JPS61201650A - Glass fiber reinforced resin concrete - Google Patents

Glass fiber reinforced resin concrete

Info

Publication number
JPS61201650A
JPS61201650A JP4322585A JP4322585A JPS61201650A JP S61201650 A JPS61201650 A JP S61201650A JP 4322585 A JP4322585 A JP 4322585A JP 4322585 A JP4322585 A JP 4322585A JP S61201650 A JPS61201650 A JP S61201650A
Authority
JP
Japan
Prior art keywords
weight
glass fiber
glass
fiber reinforced
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4322585A
Other languages
Japanese (ja)
Inventor
勇 加藤
弘 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP4322585A priority Critical patent/JPS61201650A/en
Publication of JPS61201650A publication Critical patent/JPS61201650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はOAフロア−の浮床パネル等として使用される
ガラス繊維強化レジンコンクリートに関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to glass fiber reinforced resin concrete used as floating floor panels for OA floors.

(従来の技術) 一般に此種のOAフOアー等の浮床パネルはG、R,C
(ガラス繊維強化コンクリート)を用いて成形している
(Prior art) Generally, floating floor panels such as this type of OA floor are G, R, C
It is molded using (glass fiber reinforced concrete).

ちなみに、このG、R,Cはセメント、砕石。By the way, G, R, and C are cement and crushed stone.

ガラスmuを混合し、これを注型により成形する方法を
用いて製造されるものであるが、下記に示す問題点があ
る。
Although it is manufactured by mixing glass mu and molding it by casting, it has the following problems.

(1)注型方式であるから、寸法精度が悪く、表面研摩
が後加工として必要である。
(1) Since it is a casting method, dimensional accuracy is poor and surface polishing is required as post-processing.

(2)セメントがアルカリ性であるから、耐アルカリ性
のガラス繊維を使用しなければならず、コストアップを
余儀なくされる。
(2) Since cement is alkaline, alkali-resistant glass fiber must be used, which increases costs.

(3)セメントがバインダーであるから養生に約1ケ月
必要とし、短期間で得ることができない。
(3) Since cement is a binder, it takes about one month to cure and cannot be obtained in a short period of time.

(発明が解決しようとする問題点) 本発明が解決しようとする問題点は第1発明においては
強度的に在来のG、R,Cよりも強固であり、しかも低
廉且つ後加工不要で、短期間で成形できるガラス繊維強
化レジンコンクリートを新規に供することにあり、第2
発明においては第1発明に加えて強度が更に増大し、し
かも曲げ弾性率も優れたガラス繊維強化レジンコンクリ
ートを新規に供することにある。
(Problems to be Solved by the Invention) The problems to be solved by the present invention are that the first invention is stronger than conventional G, R, and C, is inexpensive, and does not require post-processing; Our goal is to provide a new type of glass fiber reinforced resin concrete that can be formed in a short period of time.
In addition to the first invention, an object of the invention is to provide a new glass fiber reinforced resin concrete which has further increased strength and excellent flexural modulus.

(問題点を解決する為の手段) 上記問題点を解決する為に講じた技術的手段−は、 第1発明においては不飽和ポリエステル樹脂10乃至1
5重量%、砕石60乃至80重量%、珪砂O乃至5重量
%、炭酸カルシウム5乃至20重量%、ガラメチ3フフ
0〜5重旦%を混合し、これをプレス成形するものであ
る。
(Means for solving the problem) The technical means taken to solve the above problem are as follows: In the first invention, unsaturated polyester resin 10 to 1
5% by weight of crushed stone, 60% to 80% by weight of crushed stone, 5% to 5% by weight of silica sand, 5% to 20% by weight of calcium carbonate, and 0% to 5% by weight of Garamechi 3fufu are mixed, and this is press-molded.

第2発明においては不飽和ポリエステル樹脂10乃至1
5重量%、砕石60乃至80重量%、珪砂0乃至5重量
%、炭酸カルシウム5乃至20重量%、ガラスチョップ
0〜5重量%を混合し、これを下面に布状ガラスINを
敷いてプレス成形するものである。
In the second invention, unsaturated polyester resin 10 to 1
5% by weight of crushed stone, 60-80% by weight of crushed stone, 0-5% by weight of silica sand, 5-20% by weight of calcium carbonate, and 0-5% by weight of glass chop, which was then press-molded by laying cloth-like glass IN on the bottom surface. It is something to do.

(実施例) 第1発明において、不飽和ポリエステル樹脂の添加量は
10乃至15重量%にする必要がある。不飽和ポリエス
テルの添加量が増大するとその他の添加剤(珪砂、ガラ
スチョップ、炭酸カルシウム)の添加量の減少を余儀な
くされるから、その添加剤に吸着される余分な樹脂分が
プレス成形時に型外へ流出し無駄であるばかりでなく樹
脂分が過剰に充填され、強度的に弱くなる添加量を少く
すると必然的に珪砂、ガラスチョップ、炭酸カルシウム
の添加量が増えるから、バインダーとしての機能が稀薄
となり、内部に空隙を形成して跪くなる。
(Example) In the first invention, the amount of unsaturated polyester resin added must be 10 to 15% by weight. When the amount of unsaturated polyester added increases, the amount of other additives (silica sand, glass chop, calcium carbonate) added must be reduced, so the excess resin adsorbed by these additives is removed from the mold during press molding. Not only is it wasteful as it flows out, but the resin content is filled excessively, weakening the strength.If the amount added is reduced, the amount of silica sand, glass chop, and calcium carbonate added will inevitably increase, so the function as a binder will be weakened. It forms a void inside and falls to its knees.

また、砕石は60乃至80重量%の添加域を越えること
ができない。即ち添加量が増えると樹脂分が相対的に減
少する為、バインダーとしての機能が稀薄となり、強度
を左右する空洞が発生し、規定以上の同より減少すると
その分、樹脂分を多回に吸収する珪砂、ガラスチョップ
Further, crushed stone cannot exceed the addition range of 60 to 80% by weight. In other words, as the amount added increases, the resin content decreases relatively, so the function as a binder becomes diluted, creating cavities that affect strength.If the amount decreases below the specified level, the resin content will be absorbed many times. Silica sand, glass chop.

炭酸カルシウムの増量を余儀なくされる為、樹脂分の増
量を実行しなければならず、コスト的に島価になるばか
りでなく砕石の減少によって強度が弱くなる。
Since it is necessary to increase the amount of calcium carbonate, it is necessary to increase the amount of resin, which not only increases the cost but also weakens the strength due to the decrease in crushed stone.

更に、炭酸カルシウムにおいても5乃至20重量%の添
加量に限定される。この炭酸カルシウムは樹脂流を調節
し粘性を与える為の働きを有するから、樹脂分の添加量
に対してこの値を越えても、減っても性質上好ましくな
い。
Furthermore, the amount of calcium carbonate added is limited to 5 to 20% by weight. Since this calcium carbonate has the function of regulating resin flow and imparting viscosity, it is not desirable in terms of properties if the amount exceeds or decreases with respect to the amount of resin added.

而して斯様な条件下で設定された不飽和ポリエステル樹
脂、砕石、炭酸カルシウムに珪砂0乃至5重量%、ガラ
スチョップO乃至5重量%を添加し、これを混合する。
Then, 0 to 5% by weight of silica sand and O to 5% by weight of glass chop are added to the unsaturated polyester resin, crushed stone, and calcium carbonate set under such conditions, and mixed.

混合された状態では例えば、固練り状のモルタルに似た
性状のプレス用材料となる。
In a mixed state, the material for pressing becomes, for example, a hardened mortar-like material.

このプレス用材料をホットプレス(140℃。This pressing material was hot pressed (140°C).

50ka/cwf)L、て本発明ガラス繊維強化レジン
コンクリートとなる。
50 ka/cwf) L, the glass fiber reinforced resin concrete of the present invention is obtained.

上記第1発明における曲げ強度と同等かそれ以上であり
ながら、曲げ弾性率を更に向上させたのが、第2発明で
ある。
The second invention further improves the bending elastic modulus while having the same or higher bending strength than the first invention.

この第2発明は第1発明のガラス繊維強化レジンコンク
リートにロービングクロス等の布状ガラス繊維を裏打ち
した構造とする。この場合にはプレス成形型に上記布状
ガラス繊維を敷設後、前記プレス用材料を充填し、加温
・加圧する。
This second invention has a structure in which the glass fiber reinforced resin concrete of the first invention is lined with cloth-like glass fiber such as roving cloth. In this case, after laying the cloth-like glass fibers in a press mold, the press material is filled and heated and pressurized.

ちなみに第1・第2発明とも、ガラスチョップ、珪砂の
添加量はO乃至5重量%に限られる。
Incidentally, in both the first and second inventions, the amount of glass chop and silica sand added is limited to 0 to 5% by weight.

ガラスチョップについては添加量が多くすれば強度的に
強くなるが、樹脂量の増量も相俟って経済的ではなく、
珪砂は添加量域を越えると、樹脂分を増量する必要が生
じその結果砕石の添加量が減少して強度が低下するから
好ましくない。
As for glass chop, the strength increases if the amount added is increased, but it is not economical due to the increased amount of resin.
If the addition amount of silica sand exceeds the range, it is not preferable because it becomes necessary to increase the amount of resin, resulting in a decrease in the amount of crushed stone added and a decrease in strength.

次に本発明の理解を高める為、実験例を別表について説
明する。
Next, in order to enhance the understanding of the present invention, experimental examples will be explained with reference to the attached table.

〔第1発明の実験例〕 不飽和ポリエステル樹脂、砕石、炭酸カルシウム、珪砂
、ガラスチョップの添加量を変化させて形成したガラス
繊維強化レジンコンクリ−トとG、R,Cとの曲げ強度
9曲げ弾性率を実験で測定し、その結果を別表1に示し
た。
[Experimental example of the first invention] Bending strength 9 of G, R, C and glass fiber reinforced resin concrete formed by varying the amounts of unsaturated polyester resin, crushed stone, calcium carbonate, silica sand, and glass chop The elastic modulus was measured experimentally and the results are shown in Attached Table 1.

これによると、どの例もG、R,Cと比べ曲げ強度が増
大し、ことに珪砂と、ガラスチョップを併用した場合に
はその曲げ強度が更に2倍以上に向上し、G、R,Cと
同等の強度を得るのに略1/2の厚みで、十分であり、
軽量化できることが立証された。
According to this, the bending strength of all examples is increased compared to G, R, and C. In particular, when silica sand and glass chop are used together, the bending strength is further improved by more than twice, and G, R, and C Approximately 1/2 the thickness is sufficient to obtain the same strength as
It has been proven that weight can be reduced.

〔第2発明の実験例〕 別表1と同様に添加量を変化させると共にその例ごとに
布状ガラス繊維を裏張りして形成したガラス繊維強化レ
ジンコンクリートと従来のG、R,Cとの曲げ強度0曲
げ弾性率を実験で測定し、これを別表2に示した。
[Experimental example of the second invention] Bending of conventional G, R, C with glass fiber reinforced resin concrete formed by changing the additive amount and lining with cloth-like glass fiber for each example as shown in Attached Table 1 The zero strength flexural modulus was measured experimentally and is shown in Attached Table 2.

これによると、どの例も大幅に曲げ強度が増大し、珪砂
、ガラスチョップ、布状ガラス繊維を併用した場合にG
、R,Cよりも3.5倍程度曲げ強度が増大し、ガラス
チョップ、布状ガラス繊維、を併用した場合でもG、R
,Cよりも3倍以上曲げ強度が増大し、G、R,Cと同
等の強度を保持するに際し、略1/3の厚みで十分であ
り1/3以上に軽量化できることも立証された。そして
曲げ弾性率も大幅にG、R,Cよりも高いという実験値
もでた。
According to this, the bending strength increased significantly in all examples, and when silica sand, glass chop, and cloth-like glass fiber were used together, G
The bending strength is about 3.5 times higher than that of G, R, and C, and even when glass chop and cloth-like glass fiber are used together, G, R
It was also proven that the bending strength is more than three times greater than that of G, R, and C, and that a thickness of approximately 1/3 is sufficient to maintain the same strength as G, R, and C, and that the weight can be reduced to more than 1/3. Experimental results showed that the bending modulus was also significantly higher than that of G, R, and C.

(発明の効果) 本発明は以上のように構成したので下記の利点がある。(Effect of the invention) Since the present invention is constructed as described above, it has the following advantages.

■第1発明においては 耐アルカリ性のガラス繊維を使用する必要がなく低置で
ある、後加工が不要である、短tI11tiで形成でき
て生産性が高く、しかも従来のG。
- In the first invention, there is no need to use alkali-resistant glass fibers, the structure is low, no post-processing is required, and productivity is high as it can be formed with a short tI11ti, and moreover, it is more productive than the conventional G.

R,Cよりも曲げ強度が強固という物性を有するガラス
繊維強化レジンコンクリートを供することができる。
It is possible to provide glass fiber reinforced resin concrete having physical properties such as stronger bending strength than R and C.

■第2発明においては 第1発明の利点に加えて曲げ強度が更に強固となるばか
りでなく、曲げ弾性率が高く、OAフロア−等の浮床パ
ネルに利用した場合に耐強度に優れ、踏されりが非常に
良いガラス繊維強化レジンコンクリートを供することが
できる。
■ In addition to the advantages of the first invention, the second invention not only has stronger bending strength, but also has a high bending elastic modulus, and when used in floating floor panels such as OA floors, has excellent strength and resistance to being stepped on. It is possible to provide glass fiber reinforced resin concrete with very good resilience.

Claims (2)

【特許請求の範囲】[Claims] (1)不飽和ポリエステル樹脂10乃至15重量%、砕
石60乃至80重量%、珪砂0乃至5重量%、炭酸カル
シウム5乃至20重量%、ガラスチョップ0乃至5重量
%を混合し、これをプレス成形したガラス繊維強化レジ
ンコンクリート。
(1) Mix 10 to 15% by weight of unsaturated polyester resin, 60 to 80% by weight of crushed stone, 0 to 5% by weight of silica sand, 5 to 20% by weight of calcium carbonate, and 0 to 5% by weight of glass chop, and press-form the mixture. Glass fiber reinforced resin concrete.
(2)不飽和ポリエステル樹脂10乃至15重量%、砕
石60乃至80重量%、珪砂0乃至5重量%、炭酸カル
シウム5乃至20重量%、ガラスチョップ0〜5重量%
を混合し、これを下面に布状ガラス繊維を敷いてプレス
成形したガラス繊維強化レジンコンクリート。
(2) 10-15% by weight of unsaturated polyester resin, 60-80% by weight of crushed stone, 0-5% by weight of silica sand, 5-20% by weight of calcium carbonate, 0-5% by weight of glass chops.
Glass fiber-reinforced resin concrete is made by mixing the above materials and press-forming the mixture by laying cloth-like glass fibers on the bottom surface.
JP4322585A 1985-03-04 1985-03-04 Glass fiber reinforced resin concrete Pending JPS61201650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4322585A JPS61201650A (en) 1985-03-04 1985-03-04 Glass fiber reinforced resin concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4322585A JPS61201650A (en) 1985-03-04 1985-03-04 Glass fiber reinforced resin concrete

Publications (1)

Publication Number Publication Date
JPS61201650A true JPS61201650A (en) 1986-09-06

Family

ID=12657967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4322585A Pending JPS61201650A (en) 1985-03-04 1985-03-04 Glass fiber reinforced resin concrete

Country Status (1)

Country Link
JP (1) JPS61201650A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109589A (en) * 1976-03-10 1977-09-13 Hitachi Ltd Unsaturated polyester resin composition for pressure molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109589A (en) * 1976-03-10 1977-09-13 Hitachi Ltd Unsaturated polyester resin composition for pressure molding

Similar Documents

Publication Publication Date Title
CN103496894B (en) The toughening type RPC that a kind of steel fiber and high-performance synthon mix and preparation method
CN101269936B (en) Interface mortar
WO2016013823A1 (en) Low water content plastic composition comprising hydraulic cement and method for manufacturing same
KR20210130575A (en) Method for manufacturing high-strenth concrete manhole for unstructured special specification
JPS61201650A (en) Glass fiber reinforced resin concrete
KR100717935B1 (en) Binder composition for high strength concrete, and concrete composition and process for manufacturing the concrete using the same
KR100789627B1 (en) Composition and manufacturing method for ultra-high-strength concrete manhole
JPH02275739A (en) Floor coating material and its production
JP2001026009A (en) Production of instantly demoldable concrete block
JP2582530B2 (en) Manufacturing method of cement roof tile
JP2808413B2 (en) Method of manufacturing surface modified concrete building block
JPH0412196Y2 (en)
JPS6116744B2 (en)
JPS598654A (en) Manufacture of fiber reinforced cement hardened body
JP3992116B2 (en) Method for producing high fluidity glass fiber reinforced cement sheet
AU2022290774A1 (en) Dry mixture of cement plastic screed
JPS61219750A (en) Cement mortar hardened body
KR20240018480A (en) How to make cement plastic mixture
AU2022289832A1 (en) Cement plastic mixture
JPH061648A (en) Extrusion molding method for cement-based building material
JP2788159B2 (en) Manufacturing method of ceramic products
JPH04367554A (en) Production of cement product excellent in dimensional stability
FI78307B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN HAERDBAR KOMPOSITION.
JP2000044320A (en) Inorganic hardened body and its production
JPH0449158Y2 (en)