JPS61201135A - Method for determining misfire in multicylinder internal combustion engine - Google Patents
Method for determining misfire in multicylinder internal combustion engineInfo
- Publication number
- JPS61201135A JPS61201135A JP4295985A JP4295985A JPS61201135A JP S61201135 A JPS61201135 A JP S61201135A JP 4295985 A JP4295985 A JP 4295985A JP 4295985 A JP4295985 A JP 4295985A JP S61201135 A JPS61201135 A JP S61201135A
- Authority
- JP
- Japan
- Prior art keywords
- misfire
- value
- gas temperature
- deviation
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000002485 combustion reaction Methods 0.000 title claims description 15
- 238000001514 detection method Methods 0.000 claims description 2
- 239000000446 fuel Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Landscapes
- Testing Of Engines (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
本発明は、ガス機関やディーゼル機関等の多気筒内燃機
関において各気筒の失火状態を排気温度から判定する失
火判定方法に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a misfire determination method for determining the misfire state of each cylinder from exhaust temperature in a multi-cylinder internal combustion engine such as a gas engine or a diesel engine.
〈従来技術〉
従来、内燃機関の失火状態を排気温度から判定する方法
としては、予め一定の失火排気温度の基準値を設定して
おき、排気温度がこの基準値を下回ったときに、失火が
発生したと判定する方法がある。<Prior art> Conventionally, the method of determining the misfire state of an internal combustion engine from the exhaust temperature is to set a certain standard value of the misfire exhaust gas temperature in advance, and when the exhaust temperature falls below this standard value, a misfire is detected. There is a way to determine that this has occurred.
しかし、失火排気温度は負荷の量に応じて異なるもので
あって、高負荷のときは失火排気温度が高く、低負荷の
ときは失火排気温度が低い。そのため、上記の方法では
、負荷量に対応する失火排気温度のうち、最も低い値を
失火の基準値として用いなければならない。したがって
、高負荷領域で失火が発生した場合、そのときの本来の
失火排気温度は高いレベルにあるのに、実際の失火の基
準位は最低レベルに設定されているから、排気温度がこ
の最低レベルの基準値以下に低下して初めて失火の判定
が、なされることになり、失火が発生してから失火の判
定がなされるまで時間がかかって失火判定が遅れ、その
間混合気がそのまま外部に流出する危険があった。However, the misfire exhaust temperature differs depending on the amount of load, and when the load is high, the misfire exhaust temperature is high, and when the load is low, the misfire exhaust temperature is low. Therefore, in the above method, the lowest value among the misfire exhaust temperatures corresponding to the load amount must be used as the misfire reference value. Therefore, when a misfire occurs in a high load area, the actual misfire exhaust temperature at that time is at a high level, but the actual misfire reference point is set to the lowest level, so the exhaust temperature is lowered to this lowest level. A misfire judgment is made only when the misfire has fallen below the reference value, and it takes time from when a misfire occurs until a misfire judgment is made, resulting in a delay in the misfire judgment, and during that time the air-fuel mixture flows out to the outside as it is. There was a risk of doing so.
これに対し、負荷により失火排気温度が異なることを考
慮して、負荷量に応じて互いに異なるレベルの複数の基
準値を設定し、これらの基準値で失火を判定することが
行なわれている。しかしながら、この方法では、負荷を
正確に検出する手段やその検出負荷量を制御部に導入す
るための手段を必要とし回路構成が複雑化するほか、複
数の互いに異なるレベルの基準値を用意しなければなら
ないので、これらの基準値の算出に多くの労力を費やす
必要があり、また、異なるレベルの基準値のいずれかを
検索して失火判定を行なうため、判定動作が複雑となり
制御部にかかる負担が大となる等の欠点があった。On the other hand, in consideration of the fact that the misfire exhaust gas temperature differs depending on the load, a plurality of reference values are set at different levels depending on the load amount, and a misfire is determined based on these reference values. However, this method requires a means to accurately detect the load and a means to introduce the detected load amount into the control unit, which complicates the circuit configuration, and requires the preparation of multiple reference values at different levels. Therefore, it is necessary to spend a lot of effort to calculate these reference values, and since a misfire judgment is made by searching for reference values at different levels, the judgment operation becomes complicated and the burden on the control unit is increased. There were drawbacks such as a large amount of
さらに、失火排気温度は運転開始直後に変化するもので
あって、始動時には失火排気温度が低く、正常運転時に
は失火排気温度が高い。そのため、始動時と正常運転時
とに対しても、それぞれ異なるレベルの排気温度基準値
を設定しておいて失火の判定をする必要があり、始動時
の失火判定を正確に行なうために失火判定の動作が一段
と複雑化する欠点があった。Furthermore, the misfire exhaust temperature changes immediately after the start of operation, and the misfire exhaust temperature is low at startup and high during normal operation. Therefore, it is necessary to set exhaust temperature reference values at different levels for both startup and normal operation to determine misfire. The disadvantage was that the operation became even more complicated.
〈発明の目的〉
ところで、内燃機関の失火状態は、多くの場合、ガソリ
ン機関やガス機関では点火プラグの故障により、またデ
ィーゼル機関では燃料噴射弁の故障によりそれぞれ生じ
るものである。そのため、多気筒内燃機関で失火が発生
する場合、その失火は気筒の全部もしくはその大半につ
いて一挙に発生するようなことはなく、そのうちの1気
筒程度について単発的に発生するものである。<Object of the Invention> Incidentally, a misfire state in an internal combustion engine is often caused by a malfunction of a spark plug in a gasoline engine or a gas engine, or a malfunction of a fuel injection valve in a diesel engine. Therefore, when a misfire occurs in a multi-cylinder internal combustion engine, the misfire does not occur in all or most of the cylinders at once, but only occurs once in about one of the cylinders.
本発明は、このように失火の発生が複数の気筒のうちの
いずれかについて単発的に生じる事実に着目し、該事実
を利用して前記従来の問題点を解消しようとするもので
あって、失火判定を迅速化して混合気が流出する危険を
未然に防止するとともに、簡単な回路構成により正確な
失火判定を行なえるようにすることを目的とする。The present invention focuses on the fact that a misfire occurs in one of a plurality of cylinders, and uses this fact to solve the conventional problems, It is an object of the present invention to speed up misfire determination to prevent the danger of air-fuel mixture flowing out, and to enable accurate misfire determination with a simple circuit configuration.
〈発明の構成〉
本発明は、上記目的を達成するために、各気筒の排気温
度を読み取ってこれら各気筒の排気温度から全気筒の平
均排気温度値を算出し、次いで各気筒についてその排気
温度と前記平均排気温度値との偏差を算出し、この偏差
を点火燃焼時の排気温度域に対応する失火判定値と比較
し、偏差が失火判定値を越えるものであるときに失火発
生と判定するようにして多気筒内燃機関の失火判定方法
を構成したものである。<Configuration of the Invention> In order to achieve the above object, the present invention reads the exhaust gas temperature of each cylinder, calculates the average exhaust temperature value of all cylinders from the exhaust temperature of each cylinder, and then calculates the exhaust temperature of each cylinder. and the average exhaust temperature value, and compares this deviation with a misfire judgment value corresponding to the exhaust temperature range during ignition combustion, and when the deviation exceeds the misfire judgment value, it is judged that a misfire has occurred. In this manner, a misfire determination method for a multi-cylinder internal combustion engine is configured.
〈実施例〉
以下、本発明を図面に示す実施例に基づいて詳細に説明
する。第1図は、本発明失火判定方法の実施に供する多
気筒内燃機関の失火判定装置のブロック図であって、該
失火判定装置は、制御部lと、各気筒の排気温度を検出
する手段である複数の排気温度センサ2..2.、・・
・2n(以下2と総称する)と、ボテ゛ンシオメータの
ような設定器3とを有する。前記制御部1はCPU4と
、ROM5と、RAM6と、入出カポ−ドアと、A/D
コンバータ8とを備えている。A/Dコンバータ8には
、前記各排気温度センサ2の検出出力がそれぞれ増幅器
9..9.、・・・9n(以下9と総称する)を通じて
入力するとともに、設定器3の設定出力が入力するよう
になっている。前記設定器3は失火判定値(F)を設定
するためのもので、該失火判定値(F)は、各気筒で正
常な点火燃焼が行なわれている場合の排気温度域に対応
する値である。入出カポ−ドアはCPU4が失火の判定
をしたときに失火の発生を示す失火信号(s)を出力す
る。この失火信号(s)は、警報器もしくは他の制御部
等の外部装置(いずれも図示せず)に入力して該警報器
等に所要の動作をさせる。<Example> Hereinafter, the present invention will be described in detail based on an example shown in the drawings. FIG. 1 is a block diagram of a misfire determination device for a multi-cylinder internal combustion engine, which is used to implement the misfire determination method of the present invention. A plurality of exhaust temperature sensors 2. .. 2. ,...
2n (hereinafter collectively referred to as 2) and a setting device 3 such as a potentiometer. The control unit 1 includes a CPU 4, a ROM 5, a RAM 6, an input/output capo door, and an A/D.
converter 8. The detection outputs of the exhaust gas temperature sensors 2 are connected to the A/D converter 8 through an amplifier 9. .. 9. , . . . 9n (hereinafter collectively referred to as 9), and the setting output of the setting device 3 is also input. The setting device 3 is for setting a misfire judgment value (F), and the misfire judgment value (F) is a value corresponding to the exhaust temperature range when normal ignition combustion is performed in each cylinder. be. The input/output cupboard outputs a misfire signal (s) indicating the occurrence of a misfire when the CPU 4 determines that a misfire has occurred. This misfire signal (s) is input to an external device (none of which is shown) such as an alarm or other control unit to cause the alarm or the like to perform a required operation.
本発明失火判定方法は、上記のような失火判定装置によ
り失火発生の有無を判定するものであって、その各ステ
ップを第2図のフローチャートに基づいて詳細に説明す
る。The misfire determining method of the present invention determines whether or not a misfire has occurred using the misfire determining device as described above, and each step thereof will be explained in detail based on the flowchart shown in FIG.
まずステップNlにおいて失火変数(C)を初期値「0
」に設定する。この失火変数(C)は後述するように失
火発生の可能性の度合を示す変数である。First, in step Nl, the misfire variable (C) is set to the initial value "0".
”. This misfire variable (C) is a variable that indicates the degree of possibility of misfire occurrence, as will be described later.
次いでステップN2で、排気温度センサ2の出力である
各気筒の排気温度(El)〜(En) (以下Eiと総
称する)を読み取り、また設定器3の出力である失火判
定値(F)を読み取り、これら各気筒の排気温度(Ei
)と失火判定値(F)とをそれぞれRAM6に記憶する
。ステップN3では、各気筒の排気温度(Et)から全
気筒の排気温度の平均値(平均排気温度値) (EO)
を算出してこれをRAM6に記憶する。そしてステップ
N4で、各気筒についてその気筒の排気温度(Ei)と
前記平均排気温度値(Eo)との偏差(ΔE)を算出す
る。Next, in step N2, the exhaust temperature (El) to (En) (hereinafter collectively referred to as Ei) of each cylinder, which is the output of the exhaust temperature sensor 2, is read, and the misfire judgment value (F), which is the output of the setting device 3, is read. The exhaust temperature (Ei
) and the misfire judgment value (F) are respectively stored in the RAM 6. In step N3, the average value of the exhaust gas temperature of all cylinders (average exhaust temperature value) (EO) is calculated from the exhaust gas temperature (Et) of each cylinder.
is calculated and stored in the RAM 6. Then, in step N4, the deviation (ΔE) between the exhaust gas temperature (Ei) of each cylinder and the average exhaust gas temperature value (Eo) is calculated for each cylinder.
偏差(ΔE)=
各気筒の排気温度(Ei)−平均排気温度値(EO)ス
テップN5においては、前記偏差(ΔE)と失火判定値
(F)とを比較し、偏差(ΔE)が失火判定値(F)の
範囲内に収まるものであるときは、該気筒の排気温度(
Ei)が正常な点火燃焼による排気温度と見られるから
、該気筒では失火が発生していないと判断して、ステッ
プN6に進み、゛該ステップN6で失火変数(C)を初
期値「0」にリセットし、ステップN2に戻る。Deviation (ΔE) = Exhaust temperature (Ei) of each cylinder - Average exhaust temperature value (EO) In step N5, the deviation (ΔE) is compared with the misfire judgment value (F), and the deviation (ΔE) is the misfire judgment value. If the temperature falls within the range of the value (F), the exhaust temperature of the cylinder (
Since Ei) is considered to be the exhaust temperature due to normal ignition combustion, it is determined that no misfire has occurred in that cylinder, and the process proceeds to step N6, where the misfire variable (C) is set to the initial value "0". , and return to step N2.
一方、ステップN5で前記偏差(ΔE)と失火判定値(
F)とを比較して、偏差(ΔE)が失火判定値(F)を
越えるものであるときは、該気筒の排気温度(Ei)が
正常な点火燃焼温度域から外れているわけであるから、
該気筒では失火が発生している可能性がある。On the other hand, in step N5, the deviation (ΔE) and the misfire judgment value (
F), if the deviation (ΔE) exceeds the misfire judgment value (F), it means that the exhaust temperature (Ei) of the cylinder is outside the normal ignition combustion temperature range. ,
There is a possibility that a misfire has occurred in that cylinder.
ここで直ちに該気筒で失火が発生したとの判定を行なっ
てもよいのであるが、電気的ノイズ等の原因により失火
判定値(F)を越える偏差(ΔE)が現われていること
が考えられ、もしもそうであれば、そのとき直ちに行な
った失火発生の判定は間違いとなる。そこで、この実施
例では、偏差(ΔE)が失火判定値(F)を越えるもの
であるときは、直ちに失火の判定を行なわずに、ステッ
プN7に移って、ひとまず失火変数(C)に「1」を加
算する。この失火変数(C)は失火発生の可能性の度合
を示すものである。次のステップN8では、失火変数(
C)が所定数(m)、例えば「10」に達したか否かを
判断する。失火変数(C)に初めて「1」を加えた状態
ではもちろん、失火変数(C)は所定数(m)に達して
いないから、その場合はステップN2に戻る。At this point, it may be determined immediately that a misfire has occurred in that cylinder, but it is possible that a deviation (ΔE) exceeding the misfire determination value (F) has appeared due to causes such as electrical noise. If so, the immediate determination that a misfire has occurred will be incorrect. Therefore, in this embodiment, when the deviation (ΔE) exceeds the misfire determination value (F), the process moves to step N7 without immediately determining the misfire, and the misfire variable (C) is set to "1". ” is added. This misfire variable (C) indicates the degree of possibility of misfire occurrence. In the next step N8, the misfire variable (
It is determined whether C) has reached a predetermined number (m), for example "10". Of course, when "1" is added to the misfire variable (C) for the first time, the misfire variable (C) has not reached the predetermined number (m), so in that case, the process returns to step N2.
前記の偏差(ΔE)が電気的ノイズによるものであると
きは、同じような偏差(ΔE)が続けて現われることが
ないから、このステップN8が繰り返し経由されること
はないが、偏差(ΔE)が電気的ノイズによるものでな
く、該気筒での失火発生に対応したものであれば、同じ
ような偏差(ΔE)が現われるから、ステップN2,3
,4.5およびステップN 7 、 r、のループを繰
り返し、その繰り返し毎に失火変数(C)がrlJずつ
増加する。そして失火変数(C)が所定数(m)に達す
ると、ステップN8からステップN9に進む。このよう
に失火変数り)が所定数(m)に達すると、失火発生の
可能性がある状態が一定期間継続したことになるから、
該気筒で失火が発生したことは確実であり、ステップに
tor−←1Xでλ山−hギーに7占1ム本ル棺春出ま
たことを示す失火信号(s)を出力させる。If the deviation (ΔE) is due to electrical noise, similar deviations (ΔE) will not appear consecutively, so this step N8 will not be repeated, but the deviation (ΔE) If this is not due to electrical noise but corresponds to the occurrence of a misfire in the cylinder, a similar deviation (ΔE) will appear, so steps N2 and 3
, 4.5 and steps N 7 , r, are repeated, and the misfire variable (C) increases by rlJ each time. When the misfire variable (C) reaches a predetermined number (m), the process advances from step N8 to step N9. In this way, when the misfire variable (m) reaches a predetermined number (m), it means that the state where there is a possibility of misfire occurrence has continued for a certain period of time.
It is certain that a misfire has occurred in the cylinder, and the step outputs a misfire signal (s) indicating that the λ mountain - h gear is at 7 1 m.
〈発明の効巣〉
以上のように、本発明は、各気筒の排気温度から全気筒
の平均排気温度値を算出し、各気筒についてその排気温
度と前記平均排気温度値と比較し、両者の偏差に基づい
て失火の発生の有無を判定するようにしたものであって
、従来のように単一で低レベルの排気温度基準値と比較
して失火判定を行なう方法に比べ、常にそのときの運転
状況に合った失火判定が行なわれるから、時間的な遅れ
のない状態で迅速に失火信号が出力し、混合気をそのま
ま外部に流出させるおそれがない。<Effects of the Invention> As described above, the present invention calculates the average exhaust temperature value of all cylinders from the exhaust temperature of each cylinder, compares the exhaust temperature for each cylinder with the average exhaust temperature value, and calculates the difference between the two. This system is designed to determine whether a misfire has occurred based on the deviation, and compared to the conventional method of determining a misfire by comparing it with a single, low-level exhaust temperature reference value, the Since a misfire determination is made in accordance with the driving situation, a misfire signal is quickly output without any time delay, and there is no risk of the air-fuel mixture flowing out to the outside.
また、負荷に対応して複数の互いに異なるレベルの基準
値を設定してお〈従来の方法と比べても、負荷を検出す
る手段やその負荷検出値を制御部に導入する手段を必要
とせず、回路構成が簡単なもので済み、互いに異なるレ
ベルの基準値を算出しておくための努力を必要とせず、
負荷の変動や始動時の状況に合った正確な失火判定を行
なうことができる。In addition, multiple reference values at different levels are set according to the load (compared to conventional methods, it does not require a means to detect the load or a means to introduce the detected load value into the control section). , the circuit configuration is simple, and there is no need to make any effort to calculate reference values at different levels.
Accurate misfire judgment can be made according to load fluctuations and starting conditions.
第1図は本発明失火判定方法の実施に供する失火判定装
置のブロック図、第2図は本発明失火判定方法を示すフ
ローチャートである。
l・・・制御部、2(2,,2,、・・・2n)・・・
排気温度センサ、3・・・設定器、C・・・失火変数、
Ei(El、Et、・・・En)・・・各気筒の排気温
度、Eo・・・平均排気温度値、F・・・失火判定値、
S・・・失火信号。FIG. 1 is a block diagram of a misfire determining apparatus for implementing the misfire determining method of the present invention, and FIG. 2 is a flowchart showing the misfire determining method of the present invention. l...Control unit, 2(2,,2,...2n)...
Exhaust temperature sensor, 3... Setting device, C... Misfire variable,
Ei (El, Et,...En)...Exhaust temperature of each cylinder, Eo...Average exhaust temperature value, F...Misfire judgment value,
S... Misfire signal.
Claims (2)
対応する値として予め設定器により設定されている失火
判定値とをそれぞれ読み取つて記憶するステツプと、各
気筒の排気温度から全気筒の排気温度の平均値を算出す
るステツプと、各気筒についてその排気温度と全気筒の
平均排気温度値との偏差を算出するステツプと、この偏
差を前記失火判定値と比較するステツプと、偏差が失火
判定値を越えるものであるときに失火信号を出力するス
テツプとを含むことを特徴とする多気筒内燃機関の失火
判定方法。(1) The step of reading and storing the exhaust gas temperature of each cylinder and the misfire judgment value set in advance by the setting device as a value corresponding to the exhaust temperature range during ignition combustion, and a step of calculating the average value of the exhaust gas temperature of the cylinders, a step of calculating the deviation between the exhaust temperature of each cylinder and the average exhaust temperature value of all cylinders, a step of comparing this deviation with the misfire judgment value, and a step of calculating the deviation. A method for determining a misfire in a multi-cylinder internal combustion engine, comprising the step of outputting a misfire signal when the misfire exceeds a misfire determination value.
失火判定方法において、 失火信号を出力するステツプが、その前段で偏差が失火
判定値を越えるとの判断が続けて所定回数行なわれたと
きに初めて失火信号を出力するものである多気筒内燃機
関の失火判定方法。(2) In the misfire determination method for a multi-cylinder internal combustion engine as set forth in claim 1, the step of outputting a misfire signal is performed a predetermined number of times in a row in which it is determined that the deviation exceeds the misfire determination value. A misfire detection method for a multi-cylinder internal combustion engine that outputs a misfire signal for the first time when the
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4295985A JPS61201135A (en) | 1985-03-04 | 1985-03-04 | Method for determining misfire in multicylinder internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4295985A JPS61201135A (en) | 1985-03-04 | 1985-03-04 | Method for determining misfire in multicylinder internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61201135A true JPS61201135A (en) | 1986-09-05 |
Family
ID=12650564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4295985A Pending JPS61201135A (en) | 1985-03-04 | 1985-03-04 | Method for determining misfire in multicylinder internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61201135A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5129228A (en) * | 1989-12-11 | 1992-07-14 | Mitsubishi Denki Kabushiki Kaisha | Electronic engine control system |
US5497751A (en) * | 1994-03-04 | 1996-03-12 | Toyota Jidosha Kabushiki Kaisha | Safety control apparatus for reciprocating engine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233731A (en) * | 1975-09-11 | 1977-03-15 | Hitachi Ltd | Method for earthing electrophotographic film |
JPS534568A (en) * | 1975-12-08 | 1978-01-17 | Sumitomo Electric Ind Ltd | Position detecting system for moving body |
JPS54141180A (en) * | 1978-04-24 | 1979-11-02 | Nippon Soken | Knocking detector for internal combustion engine |
JPS55114878A (en) * | 1979-02-28 | 1980-09-04 | Nippon Denso Co Ltd | Ignition timing controller of internal combustion engine |
JPS55141649A (en) * | 1979-04-21 | 1980-11-05 | Nissan Motor Co Ltd | Knocking detector |
JPS56636A (en) * | 1979-06-15 | 1981-01-07 | Nissan Motor Co Ltd | Knocking detecting unit for internal combustion engine |
-
1985
- 1985-03-04 JP JP4295985A patent/JPS61201135A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233731A (en) * | 1975-09-11 | 1977-03-15 | Hitachi Ltd | Method for earthing electrophotographic film |
JPS534568A (en) * | 1975-12-08 | 1978-01-17 | Sumitomo Electric Ind Ltd | Position detecting system for moving body |
JPS54141180A (en) * | 1978-04-24 | 1979-11-02 | Nippon Soken | Knocking detector for internal combustion engine |
JPS55114878A (en) * | 1979-02-28 | 1980-09-04 | Nippon Denso Co Ltd | Ignition timing controller of internal combustion engine |
JPS55141649A (en) * | 1979-04-21 | 1980-11-05 | Nissan Motor Co Ltd | Knocking detector |
JPS56636A (en) * | 1979-06-15 | 1981-01-07 | Nissan Motor Co Ltd | Knocking detecting unit for internal combustion engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5129228A (en) * | 1989-12-11 | 1992-07-14 | Mitsubishi Denki Kabushiki Kaisha | Electronic engine control system |
US5497751A (en) * | 1994-03-04 | 1996-03-12 | Toyota Jidosha Kabushiki Kaisha | Safety control apparatus for reciprocating engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7043353B2 (en) | Knock determining apparatus and method for internal combustion engine | |
JP4756968B2 (en) | Internal combustion engine knock determination device | |
US5263364A (en) | Apparatus for detecting misfire in multicylinder internal combustion engines | |
KR930002381B1 (en) | Control device for internal combustion engine | |
JP3922468B2 (en) | Misfire detection device for internal combustion engine | |
US5305727A (en) | Oxygen sensor monitoring | |
JPS61201135A (en) | Method for determining misfire in multicylinder internal combustion engine | |
JPH0518311A (en) | Abnormality detector | |
JP2001107799A (en) | Misfire detection device of internal combustion engine | |
JPH0355776B2 (en) | ||
JPH04209949A (en) | Misfire detecting device for engine | |
JPH0354345A (en) | Abnormality detecting method for air-fuel ratio control device | |
JPH09329049A (en) | Engine control method and engine controller | |
JPH0734924A (en) | Injection quantity controller of internal combustion engine | |
JPH08261047A (en) | Lean limit sensing method | |
JP3312917B2 (en) | Misfire determination device for spark ignition type internal combustion engine | |
JPH0579441A (en) | Ignition timing control device for internal combustion engine | |
JP2797608B2 (en) | Misfire determination device for internal combustion engine | |
JP3234419B2 (en) | Lean limit detection method | |
JP3193620B2 (en) | Air-fuel ratio control method | |
US11703007B2 (en) | Control method of engine system, and engine system | |
JPH036344B2 (en) | ||
JPH045701Y2 (en) | ||
JPH05157000A (en) | Misfire detecting device for internal combustion engine | |
JPH06336948A (en) | Misfire detecting device for internal combustion engine |