜20重量憾燃料として粉コーク
スを3〜5重量%配合された混合物により行なわnるが
、数分間の急激な1300℃前後までの昇温冷却過程で
、石灰石中CaO成分と鉄鉱石中Feze3成分との反
応溶融が進行し、この過程で、カルシウムフェライト系
の融液とシリケートスラグ系5つ融液を発生させ、冷却
過程でこnらの融体が固化し未溶融鉱石および気孔間を
結合させて焼結鉱が形成さnる。この高温の溶融過程で
溶けた酸化鉄成分は冷却固化過程で過飽和となシその一
部が融液より晶出成長し結晶として焼結鉱組織に出現す
る。これが2次へマタイトや2次マグネタイトであり、
特にこの過程で粗大成長した2次へマタイトが焼結鉱の
還元粉化悪化の主要因とさnている。
Here, if we infer the mineral formation process of sintered ore based on conventional knowledge, we can think of the following: First, the raw material iron ore for sintering is hematite (Hematite) F
Eze3 is the main component, and this is called primary hematite in the sense before the sintering reaction.The sintering reaction is usually performed by adding iron ore to limestone as a solvent, and coke powder as a fuel. This was carried out using a mixture containing 5% by weight, but during the rapid heating and cooling process to around 1300°C for several minutes, the reaction and melting of the CaO component in the limestone and the Feze3 component in the iron ore proceeded, and in this process, , a calcium ferrite-based melt and a silicate slag-based melt are generated, and during the cooling process, these melts solidify and bond unmolten ore and pores to form sintered ore. The iron oxide components melted during this high-temperature melting process become supersaturated during the cooling and solidification process, and some of them crystallize and grow from the melt and appear as crystals in the sintered ore structure. This is secondary hematite and secondary magnetite.
In particular, secondary hematite, which has grown coarsely during this process, is said to be the main cause of deterioration in reduction and pulverization of sintered ore.

したがって、従来技術は、主として、焼結鉱製造時点で
還元粉化の主要因となる特定形状のへマタイト生成を抑
制しようと意図する技術によって構成さnている。その
方法の1つとして、たとえば、配合原料中の粉コークス
配合比率を増加させることによって、焼成温度を上昇さ
せ、還元雰囲気を強化して、焼結反応過程でヘマタイト
をマグネタイトへ還元させることも実施さnている。
Therefore, the prior art is mainly composed of techniques intended to suppress the production of hematite in a specific shape, which is the main cause of reduction and pulverization at the time of producing sintered ore. One method is to reduce hematite to magnetite during the sintering reaction process by, for example, increasing the proportion of coke powder in the raw materials to increase the calcination temperature and strengthen the reducing atmosphere. I'm here.

一方、たとえば、特開昭52−107213号公報、特
開昭55−69227号公報には、通常の方法で製造さ
nる焼結鉱を、高炉装入前に、別途設備したシャフト炉
で高炉炉頂ガスと向流接触処理して、焼結鉱特にスラグ
部の改質、たとえば常温強度、還元粉化強度の向上を図
る方法が提案されている0 (発明が解決しようとする問題点) しかしながら、配合原料中の粉コークス配合比率を増加
させることによって焼成温度を上昇させ、還元雰囲気を
強化して焼結反応過程でヘマタイトをマグネタイトに還
元させる方法は、RDIの改善が期待できるものの、高
炉装入物として重要な性質である還元性を悪化させる例
が多い。即ち、粉コークス配合比の増加は融体量を増加
させて焼結鉱中の気孔率を減少させるとともにマグネタ
イトの増量はそれ自体還元性の悪い鉱物をスラグに包囲
さnた状態で製造することになるためである。
On the other hand, for example, in JP-A-52-107213 and JP-A-55-69227, sintered ore produced by a conventional method is charged into a blast furnace in a separately equipped shaft furnace before being charged into a blast furnace. A method has been proposed in which the sintered ore, especially the slag part, is modified by carrying out a countercurrent contact treatment with the furnace top gas, for example, to improve the room temperature strength and reduction powder strength.0 (Problems to be Solved by the Invention) However, the method of reducing hematite to magnetite in the sintering reaction process by increasing the calcination temperature and strengthening the reducing atmosphere by increasing the blending ratio of coke powder in the blended raw materials is expected to improve RDI, but There are many cases in which reducing properties, which are important properties for charging materials, are deteriorated. That is, an increase in the blending ratio of coke powder increases the amount of melt and reduces the porosity in the sintered ore, and an increase in the amount of magnetite means that minerals with poor reducibility are themselves surrounded by slag during production. This is to become.

このように、還元粉化以外の品質(強度・被還元性)も
含めて総合的に考えると、結局、上記の特定形状の、粗
大二次へマタイトの結晶化を完全に防止する技術は未だ
確立さ几ていない現状にある。
In this way, when considering the quality (strength and reducibility) other than reduction and powdering comprehensively, there is still no technology that completely prevents the crystallization of coarse secondary hematite with the above specific shape. Currently, it is not fully established.

ま友、シャフト炉で高炉炉頂ガスと向流接触させること
により、焼結鉱の、特にスラグ部の改質を図る方法は、
従来プロセスに加えてさらにシャフト炉の設置を必要と
し、建設に多大の費用を要するところから好ましくない
。また、実用的な効果も必らずしも明らかでない。
Mayu, there is a method for reforming sintered ore, especially the slag part, by bringing it into countercurrent contact with blast furnace top gas in a shaft furnace.
In addition to the conventional process, it is necessary to install a shaft furnace, which is undesirable because it requires a large amount of construction cost. Furthermore, the practical effects are not necessarily clear.

(問題点を解決するための手段) 上記問題点を解決するために、本発明は、焼結鉱製造の
後半部において、焼結反応が完了した直後に、焼結鉱塊
に還元性ガスを吸引導入せしめ、軽度の予備還元処理を
施すことによって、焼結鉱塊内部にヘマタイト→マグネ
タイト還元に伴う脆化部を人為的に発生させ、焼結鉱の
破砕整粒等の後工程の負荷を軽減するとともに、高炉内
での還元粉化現象をも軽減し、高炉操業の安定化に寄与
せしめるものである0 本発明法は、前述した従来の焼結鉱還元粉化防止対策、
特に前者の方法とは全くその発想、手法を異にするもの
であって、還元粉化の主要因とさnている特定形状のへ
マタイトの生成を抑制するものではなく、強制的に当該
ヘマタイトを特別に処理した焼結鉱を製造することによ
って高炉内での焼結鉱還元粉化に起因する粉発生を実質
的に皆無とする方法を提供しようとするものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a method for injecting a reducing gas into the sintered ore lump immediately after the sintering reaction is completed in the latter half of the sintered ore production. By introducing suction and performing a mild preliminary reduction treatment, a embrittlement area due to hematite → magnetite reduction is artificially generated inside the sintered ore lump, which reduces the burden of subsequent processes such as crushing and sizing of the sintered ore. At the same time, it also reduces the reduction powdering phenomenon inside the blast furnace, contributing to the stabilization of blast furnace operation.
In particular, the idea and method are completely different from the former method, and it does not suppress the production of hematite with a specific shape, which is considered to be the main cause of reduction powdering, but forces the production of hematite. The purpose of the present invention is to provide a method that substantially eliminates the generation of powder caused by the reduction and pulverization of sintered ore in a blast furnace by producing sintered ore that has been specially treated.

本発明をさらに詳細に説明するに先立って、従来一般に
行なわnている焼結法についてまず説明する0 第4図は、従来焼結法の概要図でパレット上1に装入さ
nた配合原料2は点火炉3にて表面層に着火さn1焼結
機の排鉱端に至る過程で下層部まで全層の焼結反応を終
らせるように操業さnる。燃料粉コークスの燃焼による
焼結原料鉱石と媒溶材石灰石とが溶融反応を起す120
0℃以上の高温帯4は焼結機排鉱端よシ上流位置(目安
として焼結機長の80〜85俤の位置)で既に焼結最下
層に到達しており、このことは個々の風箱5に配備せら
nた排ガス温度計がこの位置よシ排鉱側へ温度上昇を示
すことから認知さ几る0この特定位置6(以後フレーム
フロントポイン) F、 F、 P、と称する)以降で
は熱バランス上高温の保持とそれに引続く焼結鉱塊(焼
結ケーキ)の冷却が主体となっており、焼結の前半、中
間部の如き焼結反応を起す友めの即ち、燃料粉コークス
の燃焼用空気の役割は、熱交換と冷却の九めの媒体とし
ての役割にとって替られる。
Before explaining the present invention in more detail, the conventional sintering method will first be explained. Fig. 4 is a schematic diagram of the conventional sintering method. 2 is operated in such a way that the surface layer is ignited in the ignition furnace 3 and the sintering reaction of the entire layer down to the lower layer is completed in the process of reaching the ore discharge end of the sintering machine. Sintering raw material ore and solvent limestone cause a melting reaction by burning fuel powder coke 120
The high temperature zone 4 above 0°C has already reached the lowest sintering layer at a position upstream from the sintering machine discharge end (as a guide, 80 to 85 m of the sintering machine length), and this is due to the individual wind This is recognized because the exhaust gas thermometer installed in box 5 shows a temperature increase from this position to the ore discharge side.From this specific position 6 (hereinafter referred to as frame front point F, F, P) onwards The main focus of this process is to maintain a high temperature in terms of heat balance and then to cool the sintered ore lump (sintered cake). The role of coke combustion air is replaced by that of a ninth medium of heat exchange and cooling.

従って、F、 F、 P、以降の焼結機後半部において
は酸素を含む空気である必要はなく、上気の役割を果た
す流体であnば他の種類のガスであっても良い。
Therefore, the latter half of the sintering machine after F, F, P does not need to be air containing oxygen, and may be any other type of gas as long as it is a fluid that plays the role of upper air.

なお、第4図において、7は配合原料ホッパ・8は湿原
料層、9は焼結鉱層、10は主排気管、11は集塵機、
12は主排風機である。
In addition, in FIG. 4, 7 is a mixed raw material hopper, 8 is a wet raw material layer, 9 is a sintered ore layer, 10 is a main exhaust pipe, 11 is a dust collector,
12 is a main exhaust fan.

一方、焼結機上で焼成さnた焼結鉱塊の品質についてみ
ると、焼結プロセスは上層から下層へと屓次化学反応と
熱伝達が進行するプロセスであるため、下層はどより多
くの熱量を享受し、原料鉱石類の溶融がより進行し、焼
結鉱組織中の結晶も成長することになる。この結果とし
て得ら几る焼結鉱品質は一般に焼結層上下方向の偏差が
発生し、下層はど溶融度の向上のため気孔率が減少し強
度は向上するものの、二次へマタイトの粗大結晶化が進
行する結果、還元粉化性は悪化している。
On the other hand, looking at the quality of the sintered ore lump fired on a sintering machine, the sintering process is a process in which sequential chemical reactions and heat transfer proceed from the upper layer to the lower layer, so the lower layer has more The melting of the raw material ores progresses further, and the crystals in the sintered ore structure also grow. The quality of the sintered ore obtained as a result of this generally has deviations in the vertical direction of the sintered layer, and although the porosity of the lower layer decreases and the strength improves due to the improvement in the degree of melting, the coarseness of the secondary hematite increases. As a result of the progress of crystallization, reduction and powdering properties deteriorate.

以上の点に鑑みて、本発明の発明者らは、焼結機後半部
のガス種を変更することにより、現行焼結プロセスにと
って特徴的な焼結下層部の還元粉化を中心とし九品質改
善が図nることを知見し、本発明を成すに到った0 すなわち、本発明は、焼結層の高温帯4が最下層に到達
する特定の位置6を境とし、こ几より後半側において、
焼結鉱上層部より還元性ガスを吹き込み、焼結鉱に軽度
の予備還元処理を施すことを特徴とする0焼結層の高温
帯4が最下層に到達する特定の位置6は、風箱排ガス温
度が上昇し始めるF、 F、 P、位置であって、焼結
機ストランド下部の風箱群5に配備さnた排ガス温度計
(図示せず)が所定の温度、たとえば約100℃、に到
達することにより知ることができる。
In view of the above points, the inventors of the present invention have focused on reducing and powdering the lower sintered layer, which is characteristic of the current sintering process, by changing the gas type in the latter half of the sintering machine. The present invention has been made based on the knowledge that the improvement is expected to be n. That is, the present invention has a specific position 6 where the high temperature zone 4 of the sintered layer reaches the lowest layer, and On the side,
A specific position 6 where the high temperature zone 4 of the zero sintered layer reaches the lowest layer is a wind box, which is characterized by blowing reducing gas from the upper layer of the sintered ore and subjecting the sintered ore to a slight preliminary reduction treatment. At positions F, F, and P, where the exhaust gas temperature begins to rise, an exhaust gas thermometer (not shown) installed in the wind box group 5 at the bottom of the sintering machine strand indicates a predetermined temperature, for example, about 100°C. You can know by reaching .

焼結鉱に還元性ガスを吹込む方法は、たとえば第1図に
示すように、上記特定の位置6より下流側の焼結機上に
フード13を設け、還元性ガスホルダ14から還元性ガ
スを供給し、風箱5の吸引力により焼結鉱層に導入せし
めるものである。
A method of injecting reducing gas into the sintered ore is, for example, as shown in FIG. It is introduced into the sintered ore layer by the suction force of the wind box 5.

このように吹込まnた還元性ガスはまだ800℃以上の
温度を有する下層部の焼結鉱塊の表面と反応し、ガスと
接触した焼結鉱組織中のへマタイトをマグネタイトへ還
元するとともに、ガス中の還元成分は逆に酸化される(
例えばCOを還元成分とする高炉ガスや転炉ガスを用い
nば、C02へと変化する)0また還元反応と同時に若
干の発熱が起るが、こルは焼結鉱またはガスの顕熱とし
て回収さn反応の進行には何らの妨げとはならず、導入
さ扛たガスは前述の化学反応を包含しながら焼結鉱塊の
冷却作用をも担うことになる。還元ガスの吹込量は焼結
鉱の生産速度や焼結層下層部高温帯の大小により調整さ
几るべきで、この点は、最終風箱内の排ガス分析を周知
の方法で行うことにより容易に検知することが可能であ
る。
The reducing gas injected in this way reacts with the surface of the sintered ore lump in the lower layer, which still has a temperature of 800°C or higher, reducing the hematite in the sintered ore structure that came into contact with the gas to magnetite. , the reducing components in the gas are oxidized (
For example, if blast furnace gas or converter gas containing CO as a reducing component is used, it will change to CO2)0 Also, a small amount of heat is generated at the same time as the reduction reaction, but this is generated as sensible heat of the sintered ore or gas. The recovered gas does not interfere in any way with the progress of the reaction, and the introduced gas not only carries out the above-mentioned chemical reaction, but also plays a role in cooling the sintered ore lump. The amount of reducing gas injected should be adjusted depending on the production rate of the sintered ore and the size of the high temperature zone in the lower layer of the sintered layer.This can be easily done by analyzing the exhaust gas in the final windbox using a well-known method. It is possible to detect

なお、上記特定の位置6より前半側すなわち上流側の風
箱群に対しては、従来と同様に焼結用空気が吸引導入せ
しめらnる0各風箱群からの排気は共通の排気系10,
11.12により処理さnる〇 第2図は、焼結反応で熱交換さnた排ガスの顕熱および
ガス還元反応によって生成する若干の排ガス付加顕熱を
併せて回収するために焼結機後半下部風箱5からの排ガ
スを除塵15した後、熱交換機16を経由させその排ガ
スは再度主排気系10へ合流させるものであシ、本発明
の基本的構成を何ら損うものではない0除塵機15と熱
交換機16の圧力損失を考慮すれば熱回収系には補助的
なブロアー17の組込みは当然溝えら扛て良い。
Note that sintering air is sucked and introduced to the wind box groups on the front half side, that is, upstream side of the above-mentioned specific position 6, as in the past. 10,
Figure 2 shows a sintering machine used to recover the sensible heat of the exhaust gas heat-exchanged in the sintering reaction and some additional sensible heat of the exhaust gas generated by the gas reduction reaction. After the exhaust gas from the lower half wind box 5 is removed from dust 15, the exhaust gas is passed through the heat exchanger 16 and then merged into the main exhaust system 10 again. This does not impair the basic structure of the present invention in any way. Considering the pressure loss of the dust remover 15 and the heat exchanger 16, it is natural to incorporate an auxiliary blower 17 into the heat recovery system.

(作用) 本発明によnば、焼結鉱ケーキの中で特に還元粉化性の
悪い下層部分に軽度のガス還元処理を行うことによって
、焼結鉱組織中の粗大二次へマタイト(特に粗大二次へ
マタイトは焼結鉱の気孔に接した酸化性雰囲気の高い表
面部分に生成しゃすい〕全焼結鉱の製造過程でマグネタ
イトへ転換させ、高炉へ装入さnる以前に強制的に還元
粉化を生ぜせしめる。この処理を経て整粒さ几た焼結鉱
はもはや高炉内における還元粉化をひき起す原因がほと
んど解消さnているため、高炉操業の安定化は高度に維
持することが可能となる。しかも本処理を施さnfc焼
結鉱中の二次へマタイトからのガス還元によって生成し
たマグネタイトは高炉内低温部で行なわれる初期還元反
応を高炉への装入に先立って遂行さnているため、被還
元性は良好であυしかも一歩先んじており、高炉操業で
の燃料消費をも軽減することができる。また、付帯効果
とじては、焼結機上下層部の焼結鉱塊に人為的に還元粉
化作用を起さしめるために、焼結機パレットより排鉱落
下さnた焼結鉱の破砕を容易化して破砕クラッシャーの
動力消費を軽減の上、焼結鉱の過粉砕をも予防できる可
能性がある0(実施例) 本発明法による実施効果を従来法と比較して示す。
(Function) According to the present invention, the coarse secondary hematite (especially Coarse secondary hematite is easily formed on the surface of sintered ore that is in contact with the pores and has a highly oxidizing atmosphere.] It is converted into magnetite during the entire sintered ore manufacturing process, and is forcibly converted to magnetite before being charged into the blast furnace. This causes reduction powdering.The sintered ore that has been sized and refined through this treatment has almost no causes of reduction powdering in the blast furnace, so blast furnace operations can be maintained at a high level of stability. In addition, the magnetite produced by gas reduction from the secondary hematite in the NFC sintered ore subjected to this treatment undergoes an initial reduction reaction in the low-temperature section of the blast furnace before being charged into the blast furnace. As a result, the reducibility is good and one step ahead, and fuel consumption during blast furnace operation can be reduced.Ancillary effects include the reduction in sintering in the upper and lower layers of the sintering machine. In order to artificially cause a reduction and pulverization effect on the concretion lump, the sintered ore that is discharged from the sintering machine pallet is easily crushed, reducing the power consumption of the crusher, and then sintering is performed. There is a possibility that over-grinding of ore can be prevented.0 (Example) The effects of implementing the method of the present invention will be shown in comparison with the conventional method.

第1表は本発明法の基本的効果を確認するために行っ几
焼結鍋試験の鉱石性状と配合表を示す。いずnの原料に
ついても実際の焼結鉱製造プロセスで一般に用いら几て
いるものを用いた0第3図iは第1表に示さnた原料を
用いて焼結試験を行った実験装置を示した。同図におい
て、18は鉱石温度計、19は風箱温度計、20は集塵
機、21はオリフィス、22はプロアである。なお、こ
の実験装置の仕様は第2表に示す。
Table 1 shows the ore properties and formulation table of the sintering pot test conducted to confirm the basic effects of the method of the present invention. As for the raw materials for Izn, we used those that are not generally used in the actual sintered ore production process. Figure 3 shows an experimental device in which a sintering test was conducted using the raw materials listed in Table 1. showed that. In the figure, 18 is an ore thermometer, 19 is a windbox thermometer, 20 is a dust collector, 21 is an orifice, and 22 is a proa. The specifications of this experimental device are shown in Table 2.

第1表の原料はドラムミキサー内で3分間転動させ十分
に混合し友後、平均水分値が5.5重量パーセント(湿
量ベース)となるように水を添加し、さらに3分間ミキ
サーを転動して造粒処理を行なった0得られた配合原料
の造粒物は焼結試験鋼に装入さ几た後その表面層にガス
バーナーで1分間点火し、排風機の空気吸引によって焼
結反応を進行させ友。このよって焼結反応が上層から下
層へと進行する後半段階で、原料層の下部風箱に配置さ
nたガス温度が上昇し始める100℃の温度に到達した
時点から試験鍋の上部にフードをセットし、こnより還
元性ガス(本実施例では高炉ガスを使用)を3.0m7
分一定量で吹込み焼結反応が完了するまでこの状態を維
持した。
The raw materials listed in Table 1 were thoroughly mixed by rolling in a drum mixer for 3 minutes, then water was added so that the average moisture content was 5.5% by weight (wet basis), and the mixer was continued for an additional 3 minutes. The resulting granulated raw materials were charged into a sintered test steel and the surface layer was ignited for 1 minute with a gas burner, and then granulated by air suction from an exhaust fan. A friend that allows the sintering reaction to proceed. Therefore, in the latter stage when the sintering reaction progresses from the upper layer to the lower layer, a hood is placed on the top of the test pot from the point when the gas temperature starts to rise to 100°C, which is placed in the wind box below the raw material layer. From this, 3.0 m7 of reducing gas (blast furnace gas was used in this example) was set.
This state was maintained until the sintering reaction was completed by blowing at a constant rate.

第3表には、このようにば焼結後半で還元性ガスを吹込
んだ本発明法とガスを吹込まない従来法による焼結試験
結果を対比、して示した。実施例1〜3は還元ガスの吹
込開始タイミングを排ガス温度100℃到達時、到達1
分後、同2分後とずらせるととによって、実際上想定さ
nるF、 F、 Pの変動の影響を検討するためにそn
ぞ几設定さf”L fCo第2表の結果によれば、人為
的に発生させた還元粉化作用により歩留のやや低下傾向
となったが、大きく悪化しなかったのは還元性ガスが焼
結鉱塊の気孔を経由して流nたために破砕後の粉率が軽
微に留ったことによるものと考えら几る0こnに対して
還元粉化と還元率に対する、本発明の効果は極めて大き
く、大幅な改善が認めらn、この結果は歩留の若干の低
下を差引いても、高炉操業の安定化に寄与する効果は顕
著と思わnる。
Table 3 shows a comparison of the sintering test results obtained by the method of the present invention in which reducing gas was blown in the latter half of sintering and the conventional method in which no gas was blown. In Examples 1 to 3, the timing to start blowing the reducing gas was set to 1 when the exhaust gas temperature reached 100°C.
In order to examine the influence of fluctuations in F, F, and P that are actually expected,
According to the results in Table 2, the yield tended to decrease slightly due to the artificially generated reduction powdering effect, but the reason why the yield did not deteriorate significantly was due to the reduction of reducing gas. This is thought to be due to the fact that the powder ratio after crushing remained slight due to the flow through the pores of the sintered ore lump. The effect was extremely large, and no significant improvement was observed. Even if the slight decrease in yield is subtracted from this result, it seems that the effect contributing to stabilization of blast furnace operation is significant.

本実施例はいずnも還元性ガスとして高炉ガスを用いた
が、本発明の基本原理からみて高炉ガスに限定さnるも
のではない。しかしながら、吹込操作におけるガス取扱
いの安全性確保と、還元反応後の焼結排気系に未反応の
還元ガスが逸出さnることは好ましいものではないこと
、焼結機上の下層赤熱焼結鉱塊を軽度圧還元する程度の
弱還元性組成のガスであnは十分目的は達せらすること
、さらに今後高炉ガスが余剰傾向にあることを配慮すn
ば、本実施例に用いた高炉ガスの利用が最も適切と考え
らnる0第 3 表  (試験結果) (発明の効果) 上記したように、本発明によnば、実質的には既存の標
準的な設備を利用しながら、従来法に比べて、還元粉化
性を大幅に改善することができ、しかも被還元性にも優
′nた焼結鉱を製造できる。
Although blast furnace gas was used as the reducing gas in this embodiment, the present invention is not limited to blast furnace gas in view of the basic principle of the present invention. However, it is important to ensure the safety of gas handling during the blowing operation, and that it is not desirable for unreacted reducing gas to escape into the sintering exhaust system after the reduction reaction. A gas with a weakly reducing composition that can reduce the lumps under low pressure is sufficient to achieve the purpose, and it is also important to take into consideration that there will be a surplus of blast furnace gas in the future.
For example, it is considered that the blast furnace gas used in this example is the most appropriate. While using standard equipment, it is possible to produce sintered ore that has significantly improved reductive powdering properties and excellent reducibility compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明法の概要を示す図、第3図
は焼結鋼試験に用いた装置を示す説明図、第4図は従来
の焼結鉱製造法を示す図である。 1・・パレット  2・・配合材料  3・・点火炉4
・・焼結層高温帯  5・・風箱  6・・F、F、P
lo・・主排気管  13・・フード 14・・還元性ガスホルダー  15・・集塵機16・
・熱交換機  17・・プロア 第1図 第2図 第3図 手続補正書(自発) 昭和60年3月5 日 昭和60年3月4日提出の特許願 (1)2発”0名称
 焼結砿の処理方法 3、 補正をする者 事件との関係 特許出願人 4、代 理 人〒136 8、補正の内容 明細書、第16頁と第18頁の間に、別紙第17頁を補
充訂正するe 第  1  表 (焼結鍋試験に用いた原料鉱石性状と配合)第  2 
 表 (実験装置仕様)
Figures 1 and 2 are diagrams showing an overview of the method of the present invention, Figure 3 is an explanatory diagram showing the equipment used for the sintered steel test, and Figure 4 is a diagram showing the conventional sintered ore manufacturing method. . 1. Pallet 2. Mixed material 3. Ignition furnace 4
・・Sintered layer high temperature zone 5・・Wind box 6・・F, F, P
lo・・Main exhaust pipe 13・・Hood 14・・Reducing gas holder 15・・Dust collector 16・
・Heat exchanger 17...Proa Figure 1 Figure 2 Figure 3 Procedural amendment (voluntary) Patent application filed on March 5, 1985 March 4, 1985 (1) 2 shots "0 name Sintering Processing method for mulch 3. Relationship with the case of the person making the amendment. Patent applicant 4. Agent. Table 1 (Properties and composition of raw material ores used in the sintering pot test) Part 2
Table (experimental equipment specifications)

Claims (1)

【特許請求の範囲】[Claims] (1)自溶性焼結鉱のドワイトロイド型焼結製造法にお
いて、焼結機ストランド下部の風箱群に配備された排ガ
ス温度計が所定の温度に到達する特定の風箱位置を境と
して、それより後半側の風箱群に対しては還元性ガスを
吸引導入せしめることにより、焼結鉱を軽度に予備還元
処理することを特徴とする焼結鉱の処理方法。
(1) In the Dwight Lloyd type sinter production method for self-fusing sintered ore, the exhaust gas thermometer installed in the wind box group at the bottom of the sintering machine strand reaches a predetermined temperature. A method for processing sintered ore, characterized in that the sintered ore is subjected to a slight preliminary reduction treatment by sucking and introducing reducing gas into the wind box group on the latter half side.
JP4240785A 1985-03-04 1985-03-04 Treating method of sintered ore Pending JPS61201739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4240785A JPS61201739A (en) 1985-03-04 1985-03-04 Treating method of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240785A JPS61201739A (en) 1985-03-04 1985-03-04 Treating method of sintered ore

Publications (1)

Publication Number Publication Date
JPS61201739A true JPS61201739A (en) 1986-09-06

Family

ID=12635212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240785A Pending JPS61201739A (en) 1985-03-04 1985-03-04 Treating method of sintered ore

Country Status (1)

Country Link
JP (1) JPS61201739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176928A (en) * 2019-04-18 2020-10-29 日本製鉄株式会社 Method for evaluating reduction degradation index of sintered ore
WO2022264667A1 (en) * 2021-06-17 2022-12-22 Jfeスチール株式会社 Method for producing agglomerated ore, method for producing reduced iron, agglomerated ore, sintering machine and pellet firing furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819730A (en) * 1981-07-29 1983-02-04 Hitachi Ltd Magnetic head drum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819730A (en) * 1981-07-29 1983-02-04 Hitachi Ltd Magnetic head drum

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176928A (en) * 2019-04-18 2020-10-29 日本製鉄株式会社 Method for evaluating reduction degradation index of sintered ore
WO2022264667A1 (en) * 2021-06-17 2022-12-22 Jfeスチール株式会社 Method for producing agglomerated ore, method for producing reduced iron, agglomerated ore, sintering machine and pellet firing furnace
JPWO2022264667A1 (en) * 2021-06-17 2022-12-22

Similar Documents

Publication Publication Date Title
WO2011118822A1 (en) Method for producing sintered ore
WO2002092860A1 (en) Granular metallic iron
CA1242077A (en) Process for the direct reduction of iron-oxide- containing materials
US3313617A (en) Iron-containing flux material for steel-making process
US3311465A (en) Iron-containing flux material for steel making process
JP4540172B2 (en) Production of granular metallic iron
US4348226A (en) Direct reduction process for producing metallic iron
US4985075A (en) Method for manufacturing chromium-bearing pig iron
US3653874A (en) Production of metal pellets from metallic oxides
JPS61201739A (en) Treating method of sintered ore
US4963185A (en) Agglomerates containing olivine for use in blast furnace
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
CN113005284A (en) Application method of titanium-containing sea sand in sinter production
US3471283A (en) Reduction of iron ore
JP5888482B2 (en) Method for producing sintered ore
US3304168A (en) System for producing carbonized and prereduced iron ore pellets
JP2008266793A (en) Method for producing granular metallic-iron and method for producing molten iron using this metallic-iron
US2684296A (en) Reduction of iron ores
JPH09227958A (en) Operation of endless shifting type sintering machine and high-quality sintered ore
JPS58120749A (en) Adding method for auxiliary material for sintering
JP2000169916A (en) High quality sintered ore and production thereof
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPS62127413A (en) Raw material charging method for blast furnace
Kutsin et al. The development of fine manganese concentrate lumping technology at PJSC Nikopol Ferroalloy Plant
EP4112756A1 (en) Method for producing sintered ore